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ABSTRACT 

The transition from laminar to turbulent flow in porous media is studied with a pore doublet model consisting of 

pipes with different diameter. The pressure drop over all pipes is recorded by pressure transducers for different flow 

rates. Results show that the flow in the parallel pipes is redistributed when turbulent slugs pass through one of them 

and six different flow zones were identified by studying the difference between the Re in the parallel pipes. Each flow 

zone starts when the flow regime of one of the pipe changes. Transitional flow of each pipe increases the correlation 

between different pipes pressure drop fluctuations. Frequency analysis of the pressure drops show that the larger pipe 

makes the system to oscillate by the presence of turbulent patches in its flow. However, when the flow in the smaller 

pipe enters into the transitional zone the larger pipe starts to follow the fluctuations of the smaller pipe. 

 

Keywords: Porous media, Transitional flow, Turbulent flow, Pore doublet model, Pipe flow. 

 

NOMENCLATURE 

b adjusting coefficient 𝑃𝑥𝑥 frequency content 

𝑑 differentiation sign PMM

A  

poly methyl methacrylate 

D diameter  Q mass flow rate 

e pipe roughness Re Reynolds number 

𝑓 friction factor, frequency 𝑅𝑒𝑑𝑖𝑓𝑓 difference between Re 

H header pipe S smaller pipe 

i dummy variable 𝑡 time 

k adjusting coefficient u velocity 

K permeability 𝑤 weight 

L length, larger pipe 𝑥i ith data point 

m adjusting coefficient 𝑋(𝑓) fourier transform of x(t) 

𝑚𝑛 normalized nth momentum  𝑥 mean value of data series 

𝑀𝑛 data nth momentum 𝑋(𝑓) conjugate of 𝑋(𝑓) 

𝑀2 data variance y(t) data point at moment (t) 

𝑚° mass flow rate ∆ difference operator 

𝑁 number of data point μ dynamic viscosity 

P pressure  𝜌 density  

 

1 INTRODUCTION 

Transitional flow is one of the most challenging 

problems of fluid mechanics, especially in porous 

media due to the often complex geometry encountered 

by the fluid. The first relationship describing fluid flow 

within porous media was based on Darcy’s pioneering 

experimental work on packed beds Darcy (1856). The 

by these experiments derived Darcy law (u = ∆p/L  

K/μ) states that the superficial velocity (u) is 

proportional to the pressure drop along a porous bed 

(∆p/L) where L, μ and K are the length of the porous 

bed, the dynamic viscosity and the permeability 

respectively. Darcy’s empirical law can be derived from 

the governing equations, i.e. the Navier–Stokes and 

continuity equations, by homogenization techniques 

Sanchez-Palencia (1980) or volume averaging 

http://www.jafmonline.net/
mailto:shekha@ltu.se


S. Khayamyan and T. S. Lundström / JAFM, Vol. 8, No. 2, pp. 281-290, 2015.  

 

282 
 

techniques Whitaker (1986). Darcy's law is often said to 

be valid for Stokes flow Re < 1 (Lindquist 1933, 

Schneebeli 1955, Hubbert 1956, Scheidegger 1960, 

Chauveteau and Thirriot 1967), but Hellstrom et al. 

(2010) have shown that it can be valid up to particle 

Reynolds number, Re ≈ 10.  The actual limiting value is 

dependent on how Re is defined. In 1863 Dupuit 

noticed that the linear Darcy’s law does not represent 

experimental data at higher flow rates. Following this 

observation Forchheimer (1901), added a quadratic 

correction term to Darcy’s law in order to capture the 

behavior of the experimental data at higher Re. Later on 

other correction terms were proposed (Chauveteau 

1967, Muskat 1946, Skjetne 1999) and finally Darcy’s 

law was modified to the so called Ergun-Forchheimer 

equation that may be written in the following form: 

∆p/L = μ/k(u + bum) where  k, b and m are variables 

that should be chosen in a way that the equation fits to 

experimental data. By doing this the Equation captures 

the behavior of experimental data for Re > 10 (Seguin 

1998, Comiti 2000, Papathanasiou 2001).  

Several mechanisms have been suggested to cause the 

deviation from Darcy’s law such as:  

 Loss of kinetic energy due to contraction and 

expansion of pore space Panfilov (2006) 

 The effect of pore solid boundaries on pressure 

loss Hayes (1996) 

 Microscopic inertial forces presented in the drag 

forces Ma (1993) 

 Formation of inertia flows at the center of pores 

Dybbs (1984) 

 Formation of a viscous boundary layer Whitaker 

(1996) 

 The interstitial drag force (Hassanizadeh and Gray 

1987, Ma and Ruth 1993) 

 Singularity of streamline patterns Panfilov et al. 

