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ABSTRACT 

Thermal instability in a low Prandtl number nanofluid in a porous medium is investigated by using Galerkin 

weighted residuals method for free-free boundaries. For porous medium, Brinkman-Darcy modelis applied. The 

model used for the nanofluid describes the effects of Brownian motion and thermophoresis. Linear stability 

theory based upon normal mode analysis is employed to find the expression for stationary and oscillatory convection. 

The effects of Prandtl- number, Darcy number, Lewis number and modified diffusivity ratio on the stationary 

convection are investigated both analytically and graphically. The results indicated that the Prandtl and Darcy 

numbers have a destabilizing effect while the Lewis number and modified diffusivity ratio have a stabilizing effect 

for the stationary convection. 
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NOMENCLATURE 

a   dimensionless resultant wave number 

d thickness of nanofluid layer 

DB Brownian diffusion coefficient  

DT thermophoretic diffusion coefficient 

Da   Darcy number 

g acceleration due to gravity   

k1 medium permeability 

km thermal conductivity 

Le    Lewis number 

NA   modified diffusivity ratio

 NB  modified particle -density increment 

n   growth rate of disturbances 

Pr   Prandtl number 

p hydrostatic pressure 

q   Darcy velocity vector 

Ga   Grashof number 

Gac      critical Grashof number 

Gm   density Grashof number

 Gn   concentration Grashof number 

T temperature  

T1 reference temperature  

t time 

u,v,w   velocity components 

(x,y,z)  space co-ordinates    

Greek symbols 

α thermal expansion coefficient  

μ viscosity    

ε porosity 

ρ density of the nanofluid

 
(ρc )m heat capacity in porous medium  

(ρc ) p heat capacity of  nanoparticles  

φ volume fraction  of the nanoparticles   

ρp density of nano particles  

ρf density of base fluid 

κ  thermal diffusivity     

ω  dimensionless frequency  

Superscripts 

 ' non-dimensional variables 

' ' perturbed quantities 

Subscripts 

p particle 

f  fluid 

0 lower boundary 

1 upper boundary 

H horizontal plane 
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1. INTRODUCTION 

When a small amount of nano-sized particles are added 

to the base fluid, the thermal conductivity of the fluid is 

enhanced and such a fluid is called nanofluid which was 

first coined by Choi (1995).Due to this property of the 

nanofluid, they have wide range of industrial 

applications especially in the process where cooling is 

of primary interest. Buongiorno (2006) observed that 

the nanoparticles absolute velocity can be viewed as the 

sum of the base fluid velocity and a relative (slip) 

velocity. Alloui et al. (2010) studied the natural 

convection of a nano fluid in a shallow cavity heated 

from below. The Bénard problem (the onset of 

convection in a horizontal layer which was uniformly 

heated from below) for a nanofluid was studied by Tzou 

(2008a, b) on the basis of Buongiorno’s model. Effect 

of axial conduction and variable properties on two-

dimensional conjugate heat transfer of nanofluid in 

microchannel is studied by Rramiar et al. (2012) while 

Analytical study on boundary layer flow and heat 

transfer of nanofluid induced by a non-linearly 

stretching sheet is studied by Malvandi et al. (2014). 

Nield and Kuznetsov (2010a and 2011a) studied the 

convection in a nanofluid layer of finite depth and the 

double-diffusive convection in a nanofluid layer. 

Thermal instability in a porous medium has many 

technological applications in geophysics, food 

processing, oil reservoir modeling, petroleum industry, 

bio-mechanics, building of thermal insulations and 

nuclear reactors. Many researchers had investigated 

thermal instability problems by taking different types of 

fluids. Lapwood (1948) had studied the convective flow 

in a porous medium using linearized stability theory. 

The Rayleigh instability of a thermal boundary layer in 

the flow through a porous medium had been considered 

by Wooding (1960). A good account of convection 

problems in a porous medium are given by Vafai and 

Hadim (2000), Ingham and Pop (1981) and Nield and 

Bejan (2006) respectively. 
 

Owing, applications of the nanofluid and porous media 

theory in chemical engineering to study  theory in 

drying and freezing of food, cooling of microchips in 

computers by using of metal foams and their use in heat 

pipesetc. Therefore, the study of nanofluid in a porous 

medium turns to be important to researchers. Recently, 

the thermal instability of a nanofluid in a porous 

medium had been investigated by Nield and Kuznetsov 

(2009), Nield and Kuznetsov (2010b, 2011b), 

Kuznetsov and Nield (2010 a, b, c), Sheu (2011), 

Chand and Rana (2012a, b, c), Chand (2013a, b) and 

Chand et al. (2013a, b). 
 

