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ABSTRACT 

The boundary layer flow of a third grade fluid and mass transfer near a stagnation-point with diffusion of 

chemically reacting species on a porous plate is investigated. Due to a porous plate the suction is taken into an 

account. Using suitable transformations, the momentum and concentration equations are first transformed into 

nonlinear ordinary ones and then solved using a hybrid numerical method. This method combines the features 

of finite difference and shooting methods. The effects of various controlling parameters on the flow velocity, 

concentration profile, skin friction and rate of mass transfer on surface are analyzed graphically and in tabular 

form. Comparison of the present results with the previous reported results has been found in excellent 

agreement. 
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1. INTRODUCTION 

Many liquids in industry and technology do not 

obey the linear relationship between the shear stress 

and rate of strain and are classified as non-

Newtonian in nature. Boundary layer theory has 

been applied successfully to various non-Newtonian 

fluids and has gained considerable attention of the 

researchers in the last few decades. The most 

common examples of these fluids are polymer 

solutions, polymer melts, paints, certain oils, blood 

etc. Furthermore, the equations of motion of non-

Newtonain fluids are highly non-linear and one 

order higher than the Navier-Stokes equations. Due 

to complexity of these equations, finding an 

accurate solution is not easy and this poses 

challenges to scientist, mathematicians and 

engineers alike. 

 

The stagnation point flow against a flat surface is 

a classic problem in the field of fluid dynamics 

whose study can be traced back to the seminal 

work of Hiemenz (1911) and has been 

investigated by many researchers. The problem of 

two-dimensional stagnation point flow for non-

Newtonian fluids is an interesting problem both 

from physical and mathematical point of view. 

Rajeshwari and Rathna (1962) first analyzed the 

stagnation-point flow for a viscoelastic second-

order fluid and found the solution using Karman-

Polhausen method. Beard and Walters (1964) 

discussed the boundary layer flow of an elastico-

viscous fluid near a stagnation point. They 

reduced the governing PDEs to a single nonlinear 

ODE using similarity transformations and used the 

perturbation approach to obtain results upto order 

one. Rajagopal et al. (1984) have presented the 

Falkner-Skan flows of an incompressible second 

grade fluid. Later, numerous attempts for 

stagnation point flow in a viscoelastic fluid using 

various techniques were made by Teipel (1988), 

Garg and Rajagopal (1990, 1991), and Pakdemirli 

and Suhubi (1992). Ariel (1995) studied the 

stagnation point flow of a second grade fluid with 

and without suction velocity at the wall 

numerically using a hybrid method. Later, Ariel 

(2002) discussed the stagnation-point flow of a 

Walter's B fluid using an accurate hybrid method 

(combining the features of the finite difference 

method and the shooting method). He has 

augmented boundary conditions upto four in order 

to solve the fourth-order ODE by imposing an 

extra condition at the wall based on the governing 

equation itself. Chamkha (1998) discussed the 

analysis for the plane and axisymmetric MHD 

flow near a stagnation point with heat generation. 
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El-Kabeir (2005) investigated the two-

dimensional Hiemenz flow of a micropolar 

viscoelastic fluid with a transverse magnetic field. 

Sadeghy et al. (2006) gave the numerical analysis 

for a stagnation point flows of upper-convected 

Maxwell fluid using both Runge-Kutta method in 

a shooting scheme and spectral method. Recently, 

Labropulu and Li (2008) examined the stagnation-

point flows of a second grade fluid with slip 

condition using a quasi-linearization technique. 

Ishak et al. (2008) analyzed the MHD mixed 

convection stagnation point flow towards a 

vertical surface in an incompressible micropolar 

fluid using finite difference method. Li et al. 

(2009) discussed the two-dimensional forced 

convection stagnation-point flow and heat transfer 

of a viscoelastic second grade fluid obliquely on 

an infinite plane wall. Hayat et al. (2010) 

presented the unsteady flow with heat and mass 

transfer of a third grade fluid bounded by a 

stretching surface in the presence of chemical 

reaction. Mukhopadhyay and Bhattacharyya 

(2012) discussed the numerical analysis of 

unsteady two-dimensional flow of a Maxwell fluid 

on a stretching sheet with first order 

constructive/destructive chemical reaction. Abbas 

et al. (2013) studied the mass transfer in two 

MHD viscoelastic fluids over a shrinking sheet in 

porous medium with chemical reaction 

analytically using homotopy analysis method.  

