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ABSTRACT 

In order to solve the velocity profile and pressure gradient of the unsteady unidirectional slip flow of Voigt fluid, 

Laplace transform method is adopted in this research. Between the parallel microgap plates, the flow motion is 

induced by a prescribed arbitrary inlet volume flow rate which varies with time. The velocity slip condition on the 

wall and the flow conditions are known. In this paper, two basic flow situations are solved, which are a suddenly 

started and a constant acceleration flow respectively. Based on the above solutions, linear acceleration and oscillatory 

flow are also considered. 

 

Keywords Velocity Profile; pressure gradient; Voigt fluid; Laplace transform; Parallel microgap plates. 

NOMENCLATURE 

pa  constant acceleration u  velocity in the x-coordinate direction 

b  body force field iu  tangential momentum of incoming molecules 

1 2,  C C  coefficients pu  average inlet velocity 

vF  tangential momentum accommodation coefficient reu  tangential momentum of reflected molecules 

G  rigidity modulus wU  tangential momentum 

h  half of gap between two plates V  velocity vector 

i, j normal direction of plane 
x, y, 

z 
Cartesian coordinate system 

i  unit vector in the x-coordinate direction ij  Kronecker delta 

p  static fluid pressure ij  shear stress 

Q  given inlet volume flow rate v   velocity slip coefficient 

ijT  total stress   shear strain 

T  total stress tensor   rate of shear strain 

t  time   viscosity coefficient 

t  integration dummy variable   slip parameter 

0t  time period of acceleration   assumed particular solution 

pU  velocity after acceleration   
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1. INTRODUCTION  

Scientists and engineers are interested in the Newtonian 

fluid mechanics because it had been applied in a wide 

range of applications, such as chemical engineering, 

petroleum engineering, mechanical engineering, nuclear 

industries, geophysics and bioengineering. 

Unfortunately, very few liquids obey the laws of the 

Newtonian fluid.  Therefore, the efforts needed for 

solving the non-Newtonian fluid is greatly increased. In 

real world applications, the behavior of blood, 

suspension fluids, certain oils and greases deviated 

from the laws of the Newtonian fluid. Some researchers 

classified the non-Newtonian fluids principally based 

on their behavior in shear stress and shear rate relation, 

for example, Maxwell fluid, Voigt fluid, Oldroyd-B 

fluid, Rivlin-Ericksen fluid and power- law fluid so on. 

 

Due to rarefaction phenomena occurred in the 

microtube, the no-slip condition is no longer valid on 

the vicinity of the wall. Recently, Hayat et al. [1-7] 

conducted  a series of studies which are related  to the 

slip flow of non-Newtonian  flow, including third  

grade  fluid,  Carreau  fluid,  Maxwell fluid,  fourth  

grade fluid,  second  grade fluid, Burgers fluid and 

Johnson-Segalman fluid so on. Chen et al. [8-9] also 

studied the effect of rarefaction phenomenon on the 

flow pattern in the microtube. As the result of 

literatures review, the importance of slip flow problem 

is addressed. This is motivation for conducting this 

research. 

 

Increasing efforts are being directed towards applying 

the technologies of Microfluidics to development of 

micro devices in engineering technologies.  The no-slip 

condition is not enough to describe the behavior of 

microflow of Voigt fluid.  As a Voigt  fluid flows in 

microgap  plates,  the  physical  phenomenon  of 

rarefaction  will be considered  and  the typical  flow 

field can be divided  into  four flow regimes by 

Knudsen  number  [14]:  1. Continuum flow as Kn< 

10−3; 2. Slip flow as 10−3 ≤ Kn< 10−1; 3. Transition flow 

as 10−1 ≤Kn< 10; 4. Free molecular flow as Kn≥ 10. A 

few literature considered the influence of rarefaction in 

non-Newtonian fluid, and the paper studied the effects 

of rarefaction of an unsteady unidirectional flow 

between parallel microgap plates by Chen et al. [15] 

and Chen et al. [16]. 