The problem of thermal convection of a Boussinesq 

fluid in ahorizontal layer heated from below is 

characterized by two non-dimensional parameters, the 

Rayleigh number and the Prandtl number. Since the 

Rayleigh number Rais defined in such a way that the 

onset of convection occurs at a value Ra, independent 

of the Prandtl number Pr, the latter usually plays a 

secondary role in the study of convection. But the 

influence of the Prandtl number on nonlinear properties 

such as the heat transport is significant and not yet well 

understood. In particular, in the limit of low Prandtl 

number, large discrepancies exist between various 

theoretical predictions for the convective heat transport. 

Low-Prandtl-number problems are important many 

engineering applications; most studies of low-Prandtl-

number convection have been motivated by 

astrophysical applications. Since Prandtl numbers in 

stars may be as low as 10-8, as pointed as noted by 

Clever and Busse (1981). Low-Prandtl-number flows 

are especially important to the dynamics of the outer 

planets and their moons. The surface of Jupiter is 

formed by convection in a fluid with a Prandtl number 

of around 0.01 [Zhang and Schubert (2000)]. The 

Galileo missions have confirmed the existence of 

convecting oceans on the Jovian moons Europa and 

Callisto [Khurana, 1998]. Low-Prandtl-number 

convection at high Rayleigh numbers will allow us to 

better model heat flux and surface deformation on the 

Jovian moons. Thermal convection in Rayleigh-Bénard 

problem is important in the flow of liquid metal which 

has been used for rapid cooling of nuclear reactors 

where Prandtl number is very-very small [Steward and 

Weinberg (1972), Mohamad and Viskanta (1991)]. 

Cookey (2009) studied the thermal convection of low 

Prandtl number in a horizontal fluid layer through a 

porous medium and found that low Prandtl number 

destabilize the fluid layer.One of the main motivations 

for the current research on Rayleigh-Benard convection 

in a layer of nanofluid is to theoretically understand 

turbulent thermal convection for very large Rayleigh 

number Ra, far beyond the range after onset of 

convection. In the post onset range still spatially 

coherent patterns prevail. 

 

In present paper, an attempt is made to investigate the 

thermal instability in a layer nanofluid having a 

Prandtl number of the range 0.1 < Pr < 0.0001 in a 

porous medium 

2. MATHEMATICAL FORMULATION AND 

PERTURBATION EQUATIONS.  

Consider an infinite horizontal layer of a nanofluid of 

thickness ‘d’ bounded by planes z = 0 and  z = d, heated 

from below in a porous medium of porosity (ε) and 

medium permeability (k1) as shown in Fig.1.  It is 

assumed that nanoparticles are suspended in the 

nanofluid using either surfactant or surface charge 

technology. This prevents particles from agglomeration 

and deposition on the porous matrix. Each boundary 

wall is assumed to be impermeable and perfectly 

thermal conducting. Fluid layer is acted upon by gravity 

force g (0, 0, -g). The temperature (T) and volumetric 

fraction (φ) of nanoparticles at z = 0 are taken to be T0, 

φ0  and T1, φ1 at z = d, where (T0 > T1). The reference 

temperature is taken to be T1. Thermo physical 

properties of the nanofluid are assumed to be constant 

for the analytical formulation, but these properties are 

not constant and strongly depend upon volume fraction 

of nanoparticles. We are aware that thermal lagging 

between particles and the fluid has been proposed as an 

explanation of the increased thermal conductivity that 

has been observed in the nanofluid [Vadasz (2006)].  

According to works of Tzou(2008a, b), Buongiorno 

(2006), Wooding (1960) and Chandrasekhar 

(1961),equations of continuity and motion for nanofluid 

layer in a porous medium are written as  
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Fig. 1. Physical configuration of the problem 
 

 

,0 q
          (1) 

       qg
q

1

0p
k

μ
-TTα1ρφ1φρp

dt

d

ε

ρ
 , 

(2)  
Where q (u, v, w) is the Darcy velocity vector, p is the 

hydrostatic pressure, μ is the viscosity, α  is the 

coefficient of thermal expansion, φ is the volume 
fraction  of the nanoparticles, ρp  density of nanoparticles, 

ρf density of base fluid and  q
d 1

dt t ε


  


 

represents the convection derivative. 