Loganathan and Stepha (2013) investigated the 

effects of chemical reaction and mass transfer on 

flow of micropolar fluid past a continuously 

moving porous plate with variable viscosity. 

Mukhopadhyay and Vajravelu (2013) discussed 

the diffusion of chemically reactive species in 

Casson fluid past an unsteady permeable 

stretching sheet. Choudhary and Das (2014) 

presented the analysis of visco-elastic MHD free 

convective flow through porous medium in 

presence of radiation and chemical reaction with 

heat and mass transfer. 

 

A literature survey indicates that very few studies 

describing the boundary layer flow of third grade 

fluids has been analyzed. Pakdemirli (1992) 

discussed the boundary layer flow of third grade 

fluid and the flow equations derived using the 

special coordinates system. Sajid and Hayat 

(2007) gave the non-similar series solution for the 

boundary layer flow of a third order fluid over a 

stretching sheet using homotopy analysis method 

(HAM). In other attempts Sajid et al.  (2006, 

2007) investigated two-dimensional and 

axisymmetric flows of third grade fluids past a 

stretching surface analytically by employing 

homotopy analysis method. Recently, Sahoo 

(2009) examined the Hiemenz flow and heat 

transfer of an electrically conducting third grade 

fluid numerically using second-order numerical 

technique. Very recently, Sahoo (2010) discussed 

the flow and heat transfer of a third grade fluid 

past a stretching sheet with partial slip using a 

hybrid numerical method. 

 

The main objective of this paper is to study the 

boundary layer flow of a third grade fluid near a 

stagnation point with suction at the wall and the 

n th-order chemically reactive species. We 

transformed the governing momentum and 

concentration equations into a system of ordinary 

differential equations by means of suitable 

transformations and then numerically solved these 

equations for some values of involving parameters 

using a hybrid numerical method. 

2. FLOW EQUATONS 

We consider steady, two-dimensional and 

incompressible flow of a third grade fluid near a 

stagnation point over a permeable plate situated at 

0y  . The fluid is being removed from the plate at 

a velocity  0 0
, 0

w
v v v    and the velocity of the 

flow external to the boundary layer is   ,U x ax  

where  0a   a constant. The mass transfer is the 

flow along a plate that contains a species slightly 

soluble in a fluid .B  The concentration of the 

reactant is considered at a constant value 
w

C  at the 

surface and solubility of A  in ,B  and C  is the 

concentration of A  which is assumed to vanish far 

away from the surface. Under these assumptions 

along with boundary layer approximations, the flow 

is governed by Pakdemirli (1992) 
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where  u  and v  are the velocity components in the 

x   and y  directions, respectively,   is the fluid 

density,   is the kinematic viscosity, 

1 3
0, 0   are material constants, C  is the 

concentration of the species of the fluid, D  is the 

diffusion coefficient of the diffusing species in the 

fluid and 
n

k  the n th order homogeneous and 

irreversible reaction, n  is the reaction-order 

parameter and p̂  is the modified pressure defined as 

 
2

1 2
ˆ 2 ,

u
p p

y
 


  



 
 
 

                                (5) 

and 2
  is a material constant. 
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The corresponding boundary conditions for this 

problem are 

0
0,   ,     0,

w
u v v C C at y                     (6) 

( ),   0    .u U x C as y                    (7) 

To simplify the flow equations, we define the 

following nondimensional variables as 

,     ( ),   

  ( ),
w

U
y U x f

x

C C

   




 

 

                 (8) 

where   is the stream function satisfying  

/u y   and / .v x    Using Eq. (9), the 

continuity Eq. (1) is satisfied automatically and Eqs. 