2. MATHEMATICALF ORMULATIONS 

The unidirectional rheological equation of state for a 

Voigt fluid in x-direction is given by Lee and Tsai [18] 

, , , ,ij ij ijT p  i x y z  j x       (1)  

yx G     (2)    

where ijT  is the total stress, subscript i denotes the 

normal direction of i-plane, subscript j denotes the 

stress acting direction, p is the static fluid pressure 

( ( , , )p p x y z ), ij  is the Kronecker delta, ij  is the  

shear stress, G is the rigidity modulus,  is the shear 

strain,   is the rate of shear strain,   is the viscosity 

coefficient. Here G,  are the material properties, and 

are assumed to be constant. When G=0, Eq. (2) reduces 

to that of a Newtonian fluid. 

The problem of the unsteady flow of incompressible 

Voigt fluid between the parallel surfaces is considered.  

The dynamic equation is   

dV
T b

dt
      (3)    

In the above equation,   is the divergence operator, 

T denotes the total stress tensor, b is the body force 

field and V  is the velocity vector. 

The continuity equation is 

0V     (4)    

Using the Cartesian coordinate  system (x, y, z), the  x-

axis is taken as the centerline  direction  between these 

two parallel surfaces, y is the coordinate  normal  to the 

plate, z is the coordinate normal to x and y, respectively,  

and the velocity field is assumed in the form 

( , )V u y t  i   (5)    

where u is the velocity in the x-coordinate direction, i  

is the unit vector in the x-coordinate  direction.  This is 

effectively assumed that the flow is fully developed at 

all points in time. 
 

Substituting of Eq. (5) into Eq. (4) shows that the 

continuity equation is automatically satisfied the result 

of substituting in Eq. (1) and Eq. (3).  So we have the 

following scalar equation 

yxp u

x y t




 
 

  
  (6)    

where subscript y denotes the plane normal to y 

direction, x is the direction of the shear stress and 

0
p p

y z

 
 

 
  (7)    

where the body force is incorporated into the term  of 

the pressure gradient. Eq. (7) imply that the pressure 

gradient is a function of time and x only. Because the 

right hand side of Eq. (6) is not a function of  x,  the 

pressure gradient is a function of time only. 
 

Solving Eq. (2) subject to 0yx  and 0u y      as 

0t  , the strain  function is obtained 

0

1
( )

G G
t tt

yxt e e dt  




   (8)    

where t  is the integration dummy variable. Eq. (6) and 

Eq. (8) are our governing equations describing the 

Voigt fluid flowing between the parallel surfaces. 

3.  METHODOLOGY OF SOLUTION 

Since the governing equation, boundary conditions  
and initial condition are given,  the problem  is well 
defined. In general,  it  is not  an easy work  to solve 
this equation by the method of separation of 
variables or eigenfunction expansion. In this study, 
the Laplace transform method is used to treating the 
original partial differential equation. As the two 
variables reduce to one variable, the original partial 
differential equation becomes ordinary differential 
equation. 

yxp u

x y t




 
 

  
 (9)    
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0

1
( )

G G
t tt

yxt e e dt  




   (10) 

 

As these two plates are 2h apart, the wall slip and core 

flow condition are 

( , )
( , ) v

u h t
u h t

y
 


 


  (11)    

where v   is the velocity slip coefficient and is 

defined as 

2 v
v

v

F

F
 


   (12)    

and vF is the  tangential  momentum  accommodation 

coefficient that describes the interaction between fluid 

and wall and is related to constituents of fluid, 

temperature, velocity, wall temperature, roughness, and 

chemical status. vF  is defined as 

i re
v

i w

u u
F

u U





  (13)    

where iu , reu  and wU  are tangential momentum of 

incoming molecules, reflected molecules and re-emitted 

molecules respectively. 

And 

(0, )
0

u t

y





   (14)    

 

The initial condition is related to inlet volume flow rate 

by 

( , ) ( )2 ( )
h

ph
u y t dy u t h Q t


    (15) 

where ( )pu t is the known average inlet velocity and 

( )Q t  is the given inlet volume flow rate  function. 

 

The above governing equations, boundary conditions 

and initial condition are prescribed and can be solved 

by the Laplace transform technique. 
 

