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ABSTRACT 

Steady, laminar, natural-convection flow in the presence of a magnetic field in an inclined rectangular 

enclosure heated from one side and cooled from the adjacent side was considered. The governing equations 

were solved numerically for the stream function, vorticity and temperature using the finite-volume method for 

various Grashof and Hartman numbers and inclination angles and magnetic field directions. The results show 

that the orientation and the strength and direction of the magnetic field have significant effects on the flow 

and temperature fields. Counterclockwise inclination induces the formation of multiple eddies inside the 

enclosure significantly affecting the temperature field. Circulation inside the enclosure and therefore the 

convection become stronger as the Grashof number increases while the magnetic field suppresses the 

convective flow and the heat transfer rate. 

 

Keywords:Natural convection; Magnetic field; Inclined rectangular enclosure finite-volume; Lorentz force. 

NOMENCLATURE

A aspect ratio 

B magnetic field [T] 

b term source 

eB unitary vector of the direction of B 

Fx lorentz force in the x-direction 

Fy lorentz force in the y-direction 

G gravitational acceleration, [m.s-2]  

Gr Grashof number (   3 2/H Cg T T H   ) 

H height of the cavity, [m] 

Ha Hartmann number ( 0B H   ) 

Jx electric current in the x-direction, [A.m-2] 

Jy electric current in the y-direction, [A.m-2] 

L length of the enclosure,[m] 

Nu Nusselt average number 

P pressure, [N.m-2] 

Pr Prandtl number ( /  ) 

Ra Rayleigh number (
3( )H Cg T T H




 ) 

Rm Reynolds magnétic number   

SΦ term source 

T temperature, [K] 

TC cold temperature [K] 

TH hot temperature [K] 

U dimensionless velocity in the x-direction 

u velocity in the x-direction,[m.s-1] 

V dimensionless vertical velocity. 

α angle of orientation magnetic filed 

Thermal diffusivity of the fluid 

 

γ angle of inclination 

v velocity in the y-direction,[m.s-1] 

Φ function 

Γ diffusivity term 

1. INTRODUCTION 

Natural convection in closed enclosures has been 

extensively studied numerically and experimentally. 

The study of thermal convection in inclined 

enclosures is motivatedby a desire to find out what 

effect slope would have on certain thermally driven 

flows which are found in many engineering 

applications. 

 

These applications include: building systems 

containing multi-layered walls, double windows, 

and air gaps in unventilated spaces; energy systems 

such as solar collectors, storage devices, furnaces, 

heat exchangers, and nuclear reactors; material 

processing equipment such as melting and crystal 

growth reactors. Thermally driven flows are also 

found in large scale geophysical, astrophysical, and 

environmental phenomena. 

http://www.jafmonline.net/
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Most of the research work that has been carried out 

in this area was focused on enclosures that were 

differentially heated in one direction (vertically or 

horizontally) with adiabatic side walls in the other 

direction. Rather little work has been carried out 

considering more complex thermal boundary 

conditions that are normally found in most of the 

aforementioned practical applications. In these 

applications, the imposed temperature gradient is 

neither horizontal nor vertical. Ostrach (1972), in 

his review on natural convection in enclosures, 

noted that configurations with more complex 

boundary conditions can be viewed as an exception 

among the works on this topic. 

 

When the fluid is electrically conducting and 

exposed to a magnetic field the Lorentz force is also 

active and interacts with the buoyancy force in 

governing the flow and temperature fields. 

Employment of an external magnetic field has 

increasing applications in material manufacturing 

industry as a control mechanism since the Lorentz 

force suppresses the convection currents by reducing 

the velocities. Study and thorough understanding of 

the momentum and heat transfer in such a process is 

important for the better control and quality of the 

manufactured products. The study of Oreper and 

Szekely (1983) shows that the magnetic field 

suppresses the natural-convection currents and the 

magnetic field strength is one of the most important 

factors for crystal formation. Ozoe and Maruo 

(1987) numerically investigated the natural 

convection of a low Prandtl number fluid in the 

presence of a magnetic field and obtained 

correlations for the Nusselt number in terms of 

Rayleigh, Prandtl and Hartmann numbers. Garandet 

and al. (1992) proposed an analytical solution to the 

governing equations of magnetohydrodynamics to 

be used to model the effect of a transverse magnetic 

field on natural convection in a two-dimensional 

cavity. Rudraiah and al. (1995) numerically 

investigated the effect of a transverse magnetic field 

on natural-convection flow inside a rectangular 

enclosure with isothermal vertical walls and 

adiabatic horizontal walls and found out that a 

circulating flow is formed with a relatively weak 

magnetic field and that the convection is suppressed 

and the rate of convective heat transfer is decreased 

when the magnetic field strength increases. Alchaar 

and al.(1995) numerically investigated the natural 

convection in a shallow cavity heated from below in 

the presence of an inclined magnetic field and 

showed that the convection modes inside the cavity 

strongly depend on both the strength and orientation 

of the magnetic field and that horizontally applied 

magnetic field is the most effective in suppressing 

the convection currents. Al-Najem and al. 