(2) and (4) reduce to 

2

2 2

1

(2 ) 6 Re 0,

f ff f

ivf f ff f f fx 

    

        
     (9) 

,
n

Scf Sc                                     (10) 

subject to the boundary conditions 

(0) ,     (0) 0,       

 ( ) 1,     ( ) 0,

w
f f f

f f

 

    
                              (11) 

(0) 1,      ( ) 0,                    (12) 

where  prime denotes differentiation with respect 

to . In Eqs. (9)-(11), 1
/a  


  and 2

3
/a   a 

re the non-dimensional fluid parameters, 

2
Re /

x
ax   is the local Reynolds number, 

1/ 2

0
/ ( )

w
f v a  is the suction velocity ( 0) , 

/Sc D is the Schmidt number and  1
/

n

n w
k C a


 is 

the chemical reaction rate parameter. 

 

It is worthmentioning (see Cortell (2007) and Hayat 

et al. (2008)) to note that the parameters  , , ,Sc n   

are positive and   can be a real number ( 0   

indicates destructive chemical reaction; 0   

denotes generative chemical reaction and  0   for 

a non-reactive species). In general for the case 1n   

, the non-linearity in Eq. (10) prevents us from 

obtaining exact solutions for all values of physical 

parameters involved and one has to use numerical 

technique. It may be noted that for Eq. (9) 0  , 

reduces to those of by Ariel (1995) without 

concentration field. 

3. NUMERICAL SOLUTION 

In order to solve this system of Eqs. (9, 10), subject 

to the boundary condition (11, 12), we convert the 

infinite domain problem to a finite domain [0, 1] by 
means of the following transformation 

,
c

e





                                 (13) 

where c  is an adjustable parameter to incorporate 

the effect of boundary layer thickness for different 

values of the parameters involved in the equation. 
The dependent variables are also transformed as 

  ,F f and                                                   (14) 

which give rise to the following boundary value 

problem 
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( ) ,
n
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w
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Following Ariel (2008), we convert Eqs. (15)-(16) 
into system of equations in the following way 
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and by using the transformation (13), the system of 

differential equation takes the following form 
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The boundary conditions are thus transformed to 

2 3

1 2

  (0) 0,    (0) 0,   

  (1) ,    (1) 1,
w

y y

y f y
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It may be pointed out that the boundary conditions 

at 0   are automatically satisfied in Eqs. (21) and 

(22). We take mesh on the   -axis as 

: 0,1, 2, ... ,
i

ih i N                  (26) 

where N  is an integer. By using the following 

central difference approximation to the derivatives 

in the Eqs. (22) and (23) which will be written at 

the i th node as 
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Equations (20) and (21) are obtained at ( 1 / 2)i  th 

node 
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and thus system of Eqs. (20)-(23) discretized to 
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and the boundary conditions are to 

0 0
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N N

w

y y
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 

  
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0
0,       1.

N
z z                                 (35) 

The algorithm given by Eqs. (30)-(33) subject to the 

boundary conditions given in Eqs. (34) and (35) is 

used to calculate the values of  1 2 3
, ,

j j j
y y y   and 

j
z at each 0,1,2,...,j N stage. The computation 

order in which these values are calculated is given 

as: Since it is given in Eq. (34) that 
0

2
0y  and  

0

3
0,y   the value of 

1

2
y  can be obtained from Eq. 

(31) if 
1

3
y  is known. In the same way, the value of 

1

1
y can be obtained from Eq. (30) after using the 

value of  
1

2
y  and calculated from the previous step, 

if 
0

1
y  is also known. Thus 2 1

,y y  and 3
y  can be 

calculated at level 0j   and 1. From this point 

onward, we can cycle through Eqs. (32)-(30) to 

calculate the values of 
2 1
,y y  and 

3
y  at all the 

subsequent levels. Hence if 1

3
y   and 0

1
y  are known, 

the values of 
1 2
,y y and 

3
y  can be computed at all 

the mesh points by using the above algorithm. Our 

main objective just narrows down to finding the 

appropriate values of 1

3
y  and 0

1
y  such that the 

terminal boundary conditions
1

N

w
y f  , 

2
1

N
y   are 

satisfied. For this purpose, any zero finding 

algorithms in two dimensions may be chosen and 

we have used analog of secant method in one 

dimension due to its rapid convergence rate and 

other advantages. On the other hand, to compute the 

value at each level of j
z  from Eq. (33), only 1

z   is 

missing as 
0

0z   is given. In this case, our 

objective is again to find the appropriate value of 1
z  

such that the terminal boundary conditions 1
N

z   

are satisfied and for this purpose, we have used 

secant method. The results of the computations 
through this algorithm are given in next section. 

