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ABSTRACT 

This study is interested in the effect of an axial magnetic field imposed on incompressible flow of electrically 

conductive fluid between two horizontal coaxial cylinders. The imposed magnetic field is assumed uniform and 

constant. The effect of heat generation due to viscous dissipation is also taken into account. The inner and outer 

cylinders are maintained at different uniform temperatures. The movement of the fluid is due to rotation of the 

cylinder with a constant speed.  An exact solution of the equations governing the flow was obtained in the form of 

Bessel functions. A finite difference implicit scheme was used in the numerical solution. The velocity and 

temperature distributions were obtained with and without the magnetic field. The results show that for different 

values of the Hartmann number, the velocity between the two cylinders decreases as the Hartmann number increases. 

Also, it is found that by increasing the Hartmann number, the average Nusselt number decreases. On the other hand, 

the Hartmann number does not affect the temperature. 
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NOMENCLATURE 

a thermal diffusivity 

B0 external magnetic field density 

Cp specific heat 

d width of the annular space 

Ec Eckert number 

Ha Hartmann number 

Pr Prandtl number 

r radius 

t           time 

T       temperature 

k          thermal conductivity  

u         radial velocity  

v         angular velocity 

w    axial velocity 

I   μ    dynamic viscosity 

υ    fluid kinematic viscosity 

    θ         non-dimensional temperature 

γ  ρ    fluid density 

σ         electric conductivity 

Ω        rotational speed 

η         radius ratio 

         viscous dissipation function 
 

 

1. INTRODUCTION 

The study of flow of electrically conductive fluids, 

called magnetohydrodynamic (MHD) has attracted 

much attention due to its various applications. In 

astrophysics and geophysics, it is applied to the 

study of stellar structures, terrestrial cores and solar 

plasma. In industrial processes, it finds its 

application in MHD pumps, nuclear reactors, the 

extraction of geothermal energy, metallurgical and 

crystal growth in the field of semiconductors, the 

control of the behavior of fluid flow and heat and 

mass transfer and the stability of convective flows. 

Several studies have been conducted to evaluate the 

effect of magnetic field on the convective flows for 

different conditions. Chandrasekhar (1961) has made 

 the prediction of the linear stability of 

hydrodynamics and hydromagnetic Taylor-Couette 

flow. Tatsuo et al (1993) carried out experimental 

investigations about the natural convection of a 

magnetic fluid between two concentric cylinders and 

horizontal isotherms. Ben Hadid, and Henry (1996) 

investigated numerically the effect of a constant 

magnetic field on a three-dimensional buoyancy-

induced flow in a cylindrical cavity, they put in light 

the structural changes of the flow induced by the 

magnetic field for each field orientation. Singh et al 

(1997) presented exact solutions for fully developed 

natural convection in open-ended vertical concentric 

annuli under a radial magnetic field. Bessaih et al 
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(1999) studied numerically MHD laminar flow of a 

liquid metal contained in a cylindrical enclosure 

having an aspect ratio equal to 1, and whose upper 

wall is in rotation. The assembly is subjected to a 

vertical external magnetic field. El Amin (2003) 

studied the effects of both first- and second-order 

resistance due to the solid matrix on forced 

convective flow from a horizontal circular cylinder 

in the presence of a magnetic field and viscous 

dissipation, with a variable surface temperature 

boundary condition. The study of the effects of the 

azimuthal magnetic field of an electrically 

conducting fluid in a rotating annulus has also been 

presented by Kurt et al (2004). Hayat and Kara 

(2006) investigated the Couette time-dependent flow 

of an incompressible third-grade fluid subjected to a 

magnetic field of variable strength analytically. 

Group theoretic methods were employed to analyze 

the nonlinear problem and a solution for the velocity 

field was obtained analytically. Sankar et al (2006) 

studied numerically a natural convection of a low 

Prandtl number electrically conducting fluid under 

the influence of either axial or radial magnetic field 

in a vertical cylindrical annulus. They showed that 

the magnetic field can be suppress the flow and heat 

transfer. Bessaih et al (2009) studied the MHD 

stability of an axisymmetric rotating flow in a 

cylindrical enclosure containing liquid metal (Pr = 

0.015), with an aspect ratio equal to 2, and subjected to a 

vertical temperature gradient and an axial magnetic field. 