Differentiating Eq. (10) with respect to time and taking 

Laplace transform, then we have 

( , )
( , )yx

s G du y s
y s

s dy





   (16) 

Taking the Laplace transform of Eq. (9) and 

substituting in Eq. (16), then we have the governing 

equation 

2 2

2

( , ) ( , )
( , )

d u y s s s dP x s
u y s

s G s G dxdy



 
 

 
  (17)  

Considering the governing equation as an ordinary 
differential equation  with respect to y with boundary  
conditions 

( , )
( , ) , v

du h s
u h s  

dy
       (18)    

(0, )
0

du s

dy
  (19)    

and the initial condition 

( , ) ( )2
h

ph
u y s dy u s h


   (20)    

 

The general solution of Eq. (17) is 

1 2( , ) sinh coshu y s C my C my     (21)    

where   is the assumed particular solution and 

2s
m

s G







   (22)    

 

The boundary conditions Eq. (18) and Eq. (19) are used 

to solve the two arbitrary coefficients 1C and 2C . 

Substituting 1C and 2C   in Eq. (21), we have 

cosh
( , ) (1 )

cosh sinh

my
u y s

mh m mh
  


                  (23) 

 

Substituting Eq. (23) in the initial condition of Eq. (20), 

Ψ is readily obtained as 

cosh
(1 ) ( )2

cosh sinh

h

ph

my
dy u s h

mh m mh
  

   (24) 

or 

( )(cosh sinh )

sinh
cosh sinh

pu s mh m mh

mh
mh m mh

mh






 

 

 (25) 

 

Substituting Ψ in Eq. (23) gives 

( )(cosh sinh cosh )
( , )

sinh
cosh sinh

pu s mh m mh my
y s

mh
mh m mh

mh





 
 

 

  (26) 

or 

( , ) ( ) ( , )pu y s u s y s   (27) 

where 

cosh sinh cosh
( , )

sinh
cosh sinh

mh m mh my
y s

mh
mh m mh

mh





 
 

 

  (28) 

Taking the inverse Laplace transform, the velocity 

profile is 

1
( , ) ( ) ( , )

2

r i st
pr i

u y t u s y s e ds
i

 

 
    (29)  

                                    

Furthermore, the pressure gradient is found by 

substituting Eq. (21) in Eq. (17) to give 

( , )dP x s
s

dx
     (30) 

or 

( )(cosh sinh )( , )

sinh
cosh sinh

pu s mh m mhdP x s
s

mhdx
mh m mh

mh







 

 

  (31) 

 

Using the inverse transform formula, the pressure 

gradient distribution also can be obtained. 

4. ILLUSTRATION OF EXAMPLES 

Hereafter, we will solve the cases proposed by Das and 

Arakeri [19] with the Voigt fluid to understand the 

different flow characteristics between these two fluids 

under the same condition. 

 

For the first case, the piston velocity ( )pu t  moves with 

a constant acceleration, and the second one, the piston 
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starts suddenly from rest and then maintains this 

velocity. Finally, the linear acceleration and oscillatory 

piston motion are also considered. 

4.1 Constant Acceleration Piston Motion 

The piston motion of linear acceleration can be 

described by the following equation. 

0

( ) ( )
p

p p

U
u t a t t

t
   (32) 

where pa  is the constant acceleration, pU  is the final 

velocity after acceleration, and 0t  is the time period of 

acceleration. 

 

Taking the Laplace transform of Eq. (32) is 

2
0

( )
p

p

U
u s

t s
  (33) 

 

From Eq. (27) and Eq. (33), the velocity profile is 

2
01

( , ) cosh sinh cosh2 ( )
sinh

cosh sinh

p st

r i

r i

U
e

t s
u y t dsmh m mh myi

mh
mh m mh

mh





 

 

 
  

 
   

 
   
 

  

                                                                          (34) 
 

From the above expression, the integration is 

determined using complex variable theory, as discussed 

by Arpaci [20].  It is easily observed that is a pole of 

order 2. Therefore, the residue at s = 0 is 

2 2

0

3
4 2

2 2

3
(0) { [( ) 2 ]

2 (3 )

3 ( 5 ) ( 7 )
}

8 (3 ) 20 (3 ) 40 (3 )

pU t
Res y h h

t h h

h h h h
y y

h h h h




    

