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ABSTRACT 

A theoretical analysis of thermo-convective instability in an electrically conducting two component fluid 
layer is carried out when the gravity field vary with time in a sinusoidal manner. Newtonian liquid is 
considered between two horizontal surfaces, under a constant vertical magnetic field. The disturbance is 
expanded in terms of power series of amplitude of convection, which is assumed to be small. We use the 
linear matrix differential operator method to find the Ginzburg–Landau amplitude equation for the modulated 
problem. Use the solution of the Ginzburg–Landau equation in quantifying the amount of heat and mass 
transports in terms of Nusselt and Sherwood numbers. It is found that, the effect of magnetic field is to 
stabilize the system. Effect of various parameters on the heat and mass transport is also discussed. Further, it 
is found that the heat and mass transports can be controlled by suitably adjusting frequency and amplitude of 
gravity modulation. 

Keywords: Double diffusive magnetoconvection; Gravity modulation; Weak nonlinear theory. 

NOMENCLATURE 

A  amplitude of convection  
d depth of the fluid layer 

g   acceleration due to gravity 

Q Chandersekhar number 2 2
0/m b mH d  

ck  critical wave number 

Nu Nusselt number 
Sh Sherwood number 
p  reduced pressure 
Pr Prandtl number / T 
Pm magnetic Prandtl number, /m T   

Le  Lewis number, /T S   

TRa  thermal Rayleigh number 

3

T
T

g Td
Ra







Ras  Solutal Rayleigh number, 
3

S

g Sd
Ras







S  solute concentration 
R0c Critical Rayleigh number, 
H


 magnetic field 

T  temperature difference 
S  concentration difference 

t  time 

q fluid velocity 
(x,z) horizontal, vertical space co ordinates   

 coefficient of thermal expansion 
 coefficient of solute expansion 

  perturbation parameter 

S  solutal diffusivity 

  frequency of modulation 
  amplitude of modulation 
  dynamic co-efficient of viscosity of the 

fluid 

m   magnetic permeability 

 kinematic viscosity

m  magnetic viscosity 

  fluid density 
  Stream function 

*  dimensionless stream function 
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  magnetic potential 

T  thermal diffusivity            

   heat capacity ratio  
*  dimensionless magnetic potential 

τ slow time, 2t   

Other symbols 
2  2 2 2/ / /     x y z  

Subscripts 
b  basic state 
c  critical 
0  reference value 

Superscripts 
/  perturbed quantity 
* dimensionless quantity 

 

1. INTRODUCTION 

Double diffusive convection is an important fluid 
dynamics phenomenon that involves motions 
driven by two different density gradients diffusing 
at different rates. In double-diffusive convection, 
the buoyancy force is affected not only by the 
difference of temperature, but also by the 
difference of concentration of the fluid. Some of 
examples of double diffusive convection can be 
seen in oceanography, lakes and underground 
water, atmospheric pollution, chemical processes, 
laboratory experiments, modeling of solar ponds, 
electrochemistry, magma chambers and Sparks, 
formation of microstructure during the cooling of 
molten metals, fluid flows around shrouded heat-
dissipation fins, migration of moisture through air 
contained in fibrous insulations, grain storage 
system, the dispersion of contaminants through 
water saturated soil, crystal P growth, solidification 
of binary mixtures, and the underground disposal of 
nuclear wastes. The study of double-diffusive 
magneto convection has recently drawn the 
attention of astrophysicists, geophysicists, 
oceanographers, engineers and a host of others. The 
study of magneto-convection in an electrically 
conducted horizontal fluid layer motivated by 
astrophysical and geophysical, relate in some way 
or the other to problems concerning the external 
constraints like magnetic field, rotation and/or 
gravity field operative on double-diffusive systems, 
in particular by observation of sunspots Thomas 
and Weiss (1992). Convection in planetary cores, 
stellar interiors and Earth's metallic core occurs in 
the presence of strong magnetic field. Thompson 
(1951) and Chandrasekhar (1961) were the first to 
study the magneto-convection in horizontal fluid 
layer. 
 

Lortz (1965) was the first to study the effect of 
magnetic field on double-diffusive convection. His 
object was to clarify some of the mathematical 
aspects of stability criterion (Malkus and Veronis 
1958) but, his analysis is silent about the detailed 
study of stability analysis. Stommel et al. (1956) in 
their experiments explained the diffusion is 
generally a stabilizing factor in a single-component 
fluid. But in the case of two-component system it 
can act to release the potential energy in the 
component that is heaviest at the top and make the 
system unstable. Rudraiah and Shivakumara (1984) 
and Shivakumara (1985) have investigated both 
linear and nonlinear theory of this problem in 
detail. They have shown that the magnetic field, 
under certain conditions makes the system unstable. 