(2003) 

 Separation of flow (Skjetne and Auriault 1999b) 

 Deformation of streamline patterns and formation 

of eddies (Fourar et al. 2004, McClure et al. 2010, 

Panfilov and Fourar 2006) 

This, in essence, tells us that inertial forces result in the 

breakdown of Darcy’s law at modest Re. However, at 

higher flow rates the flow eventually will become fully 

turbulent. The transition from inertia dominated to 

turbulent flow, which is proven to be continuous based 

on experimental data, can macroscopically be 

approximated by Forchheimer equation or extended 

forms of it Nemec (2005). Notice that this implies a 

continuous transition from laminar to turbulent flow 

Hellström (2010) that differentiates porous media flow 

from pipe flow where there is a non-continuous 

transition from laminar to turbulent flow Joseph and 

Yang (2010). Different authors have reported the 

presence of turbulence on pore scale Hlushkou (2006) 

but the effect of pore geometry on the actual state or 

distribution of turbulence has not been studied in 

detailed. For regular packing turbulence appears in all 

the neighboring pores at the same time. In fully random 

packing where there is no control of position or size of 

the pores formed the detailed geometry of most of 

neighboring pores affect the flow. Simplified 

geometries such as a unit cell (Wan 1996; Nordlund 

2009) and a pore-doublet (Rose 1956; Sorbie 1995; 

Lundström 2008; Khayamyan et al. 2014) have been 

used to distill the geometrical effect. Following this 

trend we will continue to study the pore-doublet model 

presented in Khayamyan et al. 2013. This model was 

applied in order to take advantage of the well-studied 

pipe flow e.g. (Reynolds (1883), Wygnanski 1973, 

Gustavsson 1991).  

In a previous study, Khayamyan et al. (2013), it was 

shown that the flow in the pipes is redistributed when 

transient slugs pass through one of them. The presence of 

the slugs in the pipes is revealed by positive skewness as 

well as an increase of the standard deviation of the 

pressure drops and correlation between pipes pressure 

drops. In the present paper the experimental investigation 

is considerably increased to higher Reynolds numbers 

and each measurement is done in a more proper way.  

The frequency content of the data is scrutinized and the 

results are interpreted in terms of a general porous media. 

2. EXPERIMENTAL SETUP AND 

PROCEDURE 

The flow around one particle within a porous medium is 

studied with a pore-doublet setup, see Khayamyan et al. 

(2014) for details. The flow geometry is represented by 

two straight and parallel glass pipes with diameters of 

4.05 and 3.02 mm and lengths of 1100 mm. Water is 

supplied to the pipes from a third glass pipe with 

diameter of 9.05 mm and length of 750 mm connected 

via a Y-shaped splitter as shown in Fig. 1 & 2. The 

splitter is made of PMMA by machining the branches to 

8 mm diameter. The angle between the branches is 50º, 

cf. Fig. 3. In order to keep the pipes horizontal and 

parallel they are aligned to an aluminum bar. The flow 

from the parallel pipes runs into two boxes. These two 

boxes and also the sliding tank providing the water to 

the pipes are of over-flow type so that the parallel pipes 

have equal pressure at their outlet and the driving 

pressure is kept constant during each run of the 

experiment.  

 

Fig. 1. Schematic drawing of flow model and 

experimental setup 

 

Each of the parallel pipes has pressure tap holes d = 1 

mm positioned 20 mm after the splitter. There are also 

two pressure tap holes on the header pipe placed 700 

mm from each other. Three differential pressure 

http://onlinelibrary.wiley.com/doi/10.1029/2011GL050214/full#grl28835-bib-0012
http://onlinelibrary.wiley.com/doi/10.1029/2011GL050214/full#grl28835-bib-0012
http://onlinelibrary.wiley.com/doi/10.1029/2011GL050214/full#grl28835-bib-0016
http://onlinelibrary.wiley.com/doi/10.1029/2011GL050214/full#grl28835-bib-0021
http://onlinelibrary.wiley.com/doi/10.1029/2011GL050214/full#grl28835-bib-0021
http://onlinelibrary.wiley.com/doi/10.1029/2011GL050214/full#grl28835-bib-0024
http://onlinelibrary.wiley.com/doi/10.1029/2011GL050214/full#grl28835-bib-0011
http://onlinelibrary.wiley.com/doi/10.1029/2011GL050214/full#grl28835-bib-0017
http://onlinelibrary.wiley.com/doi/10.1029/2011GL050214/full#grl28835-bib-0020
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transducers are used to record the pressure drop over 

each pipe during each run of the experiment. The 

transducers for the parallel and header pipes are from 

the OMEGA PX2300 series and LPM/LPX1000 series, 

respectively.  

