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ABSTRACT 

In this paper, the dispersion of solute matter in a Jeffrey fluid flow through a porous medium in a peristaltic 

channel has been investigated under the influence of slip boundary conditions. Long wavelength 

approximation and Taylor's limiting condition are used to obtain the average effective dispersion coefficient 

in both the cases of homogeneous and heterogeneous chemical reactions. The effects of various pertinent 

parameters on the effective dispersion coefficient are discussed. Average effective dispersion coefficient 

increases with amplitude ratio. That is, more dispersion in the presence of peristalsis. Further, the average 

effective dispersion coefficient increases with the permeability parameter and the slip parameter; but 

decreases with the Jeffrey number, homogeneous / heterogeneous chemical reaction rate parameter. 
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1. INTRODUCTION 

The dispersion of a soluble matter in fluids has 

many biological applications especially in the study 

of blood circulation. Dispersion of a solute in a 

viscous fluid under different conditions was studied 

by several authors (Taylor 1953; Aris 1956; Padma 

and Ramana Rao1976; Gupta and Gupta 1972; 

Ramana Rao and Padma 1975). Subsequently, 

Chandra and Agarwal (1983), Philip and Chandra 

(1993), Alemayehu and Radhakrishnamacharya 

(2012a, 2012b) and Kumar et al. (2012) extended 

the analysis of Taylor to non-Newtonian fluids. 

Further, a number of authors have studied the 

dispersion of a solute through a porous medium 

under different conditions (Mehta and Tiwari 1988; 

Pal 1999; Rudraiah and Reddy 2013). Flow through 

porous media has various physiological applications 

such as the flow of blood in the micro-vessels of the 

lungs which may be treated as a channel bounded 

by two thin porous layers (Misra and Ghosh 1997). 

Peristalsis is an important mechanism for fluid 

transport which can be generated by the propagation 

of waves along the walls of a flexible channel 

containing fluid. Physiologically, it is known as an 

automatic and vital process that drives the urine 

from kidney to the bladder through the ureter, food 

through the digestive tract, bile from the gall 

bladder into the duodenum, vasomotion in small 

blood vessels and many others. The peristaltic 

action is also exploited in industrial pumping as it 

provides efficient means for sanitary fluid transport, 

noxious fluid transport in nuclear industries, as well 

as in roller pumps. Several investigators have 

analyzed the peristaltic motion of both Newtonian 

and non-Newtonian fluids in mechanical as well as 

physiological systems (Fung and Yih 1968; 

Shehawey and Sebaei 2000; Takagi and Balmforth 

2011; Radhakrishnamacharya 1982; Rao and 

Mishra 2004; Bohme and Muller 2013). 

It is realized that the Jeffrey fluid model can be used 

to represent a physiological fluid. This model is a 

relatively simpler linear model which uses time 

derivatives instead of convective derivatives. It 

represents a rheology different from that of 

Newtonian fluid. Further, Jeffrey fluid model is 

significant because Newtonian fluid model can be 

deduced from this as a special case. Some 

researchers have studied peristaltic motion of 

Jeffrey fluid under different conditions. (Hayat et 

al. 2012; Vajravelu et al. 2011; Pandey and Tripathi 

2010; Kothandapani and Srinivas 2008). 

It is realized that fluid slips at the walls in certain 

physiological and engineering situations. The no 

slip boundary condition is a core concept in fluid 

dynamics in which the fluid and the boundary move 

with same velocity. Beaver and Joseph (1967) were 

the first to propose slip boundary condition. The 

boundary condition proposed by Beaver and Joseph 

was simplified by Saffman (1971). The existence of 

slip phenomenon at the boundaries and interfaces 

has been observed in the flows of rarefied gases, 
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physiological flows, hypersonic flows of chemically 

reacting binary mixture etc. Also flows with slip 

occur for certain problems in chemical engineering, 

for example, flows through pipes in which chemical 

reactions occur at the walls, certain two-phase flows 

and flows in porous slider bearings. 

The effect of homogeneous and heterogeneous 

chemical reactions on dispersion of a solute in 

peristaltic motion of a Jeffrey fluid through a porous 

medium with slip condition has not received any 

attention. It is realized that porosity and peristalsis 

may have significant effect on the dispersion of a 

solute in the fluid flow and this may lead to better 

understanding of the flow situation in physiological 

systems. Hence, in this paper the effect of 

homogeneous and heterogeneous chemical reactions 

on peristaltic transport of a Jeffrey fluid through a 

porous medium with slip condition is investigated. 

Long wavelength approximation and Taylor's 

approach are used in both the cases of homogeneous 

and heterogeneous irreversible chemical reactions 

to obtain an analytical solution for the average 

effective dispersion coefficient and the effects of 

various relevant parameters on it are studied. 