They have also investigated the effect of magnetic 
field on the physically preferred cell pattern. 
Rudraiah (1986) investigated the interaction 
between double-diffusive convection and an 
externally imposed vertical magnetic field in a 
Boussinesq fluid. Both linear and nonlinear theories 
have been discussed. The effects of cross-diffusion, 
rotation and chemical reaction on double-diffusive 
magneto-convection and pattern selection have 
been explained. Baines and Gill (1969), Turner 
(1974), Huppert and Turner (1981), Chen and 
Johnson (1984) investigated the study of 
convection in a two and multi-component fluid 
layer where two scalar fields affect the density 
distribution. Ozoe and Maruo (1987) have 
investigated magnetic and gravitational natural 
convection of melted silicon-two dimensional 
numerical computations for the rate of heat 
transfer.  
 
Siddheshwar and Pranesh (1999,2000) examined 
the effect of a transverse magnetic field on 
thermal/gravity convection in a weak electrically 
conducting fluid with internal angular momentum. 
Starchenko (2006) discussed double diffusion 
magneto-convection for Earth’s type planets. 
Siddheshwar et al. (2012) performed a local non-
linear stability analysis of Rayleigh-Bénard 
magneto-convection using Ginzburg-Landau 
equation. They showed that gravity or thermal 
modulation can be used to enhance or diminish the 
heat transport in stationary magneto-convection.  
 
Many researchers, under different physical models 
have investigated thermal instability in a horizontal 
fluid layer with gravity modulation in the absence 
of magneto double diffusive convection. Some of 
them are Gershuni and Zhukhovitskii (1963) and 
Gresho and Sani (1970) were the first to study the 
effect of gravity modulation in a fluid layer. 
Biringen and Peltier  (1990) investigated, 
numerically, the non-linear three dimensional 
Rayleigh-Bénard problem under gravity 
modulation, and confirmed the result of Gresho and 
Sani (1970). Wadih and Roux (1988) presented a 
study on instability of the convection in an 
infinitely long cylinder with gravity modulation 
oscillating along the vertical axis. Saunders et al. 
(1992) have discussed the effect of gravity 
modulation on thermosolutal convection in an 
infinite layer of fluid. Clever et al. (1993) 
performed a detailed non-linear analysis of 
Rayleigh-Bénard convection under gravity 
modulation and presented the stability limits to a 
much wider region of parameter space.   Aniss et 
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al. (1995, 2000), Rogers et al. (2000, 2005), 
Bhadauria et al. (2005) showed that the 
gravitational modulation, which can be realized by 
vertically oscillating a horizontal fluid layer, acts 
on the entire volume of liquid and may have a 
stabilizing or destabilizing effect depending on the 
amplitude and frequency of the forcing. Boulal et 
al. (2007) focused attention on the influence of a 
quasi-periodic gravitational modulation on the 
convective instability threshold. They predicted 
that the threshold of convection corresponds 
precisely to quasi-periodic solutions. Bhadauria et 
al. (2012) studied thermally or gravity modulated 
non-linear stability problem in a rotating viscous 
fluid layer, using Ginzburg-Landau equation for 
stationary mode of convection. Bhadauria et al. 
(2013) studied internal heating effects weak non-
linear Rayleigh-Bénard convection under gravity 
modulated, using Ginzburg-Landau equation for 
stationary mode of convection. 
 