 

 
Fig. 3. The Y-splitter section 

Fig. 2. Experimental setup showing from the left, the 

header pipe in blue, the Y-splitter, the parallel pipes 

also in blue and the outlet box. 

 

Each experiment was run during 60 minutes and the 

analog pressure drop signals from the pipes were 

converted to digital signals by an A/D converter and 

recoded with Signal Express into a computer at 40 Hz.  

The flow rate through each parallel pipe was measured 

by collecting water 10 times for 60 seconds. The flow 

rate through the header pipe was then derived by usage 

of (1). The water temperature was 20 ± 0.1 during all 

runs. The position of the sliding tank was varied in a 

series of 144 runs with the header pipe Re, ReH, varying 

from 1100 to 3700. 

2 Theory 

For the system of pipes studied continuity yields that  
 

QL + QS = QH , 

 

and thus 

 

(D Re)L + (D Re)S= (D Re)H , 

(1) 

 

subscripts L, S and H refer to larger, smaller and header 

pipes respectively. The characteristic length scales for 

each pipe is its diameter. It is now assumed that the 

pressure drop from the splitter over the parallel pipes 

down to the free surface in the outlet box is identical. 

Thus for the two pipes, 
 

∆𝑃𝐿 =  ∆𝑃𝑆. (2) 

 

The pressure drop, ∆𝑃 in each section consists of a 

number of minor losses (which will be discussed later 

on) and a straight pipe loss which may be expressed as  
 

∆𝑃 = 𝑓
𝐿

𝐷

𝜌𝑈2

2
= 𝑓 

𝐿

𝐷

𝜇2

2𝐷2𝜌
𝑅𝑒2, (3) 

 

Where L is the length of the pipe, U the mean velocity 

and f the friction factor, which is a function of Re 

Çengel and Cimbala (2010). 

3 METHODS OF EVALUATION 

3.1 Statistical Analysis 

The collected pressure data were processed in several 

ways and will be presented as 

 Time averages and higher statistical moments 

(rms and skewness) 

 Time series 

 Correlations  

The data presentation is a mixture between time 

averages and time resolved data. The ambition is to 

explain some of the statistical behavior from the time 

series which should better reflect the actual physical 

processes. The time average is defined as 
 

𝑥 =  
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
 , (4) 

 

Where N is the number of samples. The higher 

statistical moments are defined as  
 

𝑀𝑛 =  
∑ (𝑥𝑖 − 𝑥)𝑛𝑁

𝑖=1

𝑁
 , where n = 2, 3, … (5) 

 

In this equation, n = 2 gives the variance and n = 3 the 

skewness. The standard deviation is the square root of 

the variance and is denoted rms. The skewness is 

normalized with the variance via 
 

𝑚𝑛 =  
𝑀𝑛

√(𝑀2)𝑛
 , Where n = 3. (6) 

 

For the correlation, the Pearson correlation coefficient 

is applied to detect the relation between the pressure 

drops in the two pipes according to 
 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
∑(𝑥− 𝑥)(𝑦− 𝑦)

√(𝑀2,   𝑥)(𝑀2,   𝑦)
 . (7) 

3.2 Frequency Domain Analysis 

The experiments will yield time series of pressure. The 

relationship between two sets of time series, x(t) and 

y(t), can be scrutinized by computing the power spectral 

density function of the time series data, the gain factor, 

the phase difference and the coherency function. All of 

these methods are based on Fast Fourier Transform 

(FFT) of the time series data according to: 
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𝑋(𝑓) =  ∫ 𝑥(𝑡)𝑒−𝑖 2𝜋𝑓𝑡   𝑑𝑡
∞

0
 , (8) 

 

Where X is data in the frequency plane, x the data in the 

real plane, f is frequency and t time. 

3.3 Power Spectral Density Function 

The power spectral density (PSD) is simply defined as: 

𝑃𝑥𝑥  = |𝑋(𝑓)|2  =   𝑋(𝑓) ∗ 𝑋(𝑓) . (9) 

The usage of this function is a practical way to 

recognize oscillatory signals in time series data. The 

function may also be used to find the amplitudes and 

the frequencies of the oscillations. PSD originally 

breaks down time series data into sets of sinusoidal 

waves of different frequencies and presents the strength 

or the energy of the signal at each frequency. The unit 

of PSD is energy per frequency and the energy of a 

frequency band is the area under the PSD plot within 

that frequency range. 

