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ABSTRACT 

MHD boundary layer flow near stagnation point of linear stretching sheet with variable thermal conductivity 

are solved using He’s Homotopy Perturbation Method (HPM), which is one of the semi-exact method. 

Similarity transformation has been used to reduce the governing differential equations into an ordinary non-

linear differential equation. The main advantage of HPM is that it does not require the small parameter in the 

equations and hence the limitations of traditional perturbations can be eliminated. In this paper firstly, the 

basic idea of the HPM for solving nonlinear differential equations is briefly introduced and then it is 

employed to derive solution of nonlinear governing equations of MHD boundary layer flow with nonlinear 

term. The influence of various relevant physical characteristics are presented and discussed. 
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NOMECLATURE 

𝐵0 constant applied magnetic field 𝑦 coordinate in direction normal to stretching  

b free stream velocity parameter sheet 

𝐶𝑝 specific heat of the fluid at constant pressure 𝜖 perturbation parameter 

c stretching parameter 𝜂 dimensionless similarity variable 

𝑓 dimensionless stream function 𝜃 dimensionless temperature 

𝐾 permeability of porous media 𝜅 thermal conductivity 

𝑀 dimensionless magnetic field parameter 𝜅∗ variable thermal conductivity 

𝑃𝑟 prandtl number 𝜆 ratio of free stream parameter  

𝑝 pressure 𝜇 viscosity of fluid 

𝑄 volumetric rate of heat generation/absorption 𝜈 kinematic viscosity 

𝑞𝑟 radiation heat flux
 

𝜌 density of fluid 

𝑅 radiation parameter 𝜎  electrical conductivity 

𝑆 heat source/sink parameter 𝜏𝑤 shear stress 

𝑇 absolute temperature 𝛹 stream function 
𝑇𝑤 temperature at stretching sheet 𝛺 permeability parameter 

𝑇∞  free stream temperature Superscript 

𝑈 free stream velocity ′ derivative with respect to 𝜂 

𝑢 velocity component in x direction Subscripts 

𝑢𝑤  velocity of stretching sheet 𝑤 properties at the plate 

𝑣 velocity component in y direction ∞ free stream condition 

𝑥 coordinate in direction of stretching sheet  

 

1. INTRODUCTION 

The fluid dynamics due to a stretching sheet is 

important in extrusion processes. The production of 

sheeting material arises in a number of industrial 

manufacturing processes and includes both metal 

and polymer sheets like the cooling of an infinite 

metallic plate in a cooling bath, paper production, 

wire drawing, drawing of plastic films, glass 

blowing, etc. Both the kinematics of stretching and 

the simultaneous heating or cooling during such 

processes has a decisive influence on the quality of 

the final products. In view of these applications, 

Sakiadis (1961) first investigated the boundary 
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layer flow on a continuous solid surface moving at 

constant speed. MHD flow in electrically 

conducting fluid can control the rate of cooling 

therefore; desired quality of product can be 

achieved. Flow in the neighborhood of a stagnation 

point in a plane was initiated by Hiemenz (1911). 

Stagnation point flows have been discussed by Pai 

(1956), Schlichting (1968) and Bansal (1977) and 

many other researchers. Kay (1966) reported that 

thermal conductivity of liquids with low Prandtl 

number varies linearly with temperature in range of 

0°F to 400°F. Crane (1970) presented the flow over 

a stretching sheet and obtained similarity solution in 

closed analytical form. Arunachalam and Rajappa 

(1978) considered forced convection in liquid 

metals (fluid with low Prandtl number) with 

variable thermal conductivity and capacity in 

potential flow and derived explicit closed form of 

analytical solution. Fluid flow and heat transfer 

characteristics on stretching sheet with variable 

temperature condition have been investigated by 

Grubka and Bobba (1985). Watanabe (1988) 

discussed stability of boundary layer and effect of 

suction/injection in MHD flow under pressure 

gradient. Convective heat transfer at a stretching 

sheet has been presented by Vajravelu and Nayfeh 

(1978). Sharma and Jat (1994) analyzed flow and 

heat transfer between two vertical plates under 

viscous fluid injection through porous plate, the 

other being a stretching sheet. Chiam (1997) 