     

  


 
  

  

   

 (35)  

 

The other singular points are the roots of following 

transcendental equation 

sinh
cosh sinh 0

mh
mh m mh

mh
     (36) 

 

Setting , 1m i  i    

(cos sin ) sin 0h h h h        (37) 

 

If n , 1,  2,  3,  , n    are roots of Eq. (37), then 

2 2 2

1

4
, 1, 2, 3, ,

2

n n n
n

G
s  n    

     



  
    (38) 

and 

2 2 2

2

4
, 1, 2, 3, ,

2

n n n
n

G
s  n    

     



  
    

 (39) 

are poles. These are simple poles, and residuals at all of 

these poles can be obtained as 

   

1

1 2
0 1 1

(cos cos sin )
( )

ns t
p n n n n n

n

n n

U h h y h e
Res s

t s Q

     




  (40) 

2

2 2
0 2 2

(cos cos sin )
( )

ns t
p n n n n n

n

n n

U h h y h e
Res s

t s Q

     




 (41) 

where 

2

( 2 )1
, 1, 2

2 ( )

[ ( )sin cos

(sin cos )], 1, 2

in in
in

n in

in in n in

n n in n

s s G
 i  

s G

Q h h h h h

        h h h  i  

 


 

     

    


   



    

  

  (42)  

Adding Res(0), Res( 1ns ) and Res( 2ns ), a complete 

solution for the constant acceleration case is obtained as 

1 2

2 2

0

3
4 2

2 2

1
1 1 2 2

( , ) 1 3
{ [( ) 2 ]

2 (3 )

3 ( 5 ) ( 7 )

8 (3 ) 20 (3 ) 40 (3 )

(cos cos sin )

}
( )

n n

p

n n n n n

s t s t

n
n n n n

u y t t
y h h

U t h h

h h h h
y y

h h h h

h h y h

e e

s Q s Q




    

     

    




  


 
  

  

  
 

  
   



 
  (43) 

where 1ns , 2ns , nQ  are defined in Eq. (38), Eq. (39) 

and Eq. (42). 

 

The first term on the right-hand side of the above 

equation represents the steady-state velocity, the second 

term the transient response of the flow to an abrupt 

change either in the boundary conditions, body forces, 

pressure gradient or other external driving force. 

 

Eq. (31) is used to determine the pressure gradient in 

this flow field, and follows the same procedure for 

solving velocity profile 

2

0

2

3
(0) { (2 )

2 (3 )

9 ( 5 ) 3 (4 )
}

2(3 )5(3 )

pU
Res t Gt

t h h

h h h
             

hh




   



 


 
 



  (44) 

and 

1 2

0

1 1 2 2

( ) (cos sin )

( )
n n

p
n n n n n

s t s t

n n n n

U
Res s h h h

t

e e
               

s Q s Q


      


 

  (45) 

Therefore, the pressure gradient is 

1 2

2

0

2

1 1 2 21

( , ) 3
{ (2 )

2 (3 )

9 ( 5 ) 3 (4 )

2(3 )5(3 )

(cos sin )( )}
n n

p

s t s t

n n n n
n n n nn

UdP x t
t Gt

dx t h h

h h h

hh

e e
h h h

s Q s Q




   



    




 


 
 



  
 



 

 (46) 

where 1ns , 2ns , nQ  are defined in Eq. (38), Eq. (39) 

and Eq. (42). 
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Fig. 1.  Velocity distribution under various   

 

Figure 1 shows the velocity distribution under three 

different values of Kn. As Kn 0 , it means there is no 

slip condition. For Kn 0.1 and 0.2 , due to the 

rarefaction, the slip condition is occurred on the wall. 

As Kn  becomes larger, the velocity u at the boundary 

velocity slip get larger. 

 

The effects of rarefaction on unsteady flow through the 

microgap plates for arbitrary volume flow rate are 

obvious. For the result, the effects of wall-slip become 

significant with increasing rarefaction Kn . 