Wrobel et al (2010) presented an experimental and 

numerical analysis of a thermo-magnetic convective flow 

of paramagnetic fluid in an annular enclosure with a round 

rod core and a cylindrical outer wall under gravitational 

and magnetic environments. Azim et al (2010) studied 

numerically the effect of magnetic field and Joule heating 

on the coupling of convection flow along and conduction 

inside a vertical flat plate in the presence viscous 

dissipation and heat generation. Ellahi et al (2010) 

determined analytic solutions for a nonlinear problem 

governing the MHD flow of a third grade fluid in the 

annulus of rotating concentric cylinders. Makinde and 

Onyejekwe (2011) investigated a steady flow and heat 

transfer of an electrically conducting fluid with variable 

viscosity and electrical conductivity between two parallel 

plates in the presence of a transverse magnetic field. 

Venkatachalappa et al (2011) carried out numerical 

computations to investigate the effect of axial or 

radial magnetic field on the double-diffusive natural 

convection in a vertical cylindrical annular cavity. 

Kakarantzas et al (2011) studied numerically the 

combined effect of a horizontal magnetic field and 

volumetric heating on the natural convection flow and 

heat transfer of a low Prandtl number fluid in a vertical 

annulus. Seth et al  (2011) studied the effects of rotation 

and magnetic field on unsteady Couette flow of a viscous 

incompressible electrically conducting fluid between two 

horizontal parallel porous plates in a rotating medium. 

Mozayyeni and Rahimi (2012) investigated numerically 

the problem of mixed convection of a fluid in the fully 

developed region between two horizontally concentric 

cylinders with infinite lengths, in the presence of a 

constant magnetic field with a radial MHD force 

direction, considering the effects of viscous heat 

dissipation in the fluid in both steady and unsteady 

states. Seth et al (2012) investigated the effects of 

Hall current on unsteady hydromagnetic Couette 

flow of a viscous incompressible electrically 

conducting fluid in a rotating system in the presence 

of an inclined magnetic field. Seth and Singh (2013) 

studied theoretically the effect of Hall current and a 

uniform transverse magnetic field on unsteady MHD 

Couette flow of class-II in a rotating system. J. 

Prakash (2014) proved analytically that the principle 

of the exchange of stabilities in convection in a 

Rotating Ferrofluid Saturated Porous is not, in 

general, valid for the case of free boundaries but the 

study shown that a sufficient condition for the 

validity of this principle can be derived. Bhuiyan et 

al (2014) studied numerically the effects of joule 

heating on magneto-hydrodynamic natural 

convection flow in presence of viscous dissipation 

and pressure stress work from a horizontal circular 

cylinder.  

 

Although the exact solutions for the Hartmann flow 

and the MHD Couette flow have been achieved for 

more than seventy years, the solutions for a heat 

transfer in flow between concentric rotating 

cylinders, also known as Taylor Couette flows, under 

external magnetic field have been restricted to high 

Hartmann numbers.  

 

The aim of the present study is to examine 

analytically and numerically the effects of an 

external axial magnetic field applied to the forced 

convection flow of an electrically conducting fluid 

between two horizontal concentric cylinders, 

considering the effects of viscous heat dissipation 

in the fluid. It should be noted that the natural 

convection is supposed negligible in this work, 

which is not always the case of the vertical 

cylinder. The forced flow is induced by the rotating 

inner cylinder, in slow constant angular velocity 

and the other is fixed.  

1. FORMULATION OF THE PROBLEM 

Consider a laminar flow of a viscous incompressible 

electrically conductive fluid between two coaxial 

cylinders. The inner cylinder of radius r1 is rotated at 

a constant speed Ω1 and the outer cylinder of radius 

r2 is kept fixed. The inner and outer walls are 

maintained at a constant and different temperatures 

T1 and T2 respectively, while the top and bottom 

walls are insulated. The two cylinders are 

electrically isolated. The flow is subjected to a 

constant uniform and axially magnetic field B0. 

Geometry of the problem is presented in Fig.1. We 

assume that the magnetic Reynolds number is 

neglected. When the magnetic field is uniform and 

externally applied, its time variations can be 

neglected and the set of flow equations further 

simplified to involve only the Navier-Stokes 

equations and the conservation of the electric 

current. Also we assume that the electric field is 

zero. In this study the viscous dissipation term in the 

energy equation is considered. 
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Fig. 1. Geometry of the problem 

2. ANALYTICAL STUDY 

The flow is assumed to be steady, laminar and 

unidirectional, therefore the radial and axial 

components of the velocity and the derivatives of the 

velocity with respect to θ and z are zero. Under these 

assumptions and in cylindrical coordinates, the 

governing equations for the flow following the 

azimuthal direction can be written as follows: 
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eq.(1) to (4), witch are in non-adimensional form, 
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Where, the stars are dropped for convenience. 