4. RESULTS AND DISCUSSION 

The system of nonlinear boundary values problems 

consisting of Eqs. (9) and (10) along with the 

boundary conditions (11) and (12) is solved using a 

hybrid numerical method (Ariel (2002, 2008) and  

Sahoo (2009)).  The obtained numerical results are 

shown graphically in Figs. 1-8 to see the variations 

in velocity and concentration profile for various 

values of the controlling fluid parameters. To show 

the validity and accuracy of the present method, a 

comparison of the obtained results with existing 

numerical results is given and found in good 

agreement. 

 

Figure 1 shows the effect of mass suction parameter  

w
f  on the dimensionless fluid velocity  f   in the 

presence of second and third grade fluids with 

Re 1.0.
x
  

 

From this Fig. one can see that in case of second 

grade fluid  0.2,  0    there is not much of 

change in the fluid velocity  f   as the value of 

suction parameter is increased form zero. This is 

because for this value of second grade fluid 

parameter 0.2,   the suction boundary layer is a 

nonstarter, and it never develops even we increase 

the value of w
f  beyond the values used in this Fig. 

It is also noted that this change in the fluid velocity 

 f   is larger in case of third grade fluid  1  as 

we increase the values of the suction parameter w
f  

(see Ariel (1995), and the present results are agreed 

with those reported by Ariel (1995, 2002) with 

0.   Figure 2 illustrates the variations of the fluid 

velocity  f   for several values of viscoelastic 

fluid (second grade fluid) parameter   with 10
w

f   
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and 0.   Form this Fig., it is evident that the 

momentum boundary layer effects due to suction 

velocity are quite obvious in the absence of 

viscoelasticity ( 0)   and as we increase the 

viscoelasticity the velocity profiles become flat. It is 

further noted from this Fig. that as we take the value 

of 1,   the effects of suction at the wall can hardly 

be recognized, the present results agree with the 

results reported by Ariel (1995) with 0.   

 

 
Fig. 1. Effects of suction parameter 

w
f  on the 

velocity ( )f   verses : solid lines for second 

grade fluid ( 0)  and: dashed lines for third 

grade fluid ( 0).   

 

 
Fig. 2. Effects of second grade parameter   on 

the velocity ( )f   verses : for case of second 

grade fluid ( 0)   and 10.
w

f   

 
Figure 3 gives the change of the fluid velocity 

 f   for different values of second grade 

(viscoelastic) parameter   by keeping 10
w

f   and 

0.   It is noticed from this Fig. that as increase in 

the value of viscoelasticity is to decrease the fluid 

velocity whereas the momentum boundary 

thickness increases as   increases. It is also found 

that there is not much of variation in the velocity 

profiles for very large values of . 
 

Figure 4 presents the effects of third grade fluid 

parameter   on the fluid velocity  f   with 

1 Re
w x

f    and 2   are fixed. From this Fig., it is 

clear that the fluid velocity  f   decreases with an 

increasing value of third grade parameter .  This is 

due to the fact that the shear thickening effects 

which are increased by increasing value of third 

grade parameter. It is also noted that the effects of 

third grade parameter   is to increase the 

momentum boundary layer thickness. 

 

 
Fig. 3. Effects of viscoelastic or second grade 

parameter   on the velocity ( )f   verses : 

for second grade fluid ( 0)   and 10
w

f  . 

 

 

Fig. 4. Effects of third grade parameter   on the 

velocity ( )f   verses   when  

1 Re
w x

f    and 2.   