2. FORMULATION OF THE PROBLEM 

Consider the dispersion of a solute in peristaltic 

flow of a Jeffrey fluid in an infinite uniform channel 

of width 2d and with flexible walls on which are 

imposed traveling sinusoidal waves of long 

wavelength. Cartesian coordinate system (x, y) is 

chosen with x-axis aligned with the center line of 

the channel. The traveling waves are represented by 

2
sin ( )y h d a x ct




     

 
 
 

                (1) 

where a is the amplitude, c is the speed and λ is the 

wavelength of the peristaltic wave (Fig. 1). 

The equations governing two-dimensional motion 

of an incompressible Jeffrey fluid for the present 

problem are given by (Kothandapani and Srinivas 

2008) 

0

SSp uxyxx
u v u

t x y x x y k




   
      

     

 
 
 

  (2) 

S Sp yy yx
u v v

t x y y y x


    
     

     

 
 
 

  (3) 

and the equation of continuity is: 

0
u v

x y

 
 

 
                  (4) 

where u, v are the velocity components in the x and 

y directions respectively, p is the pressure, ρ is the 

density, Sxx, Sxy, Syx, Syy are extra stress 

components, μ is the viscosity coefficient and 0
k  is 

permeability of the medium.  

 

 
Fig. 1. Geometry of the problem 

 

Under long wavelength approximation, the 

governing equations for the present problem reduce 

to, 

0

2

2
1 1

p u
u

x ky

 



 
 

  

                 (5) 

0
p

y





                   (6) 

and 

0
u v

x y

 
 

 
                  (7) 

Following Alemayehu and Radhakrishnamacharya 

(2012a, 2012b), it is assumed that the walls are 

inextensible so that only lateral motion takes place 

and the horizontal displacement of the wall is zero. 

The relevant slip boundary conditions are given by 

(Bhatt and Sacheti 1979) 

 at
d Da u

u y h
y


   


                (8) 

where Eqs. (8) are Saffman's slip boundary 

conditions, Da is the permeability parameter (or 

Darcy number) and   is the slip parameter. 

Solving Eqs. (5) and (6) under the boundary 

conditions Eq. (8), we get 

cosh( )0
( ) 1

cosh( ) sinh( )

k p by
u y

d Dax bh b bh



 
 

   
 

  
  

 
 
 

  (9) 

where  

12 1

0k
b


                                (10) 

Further, the mean velocity is defined as 
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1
( )

2

h
u u y dy

h h

 


                                             (11) 

Substituting Eq. (9) in Eq. (11), we get 

1 sinh( )0
1

cosh( ) sinh( )

k p bh
u

x bh d Da
bh b bh






  




 
  
  
  
 
 

(12) 

If we now consider convection across a plane 

moving with the mean speed of the flow, then 

relative to this plane, the fluid velocity is given by 

(Gupta and Gupta 1972; Alemayehu and 

Radhakrishnamacharya 2012a, 2012b) 

u u ux                                                           (13) 

Substituting Eqs. (9) and (12) in Eq. (13), we get 

10

cosh( ) sinh( )

sinh( )
cosh( )

k p
ux x d Da

bh b bh

bh
by

bh





 
  

 




 
 
 

 
 
 

(14) 

 

2.1 Diffusion with a Homogeneous First 

order Chemical Reaction 

Following Taylor (1953) and Gupta and Gupta 

(1972), the equation for the concentration of the 

solute for the present problem under isothermal 

conditions is given by 

2

12

C C C
u D k C

t x y

  
  

  

                              (15) 

where D is the molecular diffusion co-efficient and 

1k is the first order reaction rate constant. 

For typical values of physiologically relevant 

parameters of this problem, it is realized that 

u c (Alemayehu and Radhakrishnamacharya 

2012a, 2012b). Using this condition and making use 

of the following dimensionless quantities, 

( )
, , , ,

t y x ut h
t H

t u d d


  




     (16) 

Eq. (14) reduces to 

2
1 1

cosh1 2

d p
u m mx

x Da







  



   
     
     

(17) 

where 

1

Da
m

A
  ,  

1 1
sinh( )

2
1 1

H
Da Da

m
A

H
Da










, 
0
2

k
Da

d

  

and 

11 111 1cosh sinh .A H H
Da Da

 



    
    

   
 

Further, Eq. (15) becomes 

22 2
1

2

k dC d C
C ux

D D 

 
 



                         (18) 

It is assumed that there is no absorption at the walls 

as in Alemayehu and Radhakrishnamacharya 

(2012a, 2012b), thus the boundary conditions for 

the concentration C  are: 

 0 for 1 sin(2 )
C

H 



     


    (19) 

where 
a

d
  is the amplitude ratio. 