 

The velocity profile in the annular space is obtained by 

solving the Eq. (5) as follows: 

  1 1 2 1 0
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Where:  
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C1 and C2 are the constants of integration, which are 

determined from the boundary conditions on the 

velocity. 
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I1 is the modified Bessel function of the first kind of 

order 1, and K1 is the modified Bessel function of the 

second kind of order 1.  

 

To obtain the temperature field from Eq. (6), we 

performed calculations by using the first, second  and 

third term used by Omid M. et al (2012) of the 

expansions of the modified Bessel functions  1I Mr  and 

 1K Mr  for small values of Ha. 

3.1 Expansion with one term of Bessel modified 

functions 

1

1
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1( )
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                                                        (11) 

By substituting the values of  1I Mr  and  1K Mr  from 

the above expansions in the velocity equation, Eq. (9), 

and using the new velocity distribution in Eq. (6) to 

find the temperature field. 

 

The temperature gradient is given then by the following 

equation:   

2
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The temperature profile is given by: 
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Where 

C3 and C4 are the constants of integration with respect 

to θ: 

2
2

4 2 2

3

1

ln( )

BrC
C

M
C

r



 
  

 
   

2
2

4 2

BrC
C

M
                                                              

3.1 Expansion with two terms of modified Bessel 

functions 
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Where: 

γ is Euler's constant defined by:  
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The temperature gradient is therefore expressed as 

follows: 
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The temperature profile is given by:  
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Where  

C3 and C4 are the constants of integration, which are 

determined from the boundary conditions on the 

temperature. 
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3.1 Expansion with three terms of modified Bessel 

functions 
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The temperature gradient is given by the following 

equation:  
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Where 

The constants C5 to C9 are given in terms of C1 and C2 

as follows: 
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The solution of the energy equation is: 
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Where  

The Constants C10, C11 and C12 are given as follows: 
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3. NUMERICAL STUDY 

In this numerical study, we consider a two-dimensional 

and axisymmetric unsteady flow. We opted for the 

velocity - pressure formulation due to its rapidity of 

prediction, its lower cost, and its ability to simulate real 

conditions. The finite difference scheme adopted for the 

resolution is very similar to that used by R.Peyret 

(1976), A.Ghezal et al (1992) and (2011), this is a semi 

implicit scheme of Crank-Nicholson type. The spatial 

discretization using the Marker And Cell (MAC) is 

shown in fig.2.  

 

The iterative procedure is assumed converged when the 

following test is verified   

max( , , , )u v wL L L L D   

where Lu, Lv, Lw, Lθ  and D represents operators 

differences relating to system equations corresponding 

to the problem variables u, v, w,θ and Π respectively, ε 

is of the order of 10-4 depending on the considered case. 

We then proceeded to a study of the mesh sensitivity of 

the field of study. This study led us to retain a mesh of 

336 nodes along the direction r and 48 nodes in the z 

direction.  
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Fig. 2. M.A.C cell 

 

 

4.1 Mathematical equations 

Based on these dimensionless variables, the 

conservation equations of mass, momentum and energy 

are written in non rotating frame cylindrical coordinates 

as follows (where the stars are dropped for 

convenience):  
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Where: 

Ha Bd





 

is the Hartmann number, 

1 1r d
Ta




  is the Taylor number, 

1 2d r r 
 
is the width of the annular space, 
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is the viscous dissipation function 

The rate of heat transfer in non – dimensional for the 

inner and outer cylinder is given by: 
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With:  1  
 

The average Nusselt number on the inner and outer 

cylinders is given by:  

0

1
( )

z

i iNu Nu z dz
L

    

0

1
( )

z

e eNu Nu z dz
L
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4.2  Initial and boundary conditions 

At the time t=0: 

( , ,0) ( , ,0) ( , ,0) ( , ,0) ( , ,0) 0u r z v r z w r z r z r z                     (28) 

The boundary conditions are as follows: 

1 1 1 10 ( , ) ( , ) ( , ) 0, ( , )r   z  :   u r z v r z w r z  r z =1     

                                                                                   
(29)

 

2 2 2 21 0 ( , ) ( , ) ( , ) ( , )r     z  :   u r z  = v r z = w r z r z =0          (30) 

1 0 0r      z  :       u v = w=0 , 
z





    


                 (31) 

0, 0
u v

z L :       w
z z z

  
    

  
                                (32) 

4. RESULTS AND DISCUSSION  

In order to understand the physical situation of the 

problem and the effects of the Hartmann and Eckert 

numbers, we have found the numerical and analytical 

values of the velocity, temperature, and the Nusselt 

number.  