 

The effect of the Schmidt number Sc  on the 

species concentration profile    for 

destructive  0   and generative  0   

chemical reaction parameter is shown in Fig. 5 

with all other fluid parameters are fixed. As the 

Schmidt number Sc  is the ratio between a 

viscous diffusion rate and a molecular diffusion 

rate, so the species concentration of reactants 

depends on the Schmidt number Sc  From this 

Fig., it is evident that the effect of Schmidt 

number is to decrease species concentration 

profile and this change is very slowly for higher 



Z. Abbas et al. / JAFM, Vol. 9, No. 1, pp. 195-203, 2016.  

 

200 

values of  Sc . It is also noticed that an increase in 

the Schmidt number Sc  produces decrease in the 

concentration boundary larger thickness, 

associated with the reduction of the species 

concentration profile. 

Figure 6 gives the variation of the species 

concentration field    for various value of 

destructive /generative chemical reaction 

parameter   with all other involved parameters 

fixed. One can see from this Fig. that the increase 

of chemical reaction parameter   is to decrease 

the species concentration profile    in the 

boundary layer. It is further noted that the 

concentration of the species value of 1 is 

decreased to reach the minimum value of zero at 

the end of the boundary layer and this situation is 

noted for all value of  . 

 
Fig. 5. Effects of the Schmidt number Sc  on the 

concentration field ( )   verses : solid lines for 

parameter 0  , and dashed lines for generative 

parameter 0  : when 2, Re 1, 2
x

n      

and 10
w

f  . 

 
Figure 7 illustrates the effect of mass suction 

parameter w
f  on the species concentration field 

   in case of destructive chemical reaction 

parameter  2.0  . From this Fig., we can see that 

the concentration boundary layer thickness 

decreases with an increase of suction parameter w
f . 

This is because of the fact that for external free 

stream velocity, the velocity of the fluid is increased 

due to suction, and this leads to the decrease in 

species concentration profile. 

 

Figure 8 shows the effect of the reaction-order 

parameter n  on the species concentration field 

   for both destructive and generative chemical 

reaction parameter   with all other parameters 

fixed. It is noticed from this Fig. that the increase in 

the reaction-order parameter n  is to increase the 

fluid concentration in case of destructive chemical 

reaction  0  , while an opposite trend is noted 

for the case of generative chemical reaction  0   

which occurs with the results reported by Cortell 

(2007). 

 

 
Fig. 6. Effects of the destructive/generative 

chemical reaction parameter   on the 

concentration field ( )   verses : for case of 

third grade fluid, when Re 1, 2,
x

     

10, 0.1
w

f Sc  and 2.n   

 

 
Fig. 7. Effects of the suction parameter w

f  on the 

concentration field ( )   verses : for case of 

destructive chemical reaction 0  , 

when 2, Re 1, 2, 0.2
x

n Sc        

and 2.   

 

Table 1 shows the numerical values of  0f   for 

various values of viscoelastic/second grade 

parameter   and two values of w
f  when 0.    

 

It is noticed from this table that by increasing the 

viscoelastic parameter   is to decrease the wall 

shear stress, where as the value of  0f   decrease 

with an increase of w
f . 

It is also worthwhile to note that the present 

results are to be found in a good agreement with 

those reported by Ariel (1995, 2002) and 

Labropulu and Li (2008). 
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Table 1 Numerical values of  f 0  for second grade parameter   and two values of 
w

f  when 0.   

 0wf   10wf   

  
Ariel 

(2002) 

Labropulu and Li 

(2008) 
Present results Ariel (1995) 