discussed the heat transfer in fluid flow on 

stretching sheet at stagnation point in presence of 

internal dissipation, heat source/sink and stress with 

constant fluid properties. Chen (1998) considered 

laminar mixed convection adjacent to vertical, 

continuously stretching sheet. Chaim (1998) studied 

heat transfer in fluid flow of low Prandtl number 

with variable thermal conductivity induced due to 

stretching sheet and compared the numerical results 

with perturbation solution. Chamka and Khaled 

(2000) considered Hiemenz flow in the presence of 

magnetic field through porous media. Sharma and 

Mishra (2001) investigated steady MHD flow 

through horizontal channel: lower being a stretching 

sheet and upper being a permeable plate bounded 

by porous medium. Sriramalu etal. (2001) studied 

steady flow and heat transfer of a viscous 

incompressible fluid flow through porous medium 

over a stretching sheet. Mahapatra and Gupta 

(2001) investigated the magnetohydrodynamic 

stagnation-point flow towards isothermal stretching 

sheet and pointed that velocity decreases/increases 

with the increase in magnetic field intensity when 

free stream velocity is smaller/greater, respectively 

than the stretching velocity. Mahapatra and Gupta 

(2002) studied heat transfer in stagnation-point flow 

towards stretching sheet with viscous dissipation 

effect. Khan et. al. (2003) presented viscoelastic 

MHD flow, heat and mass transfer over a porous 

stretching sheet with dissipation energy and stress 

work. Pop etal. (2004) discussed the flow over 

stretching sheet near a stagnation point taking 

radiation effect. Seddeek and Salem (2005) 

investigated the heat and mass transfer distributions 

on stretching surface with variable viscosity and 

thermal diffusivity. Vyas and Srivastava (2010) 

present a numerical study for the steady two-

dimensional radiative MHD boundary−layer flow of 

an incompressible, viscous, electrically conducting 

fluid caused by a non-isothermal linearly stretching 

sheet placed at the bottom of fluid saturated porous 

medium.  

Most of the problems in MHD area are nonlinear. 

Except a limited number of these problems have 

precise analytical solution, most of them do not 

have exact solution, and so these nonlinear 

equations should be solved using other proper 

methods. Most scientists believe that the 

combination of numerical and semi-exact analytical 

methods can lead to applicable results. In this paper 

one of the semi-exact method which is called HPM 

has been introduced and applied in MHD boundary 

layer flow near stagnation point of linear stretching 

sheet with variable thermal conductivity. The initial 

work in HPM was studied by J. H. He (1998, 2000, 

2001, 2005, 2009) and after that these investigations 

inspired a lot of researchers Ariel et al. (2006), 

Beléndez et. al (2008), Ganji and Rajabi (2006), 

Ganji and Ganji (2008), Hosein et al. (2008), 

Jhankal (2014), Ma et. al (2008), Siddiqui et al. 

(2008), Zhang and He (2006), Zhang et al. (2008) 

and many others to solve nonlinear equations with 

this method. 

Motivated by the above investigations and practical 

applications, the present paper deals with the steady 

of effects of variable thermal conductivity, heat 

source/sink and variable free stream on flow of a 

viscous incompressible electrically conducting fluid 

and heat transfer on a non-conducting stretching 

sheet in the presence of transverse magnetic field 

near a stagnation point. The governing partial 

differential equations are transformed into ordinary 

differential equations using similarity 

transformation and then solved using He’s 

Homotopy Perturbation Method (HPM), which is 

one of the semi-exact methods. The heat source and 

sink is included in the work to understand the effect 

of internal heat generation and absorption Chaim 

(1998). 

 

1.1 Basic idea of homotopy perturbation 

method (HPM) 

To illustrate the basic ideas of the HPM, we 

consider the following nonlinear differential 

equation 

𝐴(𝑢) − 𝑓(𝑟) = 0, 𝑟 ∈ 𝛺                 (1) 

Subject to the boundary conditions 

𝐵 (𝑢,
𝜕𝑢

𝜕𝜂
) = 0, 𝑟 ∈ 𝛤                 (2) 

Where A is a general differential operator, B is a 

boundary operator, f(r) is a known analytical 

function and 𝛤 is the boundary of the domain 𝛺. A 

can be divided into two parts which are L and N, 

where L is linear and N is nonlinear. Therefore Eq. 