4.2 Suddenly Started Flow 

For a suddenly started flow between the parallel 

surfaces 

0 , 0

, 0

p

p

u      t

    U   t

 

 
 (47) 

where pU  is the constant velocity.  In which case the 

velocity profile is 

 

1 2

2 2

1
1 1 2 2

( , ) 3
[ 2 ]

2 3

(cos cos sin )

( )
n n

p

n n n n n

s t s t

n
n n n n

u y t
y h h

U h h

h h y h

e e

s Q s Q




    




  


  
 

  
   



 (48) 

where 1ns , 2ns , nQ  are defined in Eq. (38), Eq. (39) 

and Eq. (42). 

 

The pressure gradient is 

1 2

1 1 2 21

( , ) 3
[ ( )

(3 )

(cos sin )( )]
n n

p

s t s t

n n n n
n n n nn

dP x t
U Gt

dx h h

e e
h h h

s Q s Q




    




 


  
 



 

 (49) 

where 1ns , 2ns , nQ  are defined in Eq. (38), Eq. (39) 

and Eq. (42). 

4.3  Linear Acceleration Piston Motion 

The piston motion of linear acceleration can be 

described by the following equation. 

2 2

0

( )
p

p p

U
u t a t t

t

 
   

 
  (50) 

where pa is the constant acceleration,  pU Up is the 

final velocity after acceleration,  and 0t  is the time 

period of acceleration. 

 

In which case the velocity profile is 
2

2 2
0

3
4 2

2 2

6 4

2 2

2
4 2 5 3

6 4 2

( , ) 3
[( ) 2 ]

2 (3 )

3 ( 5 ) (3 5 )
[ ]
4 (3 ) 10 (3 ) 20 (3 )

( 5 )

240 (3 ) 80 (3 )

3 6 4
[ (6 4 ) ]

2(3 ) 7 5

2
( )
7 5 3

2 (cos c

p

n n

u y t t
t y h h

U h h

h h h h
t y y

h h h h

h h
y y

h h h

y i j
ih jh h h

h

i j k
h h h

h h




    

     

  

   




 

  


 
  

  


 

 

   


  



 1 2

1 3 3
1 1 2 2

os sin )

( )
n n

n n n

s t s t

n
n n n n

y h

e e
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 (51)  

where 1ns , 2ns , nQ  are defined in Eq. (38), Eq. (39) 

and Eq. (42). 
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and the pressure  gradient is 
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 (53) 

where 1ns , 2ns , nQ  are defined in Eq. (38), Eq. (39) 

and Eq. (42). 

4.4  Oscillatory Piston Motion 

The oscillating piston motion starting from rest is 

considered.  The piston motion is described as 

0

0 , 0

, 0

pu                 t

    U sin( t)  t

 

 
  (54) 

 

Taking the Laplace transform of Eq. (54), then we have 

0
2 2

( )p

U
u s

s







  (55) 

 

Substituting Eq. (54) in Eq. (27) to solve the velocity.  

These poles are simple poles at s i   and the roots 

of 
sinh

cosh sinh 0
mh

mh m mh
mh

   . 
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The velocity profile is 
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   (56) 

where 1ns , 2ns , nQ  are defined in Eq. (38), Eq. (39) 

and Eq. (42). 

 

And the pressure gradient is obtained as 

1 2

0

0 1 2
1 2 2 2 2

1 1 2 2

( , )
[ ( ) ( )]

2

(cos sin )

( )
( ) ( )

n n

ti ti

n n n n

s t s t
n n

n
n n n n

UdP x t
e i e i

dx

h h h

U s e s e

s Q s Q

  
 

   

 

 







     

 
 

  
    


   (57) 

where 

cosh sinh
( )

sinh
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mh m mh
s

mh
mh m mh
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




 

 

  (58) 

where 1ns , 2ns , nQ  are defined in Eq. (38), Eq. (39) 

and Eq. (42). 

5. CONCLUSION 

Voigt fluids flow within the parallel microgap plates 

with wall slip conditions are solved by Laplace 

transform method. Comparing to the solutions of Chen 

et al.  [12], the analytical solutions are identical when 

the slip parameter 0  . This article, [21-22] of our 

work and [23-24] provide more insight into how slip 

condition affects the non-Newtonian fluid flow pattern. 
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