Present 

results 

0 1.232588 1.23259 1.23259 10.193554 10.1941 

0.001    9.330114 9.330234 

0.002    8.693450 8.693451 

0.005    7.442309 7.442481 

0.01    6.276552 6.276557 

0.02    5.072516 5.072580 

0.05    3.629950 3.629960 

0.1 1.134114 1.13425 1.134121 2.734932 2.734951 

0.2 1.058131 1.05818 1.058141 2.023021 2.023042 

0.5 0.902500 0.90248 0.902531 1.331220 1.331286 

1 0.752766 0.75276 0.752780 0.960444 0.960419 

2 0.596769 0.59677 0.596780 0.688459 0.688449 

5 0.412885 0.41288 0.412890 0.440519 0.440517 

10 0.302828 0.30283 0.302829 0.313218 0.313217 

20 0.218554 0.21857 0.218550 0.222283 0.222282 

50 0.140077 0.14008 0.140080 0.140989 0.140989 

100 0.099515 0.09952 0.099515 0.099819 0.099819 

500 0.044677 0.04469 0.044677   

1000 0.031607  0.031607   
 

 

 
Fig. 8. Effects of the reactor order parameter n  

on the concentration field ( )   verses : solid 

lines for parameter 0  , and dashed lines for 

parameter 0  : when Re 1, 2,
x

     

10, 0.2.
w

f Sc   

 

Table 2 gives the numerical values of 

   ,f f  and  f   versus   when 0   and 

0.   It is evident from this table that the present 

numerical results are found to be in excellent 

agreement with those discussed by Wu et al. 

(2005). Table 3 shows the numerical values of 

concentration gradient at the wall  0  for 

several values of , , ,Sc    and three values of 

reaction-order parameter n  when 5.
w

f   It is 

found from this table that rate of mass transfer at 

the wall  0  decreases by increasing   and ,  

whereas it is increased with an increase of ,Sc    

and .n   

 

5. CONCLUSIONS 

In the present analysis, the two-dimensional 

stagnation point flow of a third grade fluid with 

diffusion of chemically reacting species and 

uniform suction is considered. The governing 

nonlinear boundary layer equations are solved 

numerically using a hybrid numerical method. 

The influences of several involving fluid 

parameters of interest on the flow velocity and 

species of concentration profile are analyzed and 

shown graphically. We found that the fluid 

velocity in the boundary layer thickness decreases 

by increasing of n  in case of destructive 

chemical reaction parameter  0 .   From this 

investigation; we hope that the numerical results 

obtained will not only give useful information for 

application, but also provide a compliment to the 

previous studies. 

REFERENCES 

Abbas, Z., M. Sheikh and M. Sajid (2013). Mass 

transfer in two MHD viscoelastic fluids over a 

shrinking sheet in porous medium with 

chemical reaction species. Journal of Porous 

Media 16(7), 619-636. 
 

Ariel, P. D. (1995). A numerical algorithm for 

computing the stagnation point flow of a 

second grade fluid with/without suction. 

Journal of Computational and Applied 

Mathematics 59(1), 9-24. 
 

Ariel, P. D. (2002). On extra boundary condition in 

the stagnation point flow of second grade fluid. 

International Journal of Engineering Science 

40, 145-162. 



Z. Abbas et al. / JAFM, Vol. 9, No. 1, pp. 195-203, 2016.  

 