3.4 Gain Factor 

The gain factor, or the magnitude of the frequency 

response function, is the ratio of the Fourier transform 

of the data from two time series according to: 
 

𝐺𝑎𝑖𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =  |
𝑋(𝑓)

𝑌(𝑓)
|. (10) 

 

Hence it tells us which time series that dominates at a 

certain frequency. 

 

The gain factor may disclose a correspondence between 

two sets of time series data and if they are following 

common trends. The important point to consider is that, 

even if the gain factor detect that there are common 

trends in the data, the trends may be of second order 

since the amplitudes of the variations might be small. 

Therefore, it is essential to investigate, at least, the 

power spectral density of one of the time series data to 

make sure that the amplitude of the coherent variations 

is large enough.  

 

4 RESULTS 

4.1 Statistical Analysis  

The flow through the parallel pipes is first evaluated as a 

function of ReH; cf. Fig. 4. The open symbols are from 

the current study and the filled from Khayamyan et al. 

(2014). Overall, the two series are in good agreement and 

the results from the two experimental series overlap in 

the laminar regime and also at the inflection point at ReH 

≈ 2000. There are, however, some differences just after 

the inflation point. The maximum difference between the 

series for the larger and the smaller pipes are 2.1% and 

8.1% which occur at ReH ≈ 1800 & 1750 respectively. 

These discrepancies may reflect the improved accuracy 

in the measurements (flow rate measured for longer time, 

from 10 (s) to 60 (s), more repetitions 4 times to 10 times 

and better temperature control). This indicates that the 

data in the second series are more reliable and they also 

cover larger range of ReH. Hence focus is now set on the 

second series of experiments. 

 

When comparing ReL,S as a function of ReH for the 

parallel pipes it is obvious that there is a redistribution 

of the percentage flow between the pipes. Since the 

pipes face the same pressure drop the change in the 

slope of the curves is the result of alterations of the 

overall friction within the pipes when the flow changes 

characteristics. 

To investigate this further, the difference between Re of 

the two parallel pipes, Rediff, is derived and plotted in 

Fig. 4. Based on the variation of the slope of this curve 

six ranges can be identified for which the flow regimes 

in the pipe network can be analyzed. In the first range 

(Range 1), ReH≲ 1500, the flow is laminar in both 

pipes. Rediff may therefore be expressed as: 

 

Fig. 4. Reynolds number for the two parallel pipes 

as a function of ReH. 

 

Fig. 5. Normalized standard deviation of pressure 

drop along parallel pipes 

 
 

𝑅𝑒𝑑𝑖𝑓𝑓 =  𝑅𝑒𝐿 − 𝑅𝑒𝑠 

=  
1 − (

𝐷𝑆

𝐷𝐿
)

3

1 + (
𝐷𝑆

𝐷𝐿
)

4

𝐷𝐻

𝐷𝐿
𝑅𝑒𝐻 , 

(11) 

 

using (3) and assuming that the laminar flow is fully 

developed in all pipes, hence 
 

𝑓 =  
64

𝑅𝑒
 , (12) 

 

which is generally true for Re < 2000. Using this 

relationship the slope of the curve Rediff may readily be 

calculated to 1.0 (i.e. when only considering friction at 

the walls of the pipes) while the experimental data in 

Fig. 4 yields a slope of 0.68. However, when adding 

losses due to the bends in the splitter, the inlet and 
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outlet losses of the pipes and losses due to entrance 

length effects the slope is calculated to 0.73 which is 

much closer to the experimental value.  This reveals 

that it is necessary to take into account all losses to have 

better estimation of flow distribution. By scrutinizing 

the slope of Rediff additional ranges can be defined. 

Range 2, 1500 <ReH< 1800, where Rediff is constant, 

Range 3, 1800 <ReH≲ 2000 where Rediff decreases, 

Range 4, 2000 ≲ReH< 2300, with a slight increase in 

Rediff, Range 5, 2300 <ReH< 2800, where Rediff 

increases rapidly and Range 6, ReH> 2800, where the 

slope of Rediff becomes somewhat smaller than in 

Range 5. The reasons for the changes in the slope of 

Rediff were partly explained in Khayamyan et al. (2014) 

and will be further analyzed in this investigation.  