(1998)used the power law control volume approach 

to determine the flow and temperature fields under a 

transverse magnetic field in a tilted square enclosure 

with isothermal vertical walls and adiabatic 

horizontal walls at Prandtl number of 0.71 and 

showed that the suppression effect of the magnetic 

field on convection currents and heat transfer is 

more significant for low inclination angles and high 

Grashof numbers. Mehmet Cem Ece and Elif 

Büyük(2006)proposed laminar natural convection 

flows in the presence of a magnetic field in an 

inclined rectangular enclosure heated from the left 

vertical wall and cooled from the top wall while the 

other walls are kept adiabatic. The boundary 

conditions considered have a practical importance in 

cooled ceiling applications. The object of the study 

is to obtain numerical solutions for the velocity and 

temperature fields inside the enclosure and to 

determine the effects of the magnetic field strength 

and direction, the aspect ratio and the inclination of 

the enclosure on the transport phenomena.H. Wang 

and M.S. Hamed (2005) numerically investigated 

the combined effect of various bidirectional 

temperature gradients and angles of inclination on 

flow mode-transition and on hysteresis phenomenon 

(multi-steady solutions) in rectangular enclosures. 

Such combined effect, to the authors’ knowledge, 

has not been investigated yet.S.K. Ghosh and I. Pop 

(2002) A note on a hydromagnetic flow in a slowly 

rotating system in the presence of an inclined 

magnetic field Magnetohydrodynamics. S.K. Ghosh 

and I. Pop (2006) An analytical approach to MHD 

plasma behavior of a rotating environment in the 

presence of an inclined magnetic field as compared 

to excitation frequency. S.K. Ghosh, O. Anwar Beg 

and M. Narahari (2013)a study of unsteadyrotating 

hydromagnetic free and forced convection in a 

channel subject to forced oscillation under an 

oblique magnetic field.M.N. Kherief and al (2012) 

obtained numerical solutions for the velocity and 

temperature fields inside the enclosure, to determine 

the effects of the magnetic field strength and 

direction, the inclination of the enclosure on the 

transport phenomena. The results show that the 

dynamic and temperature fields are strongly affected 

by variations of the magnetic field intensity and the 

angle of inclination. Numerical simulations have 

been carried out considering different combinations 

of Grashof and Hartmann numbers. Ghosh and al. 

(2010) proposed transient hydromagnetic flow in a 

rotating channel permeated by an inclined magnetic 

field with magnetic induction and Maxwell 

displacement current effects.The previous studies of 

the laminar natural-convection flows in the presence 

of a magnetic field inenclosures have dealt with 

thermal boundary conditions involving mostly 

isothermal vertical walls andadiabatic horizontal 

walls and a transverse magnetic field. The present 

study considers laminar naturalconvectionflows in 

the presence of a magnetic field ininclined 

rectangular enclosure heated from the left vertical 

wall and cooled from the top wall while the other 

walls are kept adiabatic. The boundary conditions 

considered have a practical importance in cooled 

ceiling applications. The object of the study is to 

obtain numerical solutions for the velocity and 

temperature fields inside the enclosure and to 

determine the effects of the magnetic field strength 

and direction, the aspect ratio and the inclination of 

the enclosure on the transport phenomena. 

2. GEOMETRY AND  

MATHE- MATICAL MODEL 

The geometry considered is a rectangular enclosure 
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having a length L and a width H, thus with anaspect 

ratio A=L/H=4, filled completely with a molten 

metal, the Prandtl number of which is Pr=0.024. 

Heated from one side and cooled from the adjacent 

side was considered, (TH>TC). The other walls are 

supposed to be adiabatic. The inclination of the 

cavity was also considered, with a varying angle γ. 

The flow is subjected to the action of an external 

uniform and constant magnetic field. 

 

MHD flow, likely to develop in this enclosure, is 

governed by the equations of continuity, 

momentum, energy conservation, the Ohm’s law 

and the conservation the electrical potential. The 

geometrical configuration is described in the Fig. 1. 

 

 
Fig. 1. The model problem. 

 

The governing equations are obtained using the 

following assumptions: 

1. Joule heating is negligible. 

2. Viscous dissipation is negligible. 

3. The induced magnetic field is negligible 

because Rem<<1(on the scale of the 

laboratory), Moreau (1991). 

4. The liquid metal is not magnetized (μm=1). 

5. The liquid metal is incompressible and 

Newtonian. 