The equation of energy for nanofluid in porous medium 

is given by  

   

 

q
T 2ρc ρc . T k Tmm ft

DTε ρc D φ. T T. TBp T1


   



 
       

 
,                           (3)

 

where (ρc)m is the effective heat capacity of  fluid, (ρc 

)p is the heat capacity of  nanoparticles and  km is the 

effective thermal conductivity of the porous medium.

 

The equation of continuity for nanoparticles is given by

 

T
T

D
φDφ

ε

1

t

φ 2

1

T2

B 



q ,      (4) 

where DB  is the Brownian diffusion coefficient, given 

by Einstein-Stokes equation while  DT  is the  

thermoporetic diffusion coefficient of nanoparticles. 

 

Since, the fluid under consideration is confined between 

two horizontal planes z = 0 and z = d. Therefore, on 

these two planes certain boundary conditions must be 

satisfied.  We take the case of free-free surface and 

assume that temperature and volumetric fraction of the 

nanoparticles are constant, so the boundary conditions 

[Chandrasekhar (1961) and Nield and Bejan (2006)]are 

given by 

0zat    φφ    TT    0,w    00, 
 
and  

d.zat    φφ    TT    0,w    11,  (5)  

Introducing non-dimensional variables as  

,
d

zy,x,
)z,y,x( 










d,
wv,u,

)w ,v,u( 









 ,

t
t

2d




  ,

p 2p d


 

 
 

φ φ0
φ ,

φ φ1 0


 



 
 

T T1
T

T T0 1


 


,  

where 
 

 
.

c m

c f





  

Eqs. (1) - (4) in non-dimensional form can be written as  

q ,. 0 
          

(6)
 

q
ˆ ˆ ˆq

1 1
p - -Gme GaT e Gnφ e ,z z z

t Da


      


 

  

 (7) 

1
q

Pr

NT 2 B. T T φ . T
t LePr

N N BA T . T ,
LePr


          



   

                

(8) 

q
N1 φ 1 1 2 2A. φ φ T ,

σ t ε LePr LePr


        


               

(9) 

where non-dimensional parameters are given as: 

Prandtl number ,p
κ

k
p 1




 

Lewis number   ; 
D

κ
Le

B

  

Darcy number ;
d

k
Da

2

1
 

Grashof number  
  ; 

dkTTgα
Ga 110






 

 

Density Grashof number 

  
  ; 

μκ

dgkφ-1ρφρ
Gm

100p 


 

Concentration 

Grashof number 
  

  ; 
μ

dgkφ-φρρ
Gn 

101p






 

Modified diffusivity ratio   
 

  ; 
φφTD

T-TD
N

011B

10T
A




 
Modified particle-density 

increment
   

 
  . 

ρc

φ-φρc
N 

f

01p

B 
 

The dimensionless boundary conditions are  

0zat    φφ    TT    0,w    00,  and 

1.zat    φφ    TT    0,w    11, 
    

(10)

 
The basic state was assumed to be quiescent and is 

given by

 
     b bu v w 0,  p p(z),   T T (z),   φ φ (z) .

            
(11)

 

where z,1Tb  z.φb   

 

Thses solutions are same as obtained by Nield  

and Kuznetsov (2010b, 2011b), Chand and 

Rana(2012a, b, c). 
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To study the stability of the system, we superimposed 

infinitesimal perturbations on the basic state, which are 

of the forms
 

   

z.φ z,-1T with ,ppp  ,φφφ

 ,TTT,wv,u, q0wv,u, q

bbb   b

b,





 

(12) 

(There after dropping dashes ( '' )  for simplicity) 

Substituting the expression (12) in Eqs. (6) - (9) and 

linearize by neglecting the product of the prime 

quantities we obtained following perturbed equations as 

0,.  q
       

(13) 

,êGnφêGaT
Da

1
-p

t

1
zz 






q

q

    

(14) 

T,
LePr

N
φ

LePr

1
w

ε

1

t

φ

σ

1 2A2 




    

(15) 

.
z

T

LePr

N2N

z

φ

z

T

LePr

N
T

Pr

1
w

t

T BAB2




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





















  
(16)

   

 

The dimensionless boundary conditions are given by 

0zat     0φ    1T    0,w  and

1.zat     1φ    0,T    0,w 
    

(17)
 

It will be noted that the parameter Gm is not involved in 

these and subsequent equations. It is just a measure of 

the basic static pressure gradient. 