It was observed that most of the above studies 
considers only linear theory of Rayleigh-Bénard 
convection by assuming different physical models, 
which can’t be used to quantify heat and mass 
transfer. It is important to consider external 
physical parameters for controlling convective 
instability in a horizontal fluid layer. The 
modulated gravitational field may change the 
structural characteristics of the convective flow. 
Especially convection in a horizontal fluid layer 
heated from below can be stabilized by vertical 
oscillation of the layer at suitable frequency and 
amplitude Gresho and Sani (1970) and imposing 
vertical magnetic field Rudraiah (1986). Adapting 
the method of Ginzburg-Landau model (Bhadauria 
and Kiran 2013a,b, 2014a,b) investigated internal 
heating effects in an electrically conducting fluid 
layer under vertical magnetic field and time 
periodic heating at the boundaries. Bhadauria and 
Kiran (2014c), investigated the effect of magnetic 
field modulation on electrically conducting fluid 
layer under gravity modulation. Bhadauria and 
Kiran (2014d,e) studied gravity modulation in a 
nanofluid layer under gravity modulation in the 
presence of internal heat source. Recently 
Bhadauria and Kiran (2014f) presented time 
periodic heating of the boundaries as external 
controlling mechanism to the convection in an 
electrically conducting two component fluid layer. 
It was found that temperature modulation as well as 
magnetic field can be used effectively to alternate 
the convection or heat and mass transfer in the 
system while suitably tuning the frequency and 
amplitude of modulation.   So in our problem we 
considered such an external controlling convective 
mechanisms magnetic field and gravity modulation. 
It is found that magnetic field and gravity 
modulation together can be used strongly to control 
convective instability on magneto double diffusive 
convection. 

2.  GOVERNING EQUATION 

We consider an electrically conducting fluid layer 
of depth d, confined between two infinitely parallel, 

horizontal planes at z=0 and z=d. Cartesian 
coordinates have been taken with the origin at the 
bottom of the fluid layer, and the z-axis vertically 
upwards given in Fig.1. Under the Boussinesq 
approximation, the dimensional governing 
equations for the study of double-diffusive 
magneto-convection in an electrically conducting 
fluid layer are given by (Bhadauria et al. 2012, 
Bhadauria and Kiran 2014f): 
 

 
Fig. 1. Phaysical configuration of problem 
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0 0 0[1 ( ) ( )],T T S S                       (7) 

2
0[1 cos( )].g g t   


                           (8) 

The physical quantities which are mentioned in 
above equations have their own meanings given in 
Nomenclature. The externally imposed solutal and 
thermal boundary conditions are given by 

0

0

                         

                  0

T T z d

T T z

 

   
                 (9) 

0

0

                         

                  0

S S z d

S S z

 

   
              (10) 

The basic state is assumed to be quiescent and the 
quantities in this state are given by: 

0, (z), ( ),

( , ), ( , );
b b b

b b

q T T S S z

p p z t z t 
  

 



                          (11) 

Using Eq. (2.11) in Eqs. (2.1,2.8) and applying the 
Eqs. (2.9,2.10) we obtain the expressions  for basic 
state temperature and solute as:  

0 1 ,b
z

T T T
d

    
 

              (12) 

0 1 .b
z

S S S
d

    
 

                             (13) 

We assume and impose finite amplitude 
perturbations on the basic state in the form: 

/ / / /, , , ,b b b bq q q T T T S S S p p p       
  
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/ ,b    / .bH H H 
 

                             (14) 

Now substituting Eq. (2.14) into Eqs. (1-8), using 

stream function  as / /, ;
 

  
 

u w
z x

 
and 

magnetic potential   as / ,xH
z








/ ;zH
x


 




finally introducing the non 

dimensional parameters as / / * *( , ) ( , ),x z x z

/ * ,T T T  *,T   / * ,S S S 
2

/ *

T

d
t t




/ * / *
2

,T
bq q dH

d


   

 
; then we obtain the 

following non dimensionalized equations: (for 
simplicity we drop asterisk) 

4 2
m T m

T S
g Ra g Ras QPm

x x z
   

     
  

2 2

2

1 1 ( , )

Pr Pr ( , )

( , )
,

( , )

t x z

QPm
x z

     
 

 

   




             (15)  

2 ( , )
,

( , )

T
T

x t x z

    
    

  
             (16) 

21 ( ,S)
,

( , )

  
    

  
S

x Le t x z

  
             (17) 

2 ( , )
.

( , )
Pm

z t x z

    
      

  
          (18) 

Where 21 cos( );mg t   
 

the non 

dimensionalized numbers in the above equations 
are given in Nomenclature. We assume small 

variations of time and re-scaling it as 2 ;t   to 
study the stationary convection of the system. The 
considered boundary conditions to solve the above 
system of Eqs. (2.15-2.18) is: 

2 0;    0D    at =0 and =1z z         (19) 

where / .D d dz  

3. FINITE AMPLITUDE EQUATION AND 

HEAT TRANSPORT FOR THE 

STATIONARY INSTABILITY 

We now introduce the following asymptotic 
expansions in Eqs. (2.15-2.18): 