(1) can be rewritten as follows: 

 L(𝑢) + 𝑁(𝑢) − 𝑓(𝑟) = 0, 𝑟 ∈ 𝛺                (3) 

By the homotopy perturbation technique, we 

construct a homotopy 
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𝑣(𝑟, 𝑝): 𝛺 × [0,1] → 𝑅, which satisfies: 

𝐻(𝑣, 𝑝) = (1 − 𝑝)[𝐿(𝑣) − 𝐿(𝑢0)] + 𝑝[𝐴(𝑣) −
𝑓(𝑟)] = 0,   𝑝 ∈ [0, 1], 𝑟 ∈ 𝛺                  (4) 

where 𝑝 ∈ [0, 1] is an embedding parameter and 𝑢0 

is an initial approximation that satisfies the 

boundary condition. Obviously, from these 

definitions we will have: 

𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑢0) = 0 

𝐻(𝑣, 1) = 𝐴(𝑣) − 𝑓(𝑟) = 0 

The changing process of p from zero to one is just 

that of 𝑣(𝑟, 𝑝) from 𝑢0(𝑟) to 𝑢(𝑟). In topology, this 

is called deformation and 𝐿(𝑣) − 𝐿(𝑢0)  and  

𝐴(𝑣) − 𝑓(𝑟) are called homotopy. According to the 

HPM, we can first use the embedding parameter 𝑝 

as a “small parameter” and assuming that the 

solution of Eq. (4) can be written as a power series 

in 𝑝: 

𝑣 = 𝑣0 + 𝑝𝑣1 + 𝑝2𝑣2                 (5) 

Setting 𝑝 = 1, results in the approximate solution of 

(1): 

𝑢 = lim
𝑝→1

𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + ⋯                (6) 

The convergence and stability of this method was 

shown in Hosein et al. (2008). 

2. MATHEMATICAL FORMULATION 

Consider steady two-dimensional flow of a viscous 

incompressible electrically conducting fluid of 

variable thermal conductivity in the vicinity of a 

stagnation point on a non-conducting stretching 

sheet in the presence of transverse magnetic field 

and volumetric rate of heat generation/absorption. 

The stretching sheet has uniform temperature𝑇𝑤 , 

linear velocity 𝑢𝑤(𝑥). It is assumed that external 

field is zero, the electric field owing to polarization 

of charges and Hall Effect are neglected. Stretching 

sheet is placed in the plane 𝑦 = 0  and x-axis is 

taken along the sheet. The fluid occupies the upper 

half of the plane i.e. 𝑦 > 0. 

The governing equations of continuity, momentum 

and energy under the influence of externally 

imposed transverse magnetic field with variable 

thermal conductivity in the boundary layer are 

(Bansal 1994): 

𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
= 0                  (7) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑥2 −
𝜎𝐵0

2

𝜌
𝑢 −

𝜈

𝐾
𝑢         (8) 

 

𝜌𝐶𝑝 (𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) =

𝜕

𝜕𝑦
(κ∗

𝜕𝑇

𝜕𝑦
) + 

𝑄(𝑇 − 𝑇0) −
𝜕𝑞𝑟

𝜕𝑦
                   (9) 

In the free stream  𝑢 = 𝑈(𝑥) = 𝑏𝑥, Eq. (8) reduces 

to: 

𝑈
𝑑𝑈

𝑑𝑥
= −

1

𝜌

𝜕𝑝

𝜕𝑥
−

𝜎𝐵0
2

𝜌
𝑈                              (10) 

Eliminating  
𝜕𝑝

𝜕𝑥
 between Eq. (8) and Eq. (10), we 

obtain: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑈

𝑑𝑈

𝑑𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑥2 − 

𝜎𝐵0
2

𝜌
(𝑢 − 𝑈) −

𝜈

𝐾
𝑢                                               (11) 

Along with the boundary conditions 

𝑦 = 0:    𝑢 = 𝑢𝑤(𝑥) = 𝑐𝑥,   𝑣 = 0,   𝑇 = 𝑇𝑤 

𝑦 → ∞:    𝑢 = 𝑈(𝑥),   𝑇 = 𝑇𝑤                              (12) 

Using the Rosseland approximation for radiation 

(Brewster 1972), the radiation heat flux 𝑞𝑟 could be 

expressed by:  