Table 1 Flow regimes based on ReH 

Pipe ReH, Laminar ReH, Transient 
ReH, 

Turbulent 

Header 2750 
2750 – 

3200 
3200 

Larger 1500 
1500 – 

1800 
1800 

Smaller 2000 
2000 - 

2300 
2300 

 

 

Let us now study the statistics of the pressure 

measurements and start with the pressure fluctuations in 

the form of the root mean square of the pressure drop 

normalized with mean pressure, NRMSP, see Fig. 5. As is 

obvious from Fig. 4, for a certain flow rate ReL is larger 

than both ReS and ReH and the flow in the larger pipe 

may become turbulent already at ReH = 1200. This is also 

reflected in the pressure fluctuations which increase 

rapidly from about this value of ReH. For ReH< 2000 

(Ranges 1-3) the NRMSP, of the header and the smaller 

pipes are synchronized with that in the larger pipe. This is 

probably due to that the momentum of the flow within 

the smaller and header pipes is not enough to resist the 

pressure fluctuations generated in the larger pipe.  
 

For 2000 <ReH< 2800 (Ranges 4 & 5) the most 

important behavior of the NRMSP is that at ReH ≈ 2000 

the NRMSP of the smaller pipe ceases to follow the 

trends of the NRMSP of the larger pipe. It instead exceeds 

the NRMSP of the larger pipe and continues to be larger 

for the rest of its range with a maximum at ReH ≈ 2350. 

At ReH ≈ 2800 (the start of Range 6) the NRMSP of the 

header pipe starts to increase. This is an indication of 

transitional flow in the header pipe which is not directly 

reflected in the NRMSP of the parallel pipes that continue 

to decrease until ReH ≈ 3000. The parallel pipes are in the 

fully turbulent regime and they do not follow the pressure 

disturbances in the header pipe.  

 

When turbulent structures show up in a pipe there will 

be positive pressure peaks in the pressure drop along 

the pipe. Such features are disclosed by plotting the 

skewness for which the effect of smaller and 

symmetrically distributed amplitude fluctuations 

diminishes and larger, one-sided fluctuations are 

amplified. Figure 6a presents the normalized skewness 

of the pressure measurements in this study. Since most 

of the skewness values are concentrated around the x-

axis, Fig. 6b focuses more on this part. As seen the 

skewness deviates from zero due to pressure 

fluctuations of the larger pipe at ReH ≈ 1300 and it 

reaches its peak at ReH ≈ 1500. Hence the start of the 

transition is not reflected in any major redistribution of 

the flow since Range 2 when Rediff becomes constant 

start at ReH ≈ 1500. The skewness of the header pipe 

behaves in an opposite manner, cf. Fig. 6a, and has 

negative values in this range to compensate the positive 

peaks in the parallel pipes (the total pressure drop is 

constant). After ReH ≈ 1500 the skewness of all three 

pipes go towards zero and at the end of Range 2 (ReH ≈ 

1800) both the larger pipe and the header pipe have 

almost zero skewness, cf. Fig. 6b. Before entering into 

Range 4, ReH ≈ 1900, the skewness of the smaller pipe 

deviates from the larger pipe. It starts to grow and has 

its maximum at ReH ≈ 2050. The smaller pipes’ positive 

skewness shows that its pressure drop distribution has 

positive peaks that can be traced to the presence of 

turbulent slugs in its flow.  

As before, the header pipe follows these pressure 

fluctuations since it does not have enough momentum 

to resist it. At ReH ≈ 2800 (start of Range 6) the header 

pipes skewness starts to grow and reaches its maximum 

around ReH ≈ 2880. The positive skewness within the 

header pipe does not have any noticeable effect on the 

flow in the parallel pipes. 

To summarize, at ReH ≈ 1500 (start of Range 2) the 

flow in the larger pipe becomes transitional which is 

 
Fig. 6a. Normalized skewness of pressure drop from 

two experiments 

 

 
Fig. 6b. The enlarged view of normalized skewness 

around its zero 
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denoted by increase in skewness and in the NRMSP, see 

Table 1. The pressure fluctuations in the larger pipe are 

reflected in the other two pipes where the flow is 

laminar. The flow in the larger pipe enters into the fully 

turbulent regime at ReH ≈ 1800 (start of Range 3) since 

its skewness goes to zero and NRMSP starts to 

decrease. Later, at ReH ≈ 2000 (start of Range 4) the 

flow in the smaller pipe becomes transitional since its 

NRMSP and skewness grows. The flow in the smaller 

pipe enters into the fully turbulent regime at ReH ≈ 2300 

(start of Range 5) and the level of its NRMSP decreases. 