2
20 ...;TRa R c R                       (20) 

2
1 2 ...;                            (21) 

2
1 2 ...;T T T                          (22) 

2
1 2 ...;S S S                           (23) 

2
1 2 ...;                     (24) 

where R0c is the critical value of the Rayleigh 
number at which the onset of convection takes 
place in the absence of gravity modulation. Now 
we solve the above system Eqs. (2.15-2.18): 

for different orders of : 
 

At the lowest order we obtain the solutions 
according to the boundary conditions given in Eq. 
(2.19) as: 

1 sin sin ,cA k x z                 (25) 

1 2
cos sin ,c

c
k

T A k x z


                              (26) 

1 2
cos sin ,c

c
k

S LeA k x z


                         (27) 

1 2
sin cos ,cA k x z

Pm

 


                (28) 

where 2 2 2
ck   .The critical value of the 

Rayleigh number for the onset of magneto double 
diffusive convection in the absence of gravity 
modulation is: 

2 4 2 2

2

( )
0 .c

c

Q RasLek
R c

k

   
               (29) 

In the absence of magnetic field and Ras=0, we 
obtain the classical results obtained by 
Chandrasekhar (1961). 
 

At the second order we obtain the solutions as:  

2 0,                  (30) 

2
2

2 2
sin2 ,

8
ck

T A z


                               (31) 

2 2
2

2 2
sin 2 ,

8
ck Le

S A z


                              (32) 

2
2

2 2 2
sin 2 .

8
c

c

A k x
k Pm




                (33) 

 

The horizontally averaged Nusselt Nu and 
Sherwood Sh numbers, for the stationary mode of 
double-diffusive magneto-convection (the mode 
considered in this problem) are given by: 

2
2

2
1 ,

4
ck

Nu A


                                (34) 

2 2
2

2
1 .

4
ck Le

Sh A


                                            (35) 

The above results are same as obtained by 
(Siddheswar et al. 2012, Bhadauria et al. 2013a, b). 
For existing the solution of third order system 
under solvability condition (Siddheshwar et al. 
2012, Bhadauria and Kiran. 2013a,b; 2014a-c), we 
obtain the following an amplitude equation 
(Ginzburg-Landau equation) 
 

3
1 2 3 0,

A
B B A B A




  


                             (36) 

where   
2 2 22 2

1 4 2 4

0
;
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B
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4 4 2 4 3

3 4 2 2 4

0
.

8 2 8
c c cR ck Q k Rask Le

B
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  

  
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4. ANALYTICAL SOLUTION FOR 
UN-MODULATED CASE 

In the case of unmodulated fluid layer, the above 
amplitude equation can be written as: 

3
1 2 3 0,u

u u
A

B B A B A



  


                             (40) 

where 1B , 3B take th form as in modulated system, 

but 
2

2
2 28

cR k
B


 ; the solution of Eq. (4.1), is given 

by: 

2 12 /
3 2

1
;

/ 2
u A A

A
B B ce




                          (41) 

where c is a constant, it can be calculated for given 
suitable initial condition. The horizontal 
averaged Nusselt and Sherwood numbers in this 
case is obtained from Eq. (3.15,3.16), by using the 

value of uA  in the place of A : The amplitude 

equation given in Eq. (3.17) is Bernoulli equation 
and obtaining its       analytical solution is difficult, 
due to its non-autonomous nature. So that it has 
been solved numerically using the in-built function 
NDSolve Mathematica8, subjected to the initial 
condition A(0) = a0; where a0 is the chosen initial 
amplitude of convection. In our calculations we 
may use 2 0R R c ; to keep the parameters to the 

minimum. 

5. RESULTS AND DISCUSSION 

External regulation of convection of Rayleigh-
Benard convection is important to study the thermal 
instability in a fluid layer. In this present paper we 
have consider two such candidates, namely vertical 
magnetic field and gravity modulation for either 
enhancing or inhibiting convective heat or mass 
transports as is required by a real applications 
(Thermal and Engineering sciences). This paper 
deals with double-diffusive magnetoconvection 
under gravity modulation by using a non-
autonomous Ginzburg-Landau equation. It is 
necessary to consider a weak nonlinear theory to 
study heat and mass transfer, which is not possible 
by the linear theory. We consider the direct mode (

/ 1S T   , otherwise Hopf mode) in which the salt 

and heat make opposing contributions T S  .We 

also consider the effect of gravity modulation to be 

of order 2( )O
 this leads to small amplitude of 

modulation. Such an assumption will help us in 
obtaining the amplitude equation of convection in a 
rather simple and elegant manner and is much 
easier to obtain than in the case of the  

Lorenz model. 
 