𝑞𝑟 =
4𝜎∗

3𝜅0

𝜕𝑇4

𝜕𝑦
                                                         (13) 

Where 𝜎∗  the represents the Stefan-Boltzman 

constant and 𝜅0  is the Rosseland mean absorption 

coefficient. Assuming the temperature difference 

within the flow is such 𝑇4 that may be expanded in 

a Taylor series about 𝑇∞  and neglecting higher 

orders we get:  

𝑇4 ≅ 4𝑇∞
3𝑇 − 𝑇∞

4                (14) 

Following Arunachalam and Rajappa (1978) and 

Chaim (1997), the thermal conductivity 𝜅∗ is taken 

of form as given below  

𝜅∗ = 𝜅(1 + 𝜖𝜃)                               (15) 

The continuity Eq. (7) is satisfied by introducing a 

stream function 𝛹 such that  

𝑢 =
𝜕𝛹

𝜕𝑦
 and = −

𝜕𝛹

𝜕𝑥
                (16) 

The momentum and energy equations can be 

transformed into the corresponding ordinary 

nonlinear differential equations by the following 

transformation: 

𝜂 = 𝑦√
𝑐

𝜈
, 𝛹 = √𝑐𝜈𝑥𝑓(𝜂), 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
         (17) 

Where 𝜂 is the independent similarity variable. The 

transformed nonlinear ordinary equations are: 

𝑓 ′′′ + 𝑓𝑓 ′′ − 𝑓 ′2 − 𝑀2(𝑓 ′ − 𝜆) − 𝛺𝑓 ′ + 𝜆2 =     (18) 

(1 + 𝑅 + 𝜖𝜃)𝜃′′ + 𝜖𝜃′2 + Pr(𝜃′𝑓 + 𝑆𝜃) = 0     (19) 

The transformed boundary conditions are: 

𝑓(0) = 0, 𝑓 ′(0) = 1, 𝜃(0) = 1, 

𝑓 ′(∞) → 0, 𝜃(∞) → 0.                              (20) 

Where prime denotes differentiation with respect 

to  𝜂 , 𝜆 = b/c  is the ratio of free stream velocity 

parameter to stretching sheet parameter, 𝛺 = 𝜈/𝐾𝑐 

is the permeability parameter, 𝑀2 =
𝜎𝐵0

2

𝜌𝑐
  is the 

dimensionless magnetic parameter, 𝑅 =
16𝜎∗𝑇∞

3

3𝜅0𝜅
is 

the thermal radiation parameter, 𝑆 = 𝑄/𝜌𝑐𝐶𝑝is the 

heat source/sink parameter and 𝑃𝑟 =
𝜇𝐶𝑝

𝜅⁄  is the 

Prandtl number. 
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Solution with Homotopy perturbation method 

(HPM): 

According to the HPM, the homotopy form of Eq. 

(18) and Eq. (19) are constructed as follows: 

(1 − 𝑝)(𝑓 ′′′ − 𝑚1
2𝑓 ′) + 𝑝(𝑓 ′′′ + 𝑓𝑓 ′′ − 𝑓 ′2 −

𝑚1
2𝑓 ′) = −𝑚2                (21) 

 

(1 − 𝑝)[(1 + 𝑅)𝜃′′𝑃𝑟𝑆𝜃] + 𝑝[(1 + 𝑅)𝜃′′ + 𝜖𝜃𝜃′′ +

𝑃𝑟𝑓𝜃′ + 𝑃𝑟𝑆𝜃] = 0               (22) 

Where 𝑚1
2 = 𝑀2 + 𝛺, and 𝑚2 = 𝑀2𝜆 + 𝜆2. 