 

The results obtained through the numerical code were 

presented in figs. 3 and 4 were compared with those 

calculated using the three analytical approach for small 

value of Hartmann number. 

 

It is noticed from fig. 3 that the analytical results for the 

three cases of the expansions with one, two and three 

term of  modified Bessel functions coincide well with 

the numerical results for small Hartmann number 

Ha=0.5. It can also be observed that the influence of the 

order of development on temperature is negligible  

 

As can be seen from fig. 4 that whether for the average 

Nusselt number on inner and outer surfaces versus 

Hartman numbers. The analytic approach 

corresponding to the expansion of three terms is closer 

to the numerical approach. 

 

For the Hartmann number values less than Ha=0.2 the 

influence of the order of development in the analytical 

approach is insignificant. 

 

So the next analytical results in this work are done by 

the expansions with three terms of modified Bessel 

functions.  

 

The velocity and temperature are evaluated analytically 

and numerically for different values of Hartmann 

number in figs. 5 and 6. 
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Fig. 3. Effect of the development of Bessel functions 

on temperature distribution, for Ha= 0.5, η = 

0.5, Pr = 0.02, Ec=0.5. 
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Fig. 4. Effect of the development of Bessel functions  

on average Nusselt number on (a) inner and (b) 

outer surfaces of the cylinder against the Hartmann 

number, for η = 0.5, Pr = 0.02, Ec=0.5 

 

 

Obviously, the velocity and temperature profiles, for 

various Ha obtained via these two different methods, 

agree with each other reasonably well. We can notice 

that the velocity profile without magnetic field Ha=0 

is quasi-linear, and an increase in Hartman number,  
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Fig. 5. Comparison of analytical and numerical 

results of velocity profile, for η = 0.5, Ta=20,t*=120. 
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Fig. 6. Comparison of analytical and numerical 

results Temperature profile, for η = 0.5, Ta=20, 

Pr = 0.02, Ec=0.0001, t*=120. 

 

 

which causes a reduction of the velocity in the annular 

space because the centrifugal force is counter-

productive and the Lorentz electromagnetic force acts 

as a flow damper.  

 

It is observed from fig. 6 that the effect of weak 

magnetic field on the radial profile of temperature is 

insignificant.  

 

It should be noted that the effect of magnetic field on 

the temperature distribution is insignificant, whereas the 

changes induced by the magnetic field on the 

temperature gradient and therefore on the Nusselt 

number is considerable. 

 

Fig. 7 displays the effect of Hartmann number on the 

temperature, as shown in this figure, the temperature 

profile is similar to those shown in Figs. 6. It is evident 

that the effect of weak and strong magnetic field on the 

radial profile of temperature is insignificant. It is valid 

in the case of low and high values of Hartmann 
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Fig. 7. Temperature profile as a function of 

Hartmann number, for η = 0.5, Ta=20, Pr = 0.02, 

Ec=0.5, t*=120. 
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Fig. 8. Effect of Hartman number on local Nusslet 

number distribution on (a) inner and (b) outer 

cylinders, for η = 0.5, Pr = 0.02, Ec=0.5, t*=120 

 

number. Also we can notice that the temperature 

profiles don’t change for Ec=0.5 and Ec=0.0001, so the 

Eckert number don’t affect the temperature.  

 

Fig. 8 shows the effect of Hartmann number on the 

local Nusselt number on the inner and outer surfaces, 

for an Eckert number Ec = 0.5. It is found that for high 

values of Hartmann number, the local Nusselt number 

on the inner and outer surfaces decreases.  
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Fig. 9. Effect of Eckert number on local Nusselet 

number distribution on (a) inner and (b) outer 

cylinders, for η = 0.5, Pr = 0.02, Ha=0, t*=120. 

 

In fact when the Eckert number is considerable. The 

heat generation in the fluid increases due to viscous 

dissipation. Thus the temperature of the fluid in the 

annular space increases causing a decrease in the 

temperature gradient in the vicinity of the inner cylinder 

and an increase of the gradient in the vicinity of the 

outer cylinder. A significant increase in the Hartmann 

number, causes a reduction of the centrifugal force, 

which results in a gradual decrease in the Nusselt 

number. The analysis of the variation of local Nusselt 

number on the inner and outer cylinder shows that this 

number tends to a limit value. 