 

The sixunknown’s u, v, w, p, T and 

φcanbereducedtothreeby operating Eq. (14) with 

curl, .curle z
we get 

φ,GnTGaw
Da

1

t

1 2

H

2

H

2 














          

(18) 

where ,2

H  is the two-dimensional Laplacian operator 

on the horizontal plane.

 
3. NORMAL MODES AND STABILITY ANALYSIS

 

Analyzing the disturbances into the normal modes and 

assuming that the perturbed quantities are of the form  

     ntyikxikexpΦ(z)Θ(z),W(z),φT,w, yx  , 

  (19) 

where kx and ky  are wave numbers in x and y directions 

respectively , while n is the growth rate of disturbances.  

By using Eq. (19), Eqs. (15), (16)and (18) become 

  0,GnΦaGaΘaWaD
Da

1n 2222 




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


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(20) 
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ε

W 2222A 
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(21) 

  0.DΦ
LePr

N
-ΘD

LePr

N2N
D

LePr

N
naD

Pr

1
W BBAA22 


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
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(22) 

Where 
dz

d
D  and 2

y

2

x kka  is dimensionless 

the resultant wave number. 

 

The boundary conditions of the problem in view of 

normal mode analysis are 

0zat       0   ,0  0,WD 0,W 2 
 
and 

1zat       0   ,0  0,WD 0,W 2  .     (23) 

For neutral stability, the real part of n is zero. Hence we 

write n=iω, where ω is real and is the dimensionless 

frequency.  

4. METHOD OF SOLUTION 

The Galerkin weighted residuals method is used to 

obtain an approximate solution to the system of Eqs. 

(20) - (22) satisfying boundary conditions (23). In this 

method the test functions are the same as the base (trial) 

functions. Accordingly W, Θ and Φ are taken as  





n

1p

pp

n

1p

pp

n

1p

pp CΦ,B ,WAW         (24) 

Where Ap, Bp and Cp are unknown coefficients, p =1, 2, 

3... N and the base functions Wp, Θp and Φp are 

assumed in the following form for free-free boundaries 

 z sinpπΦz,  πsinpΘ , z  sinpπW ppp  ,  (25) 

such that Wp, Θp and Φp satisfy the boundary conditions 

(23). Using expression for W, Θ and Φ in Eqs. (20) - 

(22) and multiplying the first equation by Wp , the 

second equation by Θp and the third equation by Φp and 

integrating in the limits from zero to unity, we obtain a 

set of 3N linear homogeneous equations with 3N 

unknown Ap, Bp and Cp;  p =1,2,3,...N. For existing of 

non- trivial solution, the vanishing of the determinant of 

coefficients produces the characteristics equation of the 

system in term of Grashof number Ga. 

5.  LINEAR STABILITY ANALYSIS  

For one term Galerkin approximation, we take N=1, so 

the trial functions are given as 

, z sinπΦz, sin πΘ , z  sinπW ppp        (26) 

which satisfied  boundary conditions (23). 

(a) Stationary Convection 

Consider the case of non-oscillatory convection i.e., ω = 

0, using the one-term Galerkin approximation, the 

following expression for the Grashof number (Ga) can 

be written as  

 
GnN

Le

PrDaa

a
aG A2

222















 .     (27) 

Thus we get anexpression for the stationary Grashof 

number (Ga) instead of stationary Rayleigh number 
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(Ra). The stationary Grashof number (Ga) which is a 

function of Prandtl number (Pr) is useful to investigate 

effect of Prandtl number especially for low- Prandtl 

numbers. 
 

In order to investigate effects of the Prandtl number, 

Darcy number, Lewis number and the modified 

diffusivity ratio, we examine the behavior of  

AN

aG
 and 

Le

aG
,

Da

aG
,

Pr

aG




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


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
 analytically.  

From Eq. (33), we have  
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



 for 

a bottom-heavy distribution of nanoparticles i.e. for 

negative value of Gn.  
 

Thus, the Prandtl number and Darcy number have a 

destabilizing effect while the Lewis number and the 

modified diffusivity ratio have a stabilizing effect on 

the stationary convection in a nanofluid layer.  
 