We consider 𝑓 and 𝜃 as the following: 

𝑓 = 𝑓0 + 𝑝𝑓1 + 𝑝2𝑓2 

𝜃 = 𝜃0 + 𝑝𝜃1 + 𝑝2𝜃2                              (23) 

By substituting Eq. (23) into Eq. (21) and Eq.(22), 

and then, 

(I) Terms independent of  𝑝 give: 

𝑓0
′′′ − 𝑚1

2𝑓0
′ = −𝑚2                (24) 

(1 + 𝑅)𝜃0
′′  = 0                (25) 

The boundary conditions are: 

𝑓0(0) = 0, 𝑓0
′(0) = 1, 𝑓0

′(∞) = 0, 𝜃0(0) = 1,
𝜃0(∞) = 0.                (26) 

(II) Terms containing only 𝑝 give: 

𝑓1
′′′ − 𝑚1

2𝑓1
′ = 𝑓0

′2 − 𝑓0𝑓0
′′               (27) 

(1 + 𝑅)𝜃1
′′ = −(𝜖𝜃0

′′𝜃0 + 𝜖𝜃0
′2 + 𝑃𝑟𝑓0𝜃0

′ )          (28) 

The boundary conditions are:  

𝑓1(0) = 0, 𝑓1
′(0) = 0, 𝑓1

′(∞) = 0, 𝜃1(0) =
0,   𝜃1(∞) = 0                 (29) 

Solving Eqs. (24)-(25) and (27)-(28) with boundary 

conditions (26) and (29) respectively, we have: 

𝑓0 = 𝐴3 + 𝐴2𝑒𝑚1𝜂 + 𝐴1𝑒−𝑚1𝜂 +
𝜂𝑚2

𝑚1
2               (30) 

𝑓1 = 𝐴4 + 𝐴5𝑒𝑚1𝜂 + 𝐴6𝑒−𝑚1𝜂 + (
𝑚2𝐴2

𝑚1
3 −

𝐴1𝐴2

2
) 𝜂𝑒𝑚1𝜂 + (−

𝑚2𝐴3

𝑚1
3 −

𝐴1𝐴3

2
) 𝜂𝑒−𝑚1𝜂 +

3𝑚2𝐴2

4𝑚1
3 𝜂2𝑒𝑚1𝜂 −

3𝑚2𝐴3

4𝑚1
3 𝜂2𝑒−𝑚1𝜂 −

𝑚2𝐴2

4𝑚1
2 𝜂3𝑒𝑚1𝜂 −

𝑚2𝐴3

4𝑚1
2 𝜂3𝑒−𝑚1𝜂 + (4A2A3 −

m2
2

m1
6) 𝜂              (31) 

𝜃0 = 𝑐𝑜𝑠𝐶𝜂 + 𝐵1𝑠𝑖𝑛𝐶𝜂               (32) 

𝜃1 = 𝐵2𝑠𝑖𝑛𝐶𝜂 + 𝐵3𝑐𝑜𝑠𝐶𝜂 + 𝐵5𝑐𝑜𝑠2𝐶𝜂 +
𝐵6𝑠𝑖𝑛2𝐶𝜂 + 𝐵7𝜂𝑐𝑜𝑠𝐶𝜂 + 𝐵8𝜂𝑠𝑖𝑛𝐶𝜂 +
𝐵9𝜂2𝑐𝑜𝑠𝐶𝜂 + 𝐵10𝜂2𝑠𝑖𝑛𝐶𝜂 + 𝐵11𝑒𝑚1𝜂𝑐𝑜𝑠𝐶𝜂 +
𝐵12𝑒𝑚1𝜂𝑠𝑖𝑛𝐶𝜂 + 𝐵13𝑒−𝑚1𝜂𝑐𝑜𝑠𝐶𝜂 +
𝐵14𝑒−𝑚1𝜂𝑠𝑖𝑛𝐶𝜂                                              (33) 

The constant coefficients, can be calculated using 

boundary conditions, the boundary condition η=∞ 

were replaced by those at η=10 in accordance with 

standard practice in the boundary layer analysis. If 

p→1, we find the approximate solution of Eqs. (21) 

and (22). 

The constant coefficient, 

𝐴𝑖 (𝑖 = 1, 2, 3, … .8),  𝐵𝑗  (𝑗 = 1, 2, 3, … .14),

𝑚1,  𝑚2 𝑎𝑛𝑑 𝐶 are defined as in the Appendix. 

3. RESULTS AND DISCUSSION 

In order to get a physical insight into the problem, 

numerical computations are performed for various 

values of the physical parameters involved in the 

equations viz. the magnetic parameter M, ratio of 

free stream parameter 𝜆,  permeability parameter Ω, 

perturbation parameter 𝜖,  thermal radiation 

parameter R and fixed value of Prandtl number (Pr) 

1.0. To ensure the occurrence of steady flow near 

the sheet by confining the generated vorticity inside 

the boundary layer, the magnetic field is taken quite 

strong by assigning large values of M. Calculated 

results are presented in Figs 1 to 6 to understand the 

effect of parameters on flow and temperature field. 