Before discussing the results obtained in the present 
analysis, we would like to make some comments on 

the various aspects of the problem, such as: 
 

1. The need for nonlinear stability analysis: 
 

2. The relation of the problem to a real 
application and: 
 

3. The selection of all dimensionless parameters 
utilized in computations, and: 
 

4. Consideration of numerical values for 
different parameters. 

 
The parameters that arise in our problem are Q, Pr, 
Le, Pm, Ras, θ, δ, ω, these parameters influence the 
convective heat and mass transfer. The first five 
parameters are related to the fluid layer, and the last 
three are concerning to the external mechanism of 
controlling convection. The effect of electrical 
conductivity and magnetic field comes through Pm, 
Q. There is the property of the fluid coming into 
picture through Prandtl number Pr. Also the fluid 
layer is not considered to be highly viscous, 
therefore only moderate values of Prandtl number 
Pr is taken for calculations. The effect of gravity 
modulation is represented by an amplitude δ of 
modulation, which takes the values between 0 to 
0.3, since we are studying the effect of small 
amplitude modulation on the heat and mass 
transport. Further; as the effect of low frequencies 
on the onset of convection as well as on the heat 
and mass transport is maximum therefore, the 
modulation of gravity is assumed to be of low 
frequency. It is important at this stage to consider 
the effect of Q, Pr, Le, Pm, Ras, θ, δ, ω on the 
current problem. Heat and Mass transfer quantified 
by the Nussult and Sherwood numbers which are 
given in Eqs. (3.15-3.16).  
 
The Figs. 2, 3 show that, the individual effect of 
each non-dimensional parameter on Heat and Mass 
transfer.  Here we present our results on Heat, Mass 
transfer with respect to Nusselt and Sherwood 
numbers. 
 
1. The Figs. 2-3a shows that, the effect of 
Chandrasekhar number Q which is ratio of Lorentz 
force to viscous force is to delay the onset of 
convection, hence heat and mass transfer. So 
increase in Chandrasekhar number Q decreases in 
Nu and Sh, which means that an externally imposed 
magnetic field stabilizes the system these are the 
results where the vertical magnetic field 
(Kaaddeche et al. 2003) has stabilizing effect. Since 
the applied magnetic field is working in vertical 
direction, therefore the direction of the Lorentz 
force will be horizontally therefore, the applied 
magnetic field will not allow moving the fluid 
vertically as free as without magnetic field. Hence 
the magnetic field will have stabilizing effect on 
the system. Increasing magnetic field will increase 
Q, and the system will be more stabilizing. 
 
2. The effect of Prandtl numbe Pr is to advances 
the convection and hence heat and mass transfer for 
lower values of Pr, given in Figs. 2-3b. 
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Fig. 2. Nu versus  (a) Q (b) Pr (c) Pm (d) Le (e) Ras (f)  (g)  (h) Comparision. 

 
3. The effect of Magnetic Prandtl Pm and Lewis Le 
numbers is to advances the convection and hence 
heat and mass transfer. Hence both Pm, Le 
numbershas destabilizing effect of the system given 
in Figs. 2c-d and 3c-d.  
 
4. The effect of solutal Rayleigh number Ras is to 
is to increase Nu and Sh so that heat and mass 
transfer. Hence it has destabilizing effect given by 
the Figs. 2-3e. Though the presence of a stabilizing 
gradient of solute will prevent the onset of 
convection, the strong finite-amplitude motions, 
which exist for large Rayleigh numbers, tend to 
mix the solute and redistribute it so that the interior 
layers of the fluid are more neutrally stratified. As a 
consequence, the inhibiting effect of the solute 

gradient is greatly reduced and hence fluid will 
convect more and more heat and mass when Ras is 
increased (Stommel et al. 1956 and Bhadauria and 
Kiran 2014f). 

 
5. The increment in amplitude of g-jitter δ leads to 
increment in Nu, Sh hence heat and mass transfer 
given in Figs. 2-3f, and also the increment in ω 
shortens the wavelength and decreases in 
magnitude of Nu, Sh and hence heat and mass 
transfer given in Figs. 2-3g, (Bhadauria and Kiran 
2014f). 