202 

Table 2 Numerical values of    ,f f   and  f   with   in the case of 

Newtonian fluid when 0.
w

f     

 Wu et al. (2005) Present results 

  f  f   f   f  f   f   

0 0.000 0.000 1.1233 0.000 0.000 1.1233 

0.2 0.023 0.227 1.034 0.023 0.227 1.034 

0.4 0.088 0.414 0.846 0.088 0.414 0.846 

0.6 0.187 0.566 0.675 0.187 0.566 0.675 

0.8 0.312 0.686 0.525 0.312 0.686 0.525 

1 0.459 0.778 0.398 0.459 0.778 0.398 

1.2 0.622 0.847 0.294 0.622 0.847 0.294 

1.4 0.797 0.897 0.211 0.797 0.897 0.211 

1.6 0.980 0.932 0.147 0.980 0.932 0.147 

1.8 1.169 0.957 0.100 1.169 0.957 0.100 

2 1.362 0.973 0.066 1.362 0.973 0.066 

2.2 1.558 0.984 0.042 1.558 0.984 0.042 

2.4 1.755 0.991 0.026 1.755 0.991 0.026 

2.6 1.954 0.995 0.016 1.954 0.995 0.016 

3.8 2.153 0.997 0.009 2.153 0.997 0.009 

3.6 2.952 1.000 0.001 2.952 1.000 0.001 

4.4 3.75 1.000 0.000 3.75 1.000 0.000 

 
Table 3 Numerical values of concentration gradient at the wall  0  for , , ,Sc    

and three values of n  when 5.
w

f   

    Sc    1n   2n   3n   

0.1 1 1 1 5.2260 5.1365 5.1049 

0.2    5.2243 5.1347 5.1030 

0.5    5.2196 5.1297 5.0979 

1.0    5.2145 5.1237 5.0918 

2.0    5.2092 5.1179 5.0858 

5.0    5.2031 5.1111 5.0789 

1 0.1   5.2156 5.1249 5.0932 

 0.2   5.2154 5.1248 5.0931 

 0.5   5.2151 5.1244 5.0927 

 1.0   5.2145 5.1237 5.0920 

 2.0   5.2134 5.1228 5.0908 

 5.0   5.2111 5.1201 5.0881 

2 1 0.2  1.2162 1.1544 1.1295 

  0.5  2.7208 2.6396 2.6097 

  1.0  5.2145 5.1237 5.0918 

  1.5  7.7094 7.6153 7.5828 

  2.0  10.205 10.1098 10.077 

  1 0.0 5.0203 5.0203 5.0202 

   0.5 5.1164 5.0694 5.0335 

   1.0 5.2092 5.1179 5.0858 

   2.0 5.3862 5.2130 5.1503 

   5.0 5.8628 5.4858 5.3384 

   10.0 6.5354 5.9045 5.6355 

 
Ariel, P. D. (2008). A hybrid method for computing 

the flow of viscoelastic fluids. International 

Journal for Numerical Methods in Fluids 14, 

757-774. 

 

Beard, D. W. and K. Walters (1964). Elastico-

viscous boundary layer flows. I. Two-

dimensional flow near a stagnation point. 

Mathematical Proceedings of the Cambridge 

Philosophical Society 14(3), 667-674. 

 

Chamkha, A. J. (1998). Hydromagnetic plane and 

axisymmetric flow near a stagnation point with 

heat transfer. International Coomunications in 

Heat and Mass Transfer 25, 269-278. 

 

Choudhury, R. and S. K. Das (2014). Vis-coelastic 

MHD free convective flow through porous 

media in presence of radiation and chemical 

reaction with heat and mass transfer. Journal 

of Applied Fluid Mechanics 7(4), 603-609. 

 

Cortell, R. (2007). MHD flow and mass transfer of 

an electrically conducting fluid of second 



Z. Abbas et al. / JAFM, Vol. 9, No. 1, pp. 195-203, 2016.  

 

203 

grade in a porous medium over a stretching 

sheet with chemically reactive species. 

Chemical Engineering and Processing46(8), 

721-728. 

 

El-Kabeir, S. M. M. (2005). Hiemenz flow of a 

micropolar viscoelastic fluid in 

hydromagnetics. Canadian Journal of Physics 

83, 1007-1017. 

 

Garg, V. K. and K. R. Rajagopal (1990). Stagnation 

point flow of a non-Newtonian fluid. 

Mechanics Research Communications 17(6), 

415-421. 

 

Garg, V. K. and K. R. Rajagopal (1991). Flow of a 

non-Newtonian past a wedge. Acta Mechanica 

(88) 113-123 

 

Hiemenz, K. (1911). Die Grenzschicht an einem in 

den gleichförmingen Flussigkeitsstorm 

eingetauchten graden Kreiszylinder. Dinglers 

Polytech Journal (326), 321-324. 

 

Hayat, T., Z. Abbas and N. Ali (2008). MHD flow 

and mass transfer of an upper-convected 

Maxwell fluid past a porous shrinking sheet 

with chemical reaction species. Physics Letter 

A. 372, 4698-4704. 

 

Hayat, T., M. Mustafa and S. Asghar (2010). 