If Da = 1, then this result reduces to the result as 

obtained by Chand and Rana (2012a, b, c). The 

interweaving behaviors’ of the Brownian motion and 

the thermoporesis of nanoparticles evidently does not 

change the critical size of the Bénard cell at the onset of 

instability.   
 

In the absence of nanoparticles (Gn = Le = NA = 0) i.e. 

for ordinary fluid, we have  

 
PrDaa

a
aG

2

222 
 . 

When we take Da =1, then this result reduces to the 

well known result derived by Chandrasekhar (1961) and 

Kuznetsov and Nield (2010b). 

(b) Oscillatory Convection 

For oscillatory convection ω # 0, by using the one-term 

Galerkin approximation, we obtain the eigen-value 

equation as follows 
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where .aπJ 22   
Equating real and imaginary parts of Eq. (28), we get 
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Eliminating ω2 between Eqs. (29) and (30), we get 
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(31) 

In order to make ω real, it is necessary that 
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.                (32) 

Hence Eq. (31) gives the oscillatory stability boundary 

when Eq. (32) satisfied. The frequency of the 

oscillatory mode is given by 
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  (33) 

6. RESULTS AND DISCUSSION  

The onset of thermal instability in a low Prandtl number 

nanofluid layer heated which from below in a porous 

medium is analyzed using Galerkin weighted residuals 

method. The linear theory based on the usual normal mode 

technique is used to find the expressions for the Grashof 

number (Ga) instead of Rayleigh number (Ra). The 

Grashof number (Ga) which is a function of Prandtl 

number (Pr) is useful to investigate effect of Prandtl 

number especially low-Prandtl number (Pr). Graphs have 

been plotted to find out the effect of various parameters on 

the system. 

The stationary convection curves in the (Ga -a)plane for 

Prandtl number, Darcy number and Lewis number are 

shown in Figs (2-4).   

 

It is clear from Figs. 2(a, b) that the rise of the heat 

transport in the transition region becomes steeper for 

decreasing Prandtl number in order that the large 

Prandtl-number value can be approached within a finite 

interval of the Grashof numbers. But it is difficult to 

say how large this interval is, since the curves shown in 

Figs. 2(a, b) approach each other relatively slowly as Pr 

decreases. Finally, at Grashof numbers approaching l04, 

the heat transport becomes nearly independent of the 

Prandtl number as shown in Fig.2 (a). It is also found 

that the Grashof number (Ga) decreases  as values of  

Prandtl number (for both low and high value of Prandtl 

numbers) inceases. Therefore,  Prandtl number 

destabilizes the stationary convection. 

 

Fig. 3 shows the variation of the Grashof number (Ga) 

with the wave number (a)  for different values of Darcy 

number. It is found that the Grashof number (Ga) 

decreases  as values of Darcy number inceases. 

Therefore, Darcy number destabilizes the stationary 

convection.  

 

Fig. 4 shows the variation of Grashof number (Ga) 

with wave number (a) for different values of Lewis 

number.  
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Fig. 2(a). Variation of Grashof number Ga with 

wave number for different values of sall value of 

Prandtl number Pr. 

 

 
 

Fig. 3. Variation of Grashof number Ga with wave 

number for different values of Darcy Number Da 

 

Fig. 2(b). Variation of Grashof number Ga with 

wave numberfor different values of  Large value 

Prandtl number Pr. 

 

 
 

Fig. 4. Variation of Grashof number Ga with wave 

number for different values of Lewis number Le. 

 
It is found that the Grashof number (Ga) increases as 

values of  Lewis number (Le) inceases. Therefore, 

Lewis number stabilizes the stationary convection. 

7. CONCLUSIONS 

Alinear stability analysis of thermal instability in a 

low-Prandtl number nanofluid layer in a porous 

medium is investigated using Galerkin weighted 

residuals method. The main conclusions are 

summarized as follows: 

(i) The critical cell size is not a function of any 

thermo physical properties of the nanofluid. 

(ii) For large value of Grashof number the heat 

transport becomes nearly independent of the 

Prandtl number. 

(iii) Prandtl number and Darcy number have a 

destabilizing effect on the stationary convection. 

(iv) Lewis number and the modified diffusivity ratio 

stabilize the stationary convection. 

(v) Oscillatory convection is possible if  
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