 
6. From Figs. 4a-b we observe that Q has strongly 
stabilizing effect (Siddheshwar et al.2012,  
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Fig. 3. Nu versus  (a) Q (b) Pr (c) Pm (d) Le (e) Ras (f)  (g)  (h) Comparision. 

 
Bhadauria and Kiran 2014b,f). 

   0 0
/ / 

Q Q
Nu Sh Nu Sh  

7. In Fig . 4a-b the presence of magnetic field 
( 0Q  ) strongly stabilizing with low values of Nu 
and Sh leads less heat and mass transfer, but 
opposite effect when ( 0Q  ). 
 

8. Fig . 4c-d, deals with the plots with or without 

g-jitter, in the case of unmodulated system 
(without. g-jitter) we found an amplitude of 
convection analytically in Eq. (4.2), and obtained 
Nusselt and Sherwood numbers, depicted a plot 
Nu, Sh versus τ It is clear from the Figs. 4c-d 
that, the average of Nu and Sh has oscillatory 
behavior in modulated system but in 
unmodulated system for small values of 
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Fig. 6. For  = 0.5: Q=0: Pr = 1: Ras = 20: Pm = Le = 1.2:  = 0.1:  = 3.0. 

 
further increasing time achieves steady state. 
Similarly isotherms drawn at different instant of 
time and it is found that, from the graph initially 
isotherms are at parallel state showing that heat 
transport is only by conduction and as time 
increases isotherms starts oscillating slowly, 
showing that convective regime is in place and then 
forms contour showing that as time increases 
convection contributes in heattransport. The similar 
behavior is observed for streamlines isotherms 
when 0Q   in Fig. 6, the magnitude of streamlines 
increases very fast and isotherms looses it’s 
evenness fast, showing that convection advances 
and heat and mass transfer more.  
 
10. To check the validity of our results, we have 
compared our results (preset) with the results 
obtained by RKF45 (step size h=0.01 and 
A(0)=0.05)., it is observed that the good 
approximation in both results presented in the Figs. 
2-3h.  
 
11.  The results of this work can be summarized as 
follows from the Figs. 2, 4. 
 

25 15 10
/ / /1.              Q Q Q

Nu Sh Nu Sh Nu Sh  

Pr 0.5 Pr 1.0 1.5
/. /2 /

  
           QNu Sh Nu Sh Nu Sh

1.2 3.2 4.2
3.              Le Le Le

Nu Nu Nu  

1.2 1.4 1.6
4.

  
           Le Le Le

Sh Sh Sh

Pm 1.2 Pm 1.4 1.6
/. /5 /

  
           Pm

Nu Sh Nu Sh Nu Sh

20 40 80
/ / /6.

  
           Ras Ras Ras

Nu Sh Nu Sh Nu Sh

0.1 0.3 0.5
7. / / /

  
           Nu Sh Nu Sh Nu Sh    

100 60 30 3
/ / /8. /

   
                Nu Sh Nu Sh Nu Sh Nu Sh     

CONCLUSIONS 

The effect of gravity modulation on weak nonlinear 
double diffusive magneto convection has been 
analyzed by using Gingburg-Landau equation. The 
effect of various parameters on the system is 
discussed in detail. The following conclusions are 
drawn. 
 
1. The effect of Chandrasekhar number Q is to 

stabilize the system. 
 

2. The effect of increasing Pr for lower values there 
is enhancement in the heat and mass transfer 
further increment in it no effect is found 
(Bhadauria et al. 2013, Bhadauria and Kiran 
2014a,f).   
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3. The effect of increasing Le, Pm, Ras is found to 
increase in Nu and Sh thus increasing heat and 
mass transfer Bhadauria and Kiran (2014f). 

 

4. The effect of increasing δ is to increase the value 
of Nu and Sh, hence heat and mass transfer. 

 

5. The effect of increasing ω is to decrease the 
value of Nu and Sh, hence heat and mass 
transfer. 

 

6. The natures of Nu and Sh remain oscillatory. 
 

7. Initially when τ is small, the values of Nusselt 
and Sherwood numbers start with 1, 
corresponding to the conduction state. However 
as τ increases, Nu and Sh also increase, thus 
increasing the heat and mass transfer. 

 

8. The modulated system has an oscillatory 
behavior so the heat and mass transfer but 
steady state in unmodulated system so heat and 
mass transfer. 

 

9. The effect of magnetic field is to stabilize the 
system. 
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