Finally at ReH ≈ 2800 (start of Range 6), the flow in the 

header pipe becomes transitional and its skewness and 

NRMSP grows. At ReH ≈ 3200 the level of the pressure 

fluctuations reaches its maximum indicating a transfer  

 

Fig. 7. The correlation of pressure drop between 

different pipes. 

 

into fully turbulent flow in the header pipe. Another 

important issue is that ReH≥  ReS, cf. Fig. 4, but the 

flow in the smaller pipe and the header pipe become 

transitional at ReH≈ 2000 and 2800, respectively, cf. 

Fig. 4 & 5. This highlights the effect of the splitter and 

how it induces more disturbances at the inlet of both 

parallel pipes and triggers turbulent structures, puffs. 

This means Re is not the only parameter which 

determines the flow regime and the level of 

disturbances at the entrance of the pipe is an important 

factor as well.  

 

With knowledge of the basic stages of the system studied 

it is also of interest to find out how the pressure 

fluctuations correlate. The correlation of the pressure 

drop between the parallel pipes is initially weak for 

Range 1, but as ReH moves into Range 2 it has increases 

to a relatively high value, see Fig. 7. This implies that the 

correlation is, to start with, related to the turbulent spots 

disclosed by the skewness, cf. Fig. 6. In a similar manner 

the correlation values between any of the two parallel 

pipes and the header pipe increases. At ReH between 

1900 – 2100 (Range 2-3) the correlation between the 

parallel pipes decreases. Hence the initial pressure 

fluctuations in the smaller pipe, found by the skewness, 

are not transformed to the larger pipe. However, the 

fluctuations in the smaller pipe are immediately reflected 

in the header pipe, see the increase in correlation between 

these pipes at ReH ≈ 2000,  Fig. 7. At ReH ≈ 2900 the 

correlations between the header pipe and the parallel 

pipes reach a local minimum and then the correlation 

increases. Following the previous discussion this is due 

pressure fluctuations in the header pipe that actually start 

already at ReH ≈ 2800 but it does not impact the flow in 

the parallel pipes until ReH ≈ 2900, cf. Fig. 5. To 

summarize, pressure fluctuations caused by transitional 

flow are directly transferred to pipes with laminar flow. 

Such fluctuations are also eventually transferred to pipes 

with turbulent flow when the fluctuations become strong 

enough. 

 

The slope of Rediff for the two parallel pipes in the 

turbulent regime, ReH≳ 2300, is 0.21 by which only 

considers friction force from the walls of the pipes via 

Blasius’ formula 

 

𝑓 =  
0.316

𝑅𝑒0.25 . (13) 

 

Fig. 8. Power spectra of pressure drop along the 

larger pipe for ReH = 1380, 1500, 1670, 1850, 1870, 

1910, 1970, 2010, 2120, 2460, 2660 and 3530 

 

However, following the analysis of the laminar flow all 

sources to losses can be added to the calculations. 

When the pressure drop due to the other sources are 

included into the numerical calculation the slope of 

Rediff will be 0.55 and 0.56 with Blasius and Colebrook 

friction factor, equations (13) and (14), respectively.  

 

1

√𝑓
=  −2.0 log (

𝑒 𝐷⁄

3.7
+

2.51

𝑅𝑒 √𝑓
). (14) 

 

The experimental data in Fig. 4 yields that Rediff has 

two slopes in the turbulent regime which are 1.14 for 

ReH between 2300 and 2800 (Range 5) and 0.62 for 

ReH higher than 2800 (Range 6). The latter 

experimental slope is consequently rather close to the 

theoretically derived values. The larger slope of Rediff 

for Range 5 means that a larger portion of the fluid 

passes the larger pipe in order to satisfy the equal 

pressure drop condition between the parallel pipes. This 

highlights the effect of the feeding flow into the parallel 

pipes because when laminar flow enters into pipes 

which are already in the turbulent regime it needs a 

distance for the turbulent structure to develop. The 

developing length should be longer for the larger pipe 

since the velocity is higher. Along the developing 

distance flow regimes are developing from laminar to 

transient and finally turbulent at the end of it which 

makes the friction factor of this length smaller compare 

to fully turbulent flow.  

 

4.2 Frequency Analysis 
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Figures 8-9 present the non-dimensionalized power 

spectra of the pressure drop fluctuations normalized 

with the average energy of the fluctuations, 
1

2
𝑝𝑟𝑚𝑠

2  , for 

the larger and smaller pipe respectively.  