On the other hand, the skin friction coefficient  

𝑓 ′′(0)  and heat transfer coefficient – 𝜃′(0)  against 

magnetic parameter (M), for various values 𝜆, and 

given values of Ω, Pr, 𝜖, R and S are presented in 

Figs. 7 and 8 respectively.  

Figure 1 shows the effect of magnetic parameter M 

on velocity profile for λ=0.5 and Ω=0.25. From this 

figure it is observed that the dimensionless velocity 

𝑓 ′(𝜂)decreases with increasing values of M. This 

happens due to Lorentz force arising from the 

interaction of magnetic and electric fields during the 

motion of the electrically conducting fluid. This 

force has the tendency to slow down the motion of 

fluid in the boundary layer.  

Figure 2 shows the effect of λ on the velocity 

profile. From this plot it is observed that the 

velocity increases with increasing values of λ. 

Accordingly, the thickness of momentum boundary 

layer decreases. 

Figure 3 shows the effect of Ω on the velocity 

profile. We infer from this figure that the velocity 

decreases with increasing values of Ω. This happens 

due to the increased restriction resulting from 

decreasing the porosity of porous medium. 

Figure 4 is plotted for temperature profiles for 

different values of M. It is observed that the 

temperature decreases with magnetic parameter M. 

Figure 5 shows the effect of Ω on temperature. We 

infer from this figure that the temperature decreases 

with increasing values of Ω. 

Figure 6 illustrates the effect of λ on the 

temperature profile. We infer from this figure that 

the temperature decreases for η ≤ 3.5 and increases 

for η ≥ 3.5 with increasing values of λ. 

Figure 7 represents the skin friction parameter 

against magnetic parameter M for various values of 

λ. It is noted that for increasing values of  λ, the 

skin friction increases. 

Figure 8 represents the variation of the temperature 

gradient which is significant in evaluating the rate 

of heat transfer. The rate of heat transfer increases 

with increasing values of λ. 
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Fig. 1. Velocity profile for various values of 

magnetic parameter M, when λ=0.5 and 

Ω=0.25. 
 

 
Fig. 2. Velocity profile for various values of λ, 

when M=1.0 and Ω=0.5. 

 

 

Fig. 3. Velocity profile for various values of Ω, 

when M=1.0 and λ =0.5. 

 

 

 
Fig. 4. Temperature profile for various values 

of magnetic parameter M, when Pr=1.0, λ=0.5, 

Ω=0.25, R=0.25, S=0.4 and 𝝐=0.1. 

 

 
Fig. 5. Temperature profile for various values 

of Ω, when Pr=1.0, λ=0.5, M=1.0, R=0.25, 

S=0.4 and 𝝐=0.1. 

 

Fig. 6. Temperature profile for various values 

of λ, when Pr=1.0, Ω =0.25, M=1.0, R=0.25, 

S=0.4 and 𝝐=0.1. 
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Fig. 7. Skin friction against magnetic 

parameter M, for various values of λ (when 

Ω=0.25). 

 

 

 
Fig. 8. Nusselt number against magnetic 

parameter M for various values of λ, when 

Pr=1.0, Ω =0.25, R=0.25, S=0.4 and 𝝐=0.1. 

 

4. CONCLUSION 

In this study, the momentum and energy 

equations are solved with homotopy perturbation 

method (HPM) of MHD boundary layer flow near 

stagnation point of linear stretching sheet with 

variable thermal conductivity. Result shows that 

velocity and temperature decreases with 

increasing values of M and Ω and velocity 

increases with the increasing values of λ, but 

temperature decreases for η≤3.5 and increases 

when η>3.5 with increasing values of λ.  

It is also noted that for increasing value of λ, the 

skin friction increases, the similar results can be 

drawn for rate of heat transfer. 

The homotopy perturbation method (HPM) 

suggested in this article is an efficient method for 

obtaining the solution of the nonlinear partial 

differential equations. Therefore, this method is a 

powerful mathematical tool to solve any system 

of partial differential equations linear and 

nonlinear. 
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