Solving Eq. (18) under the boundary conditions Eq. 

(19) by assuming 
C






is independent of   at any 

cross section, we get the solution for the 

concentration of the solute C  as 

4
( )

1 1cosh( ) cosh( )1 2 3

d p C
C

D x

l l l
Da


 


 

  
 

   

 
  

 

  (20) 

where 

1 1
sinh( )

(1 )1
1 2

sinh( )1 1

H
DaDa Da

l
A HDa





  




 

 

,

2 2
1 1

Da Da
l

A Da 


 

and 

1 1
sinh( )

.3
12 1

H
Da Da

l
A

H
Da











 

The volumetric rate Q  at which the solute is 

transported across a section of the channel of unit 

breadth is defined by 

H
Q Cu dx

H
 


                                                (21) 

ε 

ε 
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Substituting Eqs. (17) and (20) in Eq. (21), we get 

the volumetric rate Q as 

26

2 ( , , , , , )12

d C p
Q F Da

xD

   


 
 

 

 
 
 

(22) 

where  

( , , , , , )1

11 1 1cosh( )sinh( )
2

(1 )1

1 11 1
cosh( ) sinh( )

1 1
sinh(2 )

sinh( )

1 2 2 1
2 1 1

4

1 1
sinh( )

( )2 2 3 1
1 1

F Da

l m Da
H H

DaDa

H H
Da Da

H
H H Da

l m l m

Da

H
Da

l m l m

Da

   


 

 

 






 







 


 

 




 




 


 
 
  





 
 

   
    

 
 

 
 



 

.3 2l m H



(23) 

Now comparing the Eq. (22) with Fick’s first law of 

diffusion, we get the equivalent dispersion 

coefficient
*

D with which the solute disperses 

relative to a plane moving with the mean speed of 

the flow is obtained as,  

26
*

2 ( , , , , , )12

d p
D F Da

xD

   







 
 
 

          (24) 

Let the average of F be F , and is defined by 

1
( , , , , , )1

0

F F Da d                                     (25) 

 

2.2 Diffusion with Combined Homogeneous 

and Heterogeneous Chemical Reactions 

In this case, we assume that in addition to a first 

order irreversible chemical reaction in the bulk of 

the fluid (homogeneous), there is also similar one at 

the walls (heterogeneous) which are assumed to be 

catalytic. Then under Taylor’s limiting condition, 

Eq. (15) still governs the diffusion of the solute.  

The boundary conditions at the walls (Philip and 

Chandra 1993) are 

2
0 at [ s n )] i (

C
f C y h d a x ut

y






     


(26) 

2
0 at [ sin ( )]

C
f C y h d a x ut

y






       



(27) 

If we introduce the dimensionless variables Eq. 

(16), the diffusion equation remains as in Eq. (18) 

and the boundary conditions become 

0 at [1 sin ] (2 )
C

C H  



    


(28) 

0  at [1 sin(2 )]
C

C H  



      



(29) 

where fd   is the heterogeneous reaction rate 

parameter corresponding to catalytic reaction at the 

walls. 

The solution of Eq. (18) under the boundary 

conditions Eqs. (28) and (29) is 

4

( )

1 1cosh( ) cosh( )1 2 3

d p C
C

D x

n n n
Da


 


 

 


 

 
  

 

 
 
  (30) 

where 

(1 ) 11 1sinh( )1 21 1

1 1sinh( )
1 1cosh( )

212 11 1

Da Da
n H

DaAL Da

H
DaDa

H
DaDaH

Da

 

 






  

     
   

 
 

  
     
 

 

2 2
1 1

Da Da
n

A Da 


 

,

1 1
sinh( )

3
12 1

H
Da Da

n
A

H
Da











 

and sinh( ) cosh( ).L H H      

The volumetric rate Q at which the solute is 

transported across a section of the channel of unit 

breadth is defined by 

H
Q Cu dx

H
 



                                                 (31) 

Substituting Eqs. (17) and (30) in Eq. (31), we get 

the volumetric rate Q as 

26

2 ( , , , , , , )12

d C p
Q Da

xD

G     


 
 

 

 
 
 

(32) 

where 

ε, 

ε, ε 

ε 

ε, 

ε, 

ε, 
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( , , , , , , )1

1 11 1 [ cosh( ) sinh( )
2 (1 )1

1 11 1
cosh( ) sinh( )]

1 1
sinh(2 )

sinh( )
[ ] [ ]1 2 2 1

2 1 1
4

1 1
sinh( )

( )[ ] .2 2 3 1 3 2
1 1

G Da

n m Da
H H

DaDa

H H
Da Da

H
H H Da

n m n m

Da

H
Da

n m n m n m H

Da

    