Initially the power spectra have two peaks with 

relatively small amplitudes. This is an indication of 

turbulent patches in the flow which was already found 

by the skewness analysis, cf. Fig. 6a. At ReH from 1500 

to 1850 (appr. Range 2) the low frequency peak of both 

pipes spectrum become more powerful driven by an 

increased number of turbulent patches in the larger 

pipe, cf. Fig.s 8-9 part b.  

 

 
Fig. 9. Power spectra of pressure drop along the 

smaller pipe for ReH = 1380, 1500, 1670, 1850, 1870, 

1910, 1970, 2010, 2120, 2460, 2660 and 3530 

 
Fig. 10. Gain factor of pressure drop along parallel 

pipes for ReH = 1380, 1500, 1670, 1850, 1870, 1910, 

1970, 2010, 2120, 2460, 2660 and 3530. 

When ReH increases even more the low frequency 

peaks lose their power and move slightly to the right 

while the high frequency peaks gain power, cf. Fig. 8 

part c (Range 3). The powerful high frequency 

fluctuations can distribute energy more uniformly 

among pressure drop oscillations therefore the level of 

fluctuations decreases within this range, cf. Fig. 5. In 

the range of ReH 1980 - 2060 the spectrum of both 

pipes is dominated by the high frequency peak, cf. Fig.s 

8d. The powerful high frequency fluctuations cause the 

level of fluctuations of both pipes to become almost 

equal in this range, cf. Fig. 5. Here, also the skewness 

of the smaller pipe grows from negative values to 

positive values, cf. Fig. 6b, which is a sign of initiation 

of turbulent patches in the flow. 

 

For ReH between 2120 and 2460 (appr. Range 4) 

turbulent spots form in the smaller pipe since a new low 

frequency peak appears in the spectrum of both pipes 

but more clearly in the smaller pipe, cf. Fig.s 8-9 e. For 

ReH between 2570 and 2780 (within Range 5) the 

spectrum of both pipes again is dominated by high 

frequency peaks, cf. Fig.s 8-9 f. The powerful high 

frequency band fluctuations, as it was explained before, 

are connected to uniform distribution of energy which 

lowers the level of fluctuations in this range. For ReH 

between 2800 and 3710 (Range 6) the spectrum of both 

pipes has only the high frequency peak and its power 

decreases by growth of the ReH, cf. Fig.s 8-9 g.  

 

Table 2 Error estimation of measured quantities 

for different pipe 

 Re Weight Diameter Pressure 

Larger pipe 0.11% 0.03% 0.20% 0.25% 

Smaller pipe 0.04% 0.07% 0.53% 0.25% 

Header pipe 0.09% 0.02% 2.18% 0.25% 

 
Table 3 Error estimation of measured quantities 

Quantity Viscosity Density Time Temperature 

 2.56% 0.02% 1.0% 0.50% 

 

Figure 10 presents the gain factor which is the square 

root of power ratio between two pipes; smaller/larger. 

For ReH between 1150 and 1970 (Ranges 1-3) the gain 

factor is less than one, cf. Fig. 10a-c. This means that 

both frequency bands originate in the larger pipe and 

the smaller pipe just follows them. This is expected 

since in this range turbulent patches only pass through 

the larger pipe. The results also indicates that the high 

frequency fluctuations force both pipes to have almost 

equal amplitudes while low frequency fluctuations 

caused due to turbulent patches make fluctuations have 

different amplitudes.  

 

For ReH between 1980 and 2060 (Range 3-4) the gain 

factor at the low frequency band is more than unity 

which means that the low frequency band is caused by 

the smaller pipe fluctuations while the larger pipe 

causes the high frequency fluctuations, see Fig. 10d. 

Notice that the fluctuations in the smaller pipe could not 

be revealed from Fig. 8-9d. At ReH between 2120 and 

3710 (Range 4-6) the gain factor is more than unity in 

the whole frequency range which means that all 

fluctuations are governed from the smaller pipe. This 

explains why the level of fluctuations of the smaller 

pipe is higher than the level in the larger pipe at ReH> 

2120, cf. Fig. 5. At ReH between and 2810 and 3710 

there is no sign of low band frequency events which are 

associated with the presence of turbulent patches and 

the gain factor has almost constant value at the low 

band. However, it starts to grow at high frequency band 
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and it reaches its maximum at f ≈ 3 (Hz) where however 

the power spectra is weak. 

5.3 Estimation of Experimental Error 

The average errors of measured quantities which are 

different for each pipe are listed in table 2. Also the 

error estimation of the general quantities of the 

experiment is listed in the table 3.  

 

In order to see the effect of above mentioned quantities 

the following analysis is performed by using Taylor 

expansion. 