Unsteady flow with heat and mass transfer of 

third grade fluid over a stretching surface in 

the presence of chemical reaction. Nonlinear 

Analysis: Real World Applications 11, 3186-

3197. 

 

Ishak, A., R. Nazar and I. Pop 

Magnetohydrodynamic (MHD) flow of a 

micropolar fluid towards a stagnation point on 

a vertical surface. Computers and Mathematics 

with Applications 56, 3188-3194. 

 

Labropulu, F. and D. Li (2008). Stagnation-point 

flow of a second grade fluid with slip. 

International Journal of  Nonlinear Mechanics 

43, 941-947. 

 

Li, D., F. Labropulu and I. Pop (2009). Oblique 

stagnation-point flow of a viscoelastic fluid 

with heat transfer. International Journal of 

Nonlinear Mechanics 44, 1024-1030. 

 

Loganathan, P. and N. G. Stepha (2013). Chemical 

reaction and mass transfer effects on flow of 

micropolar fluid past a continuously moving 

porous plate with variable viscosity. Journal of 

Applied Fluid Mechanics 6(4), 581-588. 

 

Mukhopadhyay, S. and K. Bhattacharyya (2012). 

Unsteady flow of a Maxwell fluid over a 

stretching surface in presence of chemical 

reaction. Journal of Egyptian Mathematical 

Society 20, 229-234. 

 

Mukhopadhyay, S. (2013). Diffusion of chemically 

reactive species in Casson fluid flow over an 

unsteady permeable stretching surface. Journal 

of Hydrodynamics 25(4), 591-598. 

 

Pakdemirli, M. and E. S. Suhubi (1992). Similarity 

solutions of boundary layer equations for 

second-order fluid. International Journal of 

Engineering Science 30, 611-629. 

 

Pakdemirli, M. (1992). The boundary layer 

equations for third grade fluid. International 

Journal of Nonlinear Mechanics 27, 785-793. 

 

Rajagopal, K. R. (1984). On creeping flow of the 

second order fluid. Journal of Non-Newtonian 

Fluid Mechanics15, 239-246. 

 

Rajeshwari, G. K. and S. L. Rathna (1962). Flow of 

a particular class of non-Newtonian visco-

elastic and visco-inelastic fluids neat a 

stagnation point. Z. Angew. Math. Phys. (13), 

43-57. 

 

Sadeghy, K., H. Hajibeygi and S. M. Taghavi 

(2006). Stagnation-point flow of upper-

convected Maxwell fluids. International 

Journal of Nonlinear Mechanics 41, 1241-

1247. 

 

Sahoo, B. (2009). Hiemenzflow and heat transfer of 

a third grade fluid. Communication in Non-

linear Science and Numerical Simulation 14, 

811-826. 

 

Sahoo, B. (2010). Flow and heat transfer of a non-

Newtonian fluid past a stretching sheet with 

partial slip. Communication in Non-linear 

Science and Numerical Simulation 15, 602-

612. 

 

Sajid. M, and T. Hayat (2007). Non-similar series 

solution for the boundary layer flow of a third 

order fluid over a stretching sheet. Applied 

Mathematics and Computation 189(2). 1576-

1585. 
 

Sajid, M., T. Hayat and S. Asghar (2006). Non-

similar analytical solution for MHD flow and 

heat transfer in a third-order fluid over a 

stretching sheet. International Journal of  Heat 

and Mass Transfer 50, 1723-1736. 

 

Sajid. M., T. Hayat and S. Asghar (2007). Non-

similar solution for the axisymmetric flow of a 

third-grade fluid over a radially stretching 

sheet. Acta Mechanics 189, 193-205. 
 

Teipel, I. (1988). Stagnation point flow of a non-

Newtonian second-order fluid. Transactions of 

the Canadian Society for Mechanical 

Engineering 12(12), 57-61. 

 

Wu, Q., S. Weinbaum and Y. Andreopoulos (2005). 

Stagnation-point flows in a porous medium. 

Chemical Engineering Science 60, 123-134. 

 



Z. Abbas et al. / JAFM, Vol. 9, No. 1, pp. 195-203, 2016.  

 

204 

 

 

 