 

 

 






 







  
  
   

 




 




  


(33) 

Proceeding as in the case of homogeneous chemical 

reaction, we now have the effective dispersion 

coefficient 
*

D given by 

26
*

2 ( , , , , , , )12

d p
D Da

xD

G     







 
 
 

(34) 

Let the average of G be G , and is defined by 

1
( , , , , , , )1

0

G G Da d                                  (35) 

3. NUMERICAL RESULTS AND 

DISCUSSION 

The Eq. (25) and (35) show the equivalent 

dispersion coefficient 
*

D  through the functions F  

and G respectively. F and G have been computed 

numerically using MATHEMATICA software and 

the results are presented graphically. The 

dimensionless parameters involved in the discussion 

are: the amplitude ratio , the homogeneous 

reaction rate , the heterogeneous reaction rate  , 

the Jeffrey number 1 , the Darcy number Da and 

the slip parameter  . 

 

3.1 Homogeneous Chemical Reaction 

Figures 2 – 6 show the effects of various parameters 

on the dispersion in the presence of homogeneous 

chemical reaction in the bulk of the medium. It is 

noticed that the average effective dispersion 

coefficient increases with amplitude ratio  (Figs. 3 

and 4). This may mean that peristalsis enhances 

dispersion. 

 

 

Fig. 2. Effect of 1 on F (Da = 0.01; ε = 0.2; γ = 

0.1) 

 

 

Fig. 3. Effect of 1 on F  (Da=0.01;  = 0.2; γ = 

0.1) 

 

 

Fig. 4. Effect of Da on F  ( 1 = 1;  = 0.2; γ = 

0.1) 

ε, 

ε, 

,ε, 

ε 

ε 
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Fig. 5. Effect of Da on F  ( 1 = 1; ε = 0.2; γ = 

0.1) 

 

Fig. 6. Effect of  on F (Da = 0.01; 1 = 1; ε = 

0.2) 

It is observed that the average effective dispersion 

coefficient decreases with Jeffrey number 1  (Figs. 

2 and 3) but increases with Darcy number Da (Figs. 

4 and 5) and slip parameter   (Fig. 6). Further, it is 

also observed that the average effective dispersion 

coefficient decreases with homogeneous chemical 

reaction rate parameter   (Figs. 2, 5 and 6). This 

result agrees with that of Gupta and Gupta (1972), 

Ramana Rao and Padma (1975), Padma and 

Ramana Rao (1976). This result is expected since 

increase in   leads to an increase in number of 

moles of solute undergoing chemical reaction, and 

these results in decrease of the dispersion. 

3.2 Combined Homogeneous and 

Heterogeneous Chemical Reaction 

Figures 7 - 12 display the effects of various 

parameters on the average effective dispersion 

coefficient G  for the case of combined first order 

chemical reaction both in the bulk and at the walls. 

It is seen that the average effective dispersion 

coefficient increases with amplitude ratio  (Figs. 8 

and 9). This implies that the peristalsis enhances 

dispersion of a solute in fluid flow. 

It is observed that the average effective dispersion 

coefficient G  decreases with Jeffrey number 1  

(Figs. 7 and 8), homogeneous chemical reaction rate 

  (Fig. 12) and heterogeneous chemical reaction 

rate   (Figs. 7, 10 and 11).  

 

Fig.7. Effect of 1 on G  (Da = 0.01;  = 0.5; 

ε=0.2;  =0.1) 

 

Fig. 8. Effect of 1  on G   (Da = 0.01;  = 0.2; 

 =5;  =0.1) 

 

Fig. 9. Effect of   on G  (Da = 0.01; 1 = 1;  = 

0.2;  = 5) 

ε 
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Fig. 10. Effect of Da on G ( = 0.5; 1  = 1; ε = 

0.2;  =0.1) 

 

Fig. 11. Effect of   on G (Da = 0.01; 1 = 1;  = 

0.5;  = 0.2) 

 

Fig. 12. Effect of Da on G  (  = 5; 1  = 1; ε = 

0.2;  =0.1) 

4. CONCLUSION 

The effect of homogeneous and heterogeneous 

chemical reactions on peristaltic motion of a Jeffrey 

fluid through a porous medium with slip condition 

has been studied under long wavelength 

approximation and Taylor's limiting condition. It is 

observed that peristaltic motion enhances dispersion 

and dispersion decreases with Jeffrey number 1 . It 

is also observed that the effective dispersion 

coefficient increases with Darcy number Da, and 

the slip parameter   in both the cases of 

homogeneous and combined homogeneous and 

heterogeneous chemical reactions. Further, average 

dispersion coefficient decreases with homogeneous 

reaction rate   and the heterogeneous reaction 

rate  . 
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