 

Table 4 Error estimation of the measured variable 

on flow rate and Re 

 Smaller 

pipe 

Larger 

pipe 

Header 

pipe 

Error estimate of 

flow rate (m°) 0.94% 0.96% 0.97% 

Error estimate of 

Re 
1.69% 1.39% 1.94% 

 

 

𝑅𝑒 =  
𝜌 𝑈 𝐷

𝜇
 , (15) 

𝑚° =  𝜌 𝑈 𝐴 , (16) 

𝑅𝑒 =
4

𝜋

𝑚°

𝐷 𝜇
  , (17) 

𝑑𝑅𝑒 =
4

𝜋

𝑑𝑚° 𝐷 𝜇 − 𝑚° (𝑑𝐷 𝜇 + 𝐷 𝑑𝜇)

(𝐷 𝜇)2
 , (18) 

𝑚° =
𝑤

𝑡
 , (19) 

𝑑𝑚° =
𝑡 𝑑𝑤 − 𝑤 𝑑𝑡

𝑡2  . (20) 

 

The results of the analysis are listed in following table. 

 

6. APPLICATION TO POROUS MEDIA FLOW 

In flow through porous media the Ergun equation can 

be fitted to experiments with very good agreement. 

From this Equation a so called Blake type of friction 

factor can be defined as: 
 

𝑓′ =  1.75 +
150

𝑅𝑒′
 , (21) 

 

where Re is based on the hydraulic diameter of the 

porous media. As obvious from (21) 𝑓′ approaches a 

constant value as 𝑅𝑒′ increases, see Fig. 11. If we now 

treat the parallel pipes as a system its friction factor 

may be plotted and compared to the ones for the single 

pipes and 𝑓′ by usage of an equivalent diameter. As 

seen in Fig. 12 the system curve takes a form closer to 

the Ergun equation (𝑓′) as compared to f for the single 

pipes. This indicates that the continuous behavior seen 

in the experimental data can be traced to the 

mechanisms clarified in this work. It must, however, be 

noticed that the leveling out of the friction factor which 

indicated the start of turbulence takes place at a much 

higher Re for f than for 𝑓′.  This is a topic for further 

studies and may be traced to the often very complex 

flow geometry in a porous media. The critical 

transitional Re is very much dependent on the flow 

conditions and is, for instance, around 370 for couette 

flow, see Dou and Khoo (2011). 

7. CONCLUSION 

Six flow zones are identified. Each zone marks the 

change of flow regime in one of the three pipes. 

Knowing the flow regime in each pipe is important 

information for analyzing the pressure drop signals and 

interpreting them. The effect of the feeding flow regime 

into the parallel pipes is identified since transition in the 

 

Fig. 11. Blake type of friction factor 

 

header pipe results in a new flow distribution in the 

system. The numerical solution of the system highlights 

the importance of minor pressure losses in the splitter 

which could be the same in real porous media.  

 

Correlation between parallel pipes fluctuations grows 

when any of them becomes transitional, but correlation 

decreases when the pipe becomes turbulent. The header 

pipe is more correlated with larger pipe when it causes 

fluctuations, ReH< 2000. However at ReH> 2000 where 

the smaller pipe causes the fluctuations the header pipe 

follows the smaller pipe. At ReH> 2800 where the 

header pipe becomes transitional it follows the larger 

pipe better. 

 

The frequency analysis revealed two distinct events in 

the pressure drop signals of the parallel pipes, low and 

high band frequency fluctuations. Low band frequency 

fluctuations are caused by presence of turbulent patches 

in the flow. The presence of low frequency patches are 

even present in low Re flow, ReH< 1500, but they are 

not as powerful as at higher Re. 

 

The presence of turbulent patches causes fluctuations 

with low band frequencies. The gain factor shows that 

until ReH ≈ 2000 frequency fluctuations on both bands 

are triggered from the larger pipe. However, at ReH> 

2000 where the smaller pipe starts to become 

transitional the flow in the smaller pipe causes all 

fluctuations.  

The gain factor depending on ReH has values different 

than unity in low band frequency which makes parallel 
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pipes fluctuate with different amplitudes than each 

other. However, in the high frequency band the gain 

factor goes towards unity and tries to equalize the 

amplitudes of both pipes fluctuations. During transition 

there are two kind of fluctuations in the system; low 

band frequency fluctuations which disturbing the 

system and high band frequency fluctuations which 

tries to return the system back to its initial undisturbed 

state.  

The same discovered interaction between neighboring 

pores could be expected in real porous media, 

buttransmitting the information of turbulent patches 

will be damped by going far from transitional pores. 
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