 

Effect of Eckert number on the distribution of local 

Nusselt number on the inner and outer cylinders is 

displayed in Fig. 9, for Ha = 0. As can be seen, with 

increase of Eckert number, the influence of heat transfer 

due to the viscous dissipation in the annular space is 

improved, which leads to the increase in the average 

temperature of the fluid at this region. The 

dimensionless temperatures of inner and outer cylinders 

are maintained at 1.0 and 0.0, respectively. It is evident 

that by increasing the average temperature of fluid in 

annular space, the rate of heat transfer between the fluid 

and inner cylinder decreases due to the reduction of the 

temperature difference between them. Secondly, the 

convective heat transfer between the fluid and the outer 

cylinder is improved because of the increase in the 

temperature. 
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Fig. 10. Effect of Eckert number on average Nusselt 

number on (a) inner and (b) outer surfaces of the 

cylinder against the Hartmann number, η = 

0.5, Pr = 0.02, t*=120. 

 

It is observed from fig. 10 that the effect of increasing 

Hartmann number is the decrease the average Nusselt 

number on both surfaces of the cylinder. So a 

considerably increasing Hartmann number, which leads 

to a reduction of the centrifugal force, results in a 

progressive decrease in the Nusselet number. 

 

From this figure, it can also be noticed that the average 

Nusselt number on the outer cylinder is lower than on 

the inner cylinder, because the velocity and temperature 

gradient are higher for the cold inner cylinder than for 

the outer cylinder. Also the results show the effects of 

viscous dissipation terms on the rate of heat transfer, 

the average Nusselt number increases with an increase 

in the Eckert number on the outer cylinder, but it 

decreases on the inner cylinder. In fact, as the Eckert 

number is large the heat generated in the annulus 

increases due to viscous dissipation, and thus the 

temperature of the fluid increases. This causes a 

decrease in the temperature gradient close to the inner 

cylinder, and an increase in the gradient in the vicinity 

of the outer cylinder. 

 

In this part, some results are presented in different non-

dimensional time values for the distribution of velocity 

and temperature in the annulus Figs (11, 12, 13 and 14).  
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Fig. 11. Velocity distribution at different times at 

z/d=7 for (a) Ha = 2 and (b) Ha = 50 for Ta=20. 
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Fig.12. Temperature distribution at different times 

at z/d=7 for (a) Ha = 0.0 and (b) Ha = 50 for Ta=20, 

Ec=0,Pr=0,02 
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Fig. 13. Temperature distribution at different times 

at z/d=7 for (a) Ha = 2 and (b) Ha = 50 for Ta=20, 

Ec=0, Pr=1. 
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Fig. 14. Temperature distribution at different times 

at z/d=7 for (a) Ha = 2 and (b) Ha = 50 for Ta=20, 

Ec=0, Pr=7. 

 

There is not much difference in velocity at t= 10 

compared to t = 120, but comparing temperature 

distribution at t=10 with values greater than 10, it 

indicates that much more time is still needed to reach 

steady-state. 
 

From fig. 12, we can notice that for a small value of  

Prandtl number (Pr=0,02), The effect of the time 

variation is found  to be not significant  on the 

temperature, it reaches faster a  steady-state  to the point 

that we can’t notice the difference between the steady 

and unsteady states flows.  
 

As we know, for larger fluid Prandtl number, the 

momentum flow transfer is faster than heat transfer.  

This can be seen clearly in Fig. 14 (for a fluid with Pr = 

7) and the distribution of the azimuthal component of 

velocity reaching a steady-state quicker than the 

temperature at the mid-length. 

CONCLUSION 

In this study, the forced convection flow of an 

electrically conducting fluid between two horizontal 

concentric cylinders in the presence of an axial 

magnetic field and a temperature gradient considering 

the effects of viscous heat dissipation in the fluid has 

been investigated numerically and analytically. The 

velocity distribution in the annulus is obtained  

analytically in terms of the modified Bessel functions 

whose argument contains Hartmann number and radial 

coordinate. To obtain the temperature, the expansions 

of the modified Bessel functions, with three terms 

which coincides better with the numerical results, are 

used in the energy equation.  
 

It is found that the velocity decreases in the annulus with 

increase of Hartmann number. However an increase in 

Hartmann number does not affect the temperature.  The 

effects of magnetic field strength and Eckert number on 

local and average Nusselt number have been examined. 

The results show that an increase in Hartmann number 

reduces the Nusselt number on both surfaces of the 

cylinders. Also it was noticed that as the Eckert number 

increases average Nusselt number increases on the outer 

cylinder, but opposite trend is observed on the inner 

cylinder. In addition, some results of the unsteady state 

have been discussed in this work. 
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