6. The Boussinesq approximation holds. 

 

The dimensionless governing equations for the 

conservation of mass, momentum, and energy, 

together with appropriate boundary conditions in 

the Cartesian coordinates system (x, y), are written 

as follows: 
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              (3) 

Where,V is the dimensional velocity vector, pis the 

dimensional pressure, T is the dimensional 

temperature, g is the gravitational acceleration, and 

ρis the density, υ is the viscosity and α is the 

thermal diffusivity of the fluid, respectively. 

The interaction between the magnetic field and 

convective flow involves an induced electric 

current𝑗: 

𝑗 =  𝜎[−∇⃗⃗⃗𝜑 + 𝑉⃗⃗ ∗ 𝐵⃗⃗]                                                  (4) 

The divergence of Ohm’s law∇ . 𝑗⃗⃗⃗⃗⃗⃗⃗⃗ = 0produces the 

equation of the electric potential: 

∇2𝜑 =

∇⃗⃗⃗(𝑉⃗⃗˄𝑒𝐵⃗⃗⃗⃗⃗)                                                              (5) 

Whereas those of F have been obtained using the 

equation:  

𝐹⃗ = 𝑗∗ ∗  𝐵⃗⃗                                                                     (6) 

By neglecting the induced magnetic field, the 

dissipation and Joule heating, and the Bousinesq 

approximation is valid; and using  H, α /H, H 2 /α, 

ρ0 (α / H) 2 , α B0 and (TH  -  TC) as typical scales for 

lengths, velocities, time, pressure, potential, and 

temperature, respectively, the dimensionless 

governing equations for the conservation of mass, 

momentum ,and energy, together with appropriate 

boundary conditions in the Cartesian coordinates 

system (x, y), are written as follows: 

0
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                                                                             (10) 

Where:   3 2/H CGr g T T H   isthe Grashof 

number, 0Ha B H   theHartmann number, 

and Pr /  the Prandtl number.

 
Where FEMXand FEMY; represent respectively the 

dimensional forces of Lorentz following directions 

Xand Y: 

 2 2
0 cos sin sinEMx xF B V U e     
    

                                                                             
(11) 

 2 2
0 sin cos cosEMy yF B U V e     
    

                                                                             
(12) 

The initial conditions impose that the fluid is: 

Att=0, we have: u = v = θ =0. 

 

At t > 0 the boundary conditions of the 

dimensionless quantities (u, v, and θ) are: 

- At   X=0   →    θ=1 and   X=A →   δθ/δy=0. 

- At Y= 1   →   θ=0 and   Y=0   →   δθ/δy=0. 

3. NUMERICAL METHOD 

The finite-volume method(1980), is used for the 

numerical resolution the system of transport eq. 

(13): 

 i

i i i

U
S

t X X X


 


    
         

            

(13) 

The discretized form is: 

P P E E W W N N S SA A A A A b        
            

(14) 

The eq. (14) is solved using the SIMPLER 

algorithm (1980) the temporal derivative is 
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discretized using the implicit scheme. Concerning 

the spatial discretization, all the convective and the 

diffusive terms are discretized using the central 

differencing scheme. 

 

Numerical scheme 

The dimensionless governing equations were solved 

for stream function, vorticity and temperature using 

the centered differences In this configuration, 

function A(P) defined in the interfaces follows the 

following profile: 

  1 0.5i iA P P          ( , , ,i e w n s )           (15) 

This diagram is stable for 2iP   , which 

ensures of the plus coefficients in the equation of 

discretization. 

4. RESULTS AND DISCUSSION 

a Code Validation in the Absence of a 

Magnetic Field 

In the absence of a magnetic field, the momentum 

equation,eq. (2)-(4) are solved after setting 

(Fx=Fy=0). The results are represented graphically 

in Figs. 3(a)-(d). 

 

The flow structure is shown by the velocity vectors 

(Fig. 2(a)) and the velocity profiles (Figs. 2(a) and 

(b)). Fig. 2(a) shows that at the bottom of the cavity 

the flow is mainly longitudinal and is directed 

towards the hot wall (situated at X =0.0) and at the 

top of the cavity the flow is directed towards the 

cold wall situated at X =4. These boundary layers 

extend from the walls to the centre of the cavity, a 

behavior which is not common in ordinary fluids. 

From Figs. 2(a) and (b) one can notice that the U, 

and V profiles are linear throughout the core region 

extending from (X =0.25 to X= 0.75)and from (Y= 

0.25 to Y= 0.75). Comparison of Figs 2(a) and 2(b) 

reveals the expected behavior that the flow in the 

vertical direction is fastest because of the buoyancy-

induced acceleration experienced by fluid particles 

transported in this direction. 

 

A preliminary validation of the numerical method 

can be done, at this stage, via theoretical estimation 

of the magnitude of the maximum velocity, which is 

approximately 30 (Figs. 2(b) and (c)). One can, in 

effect, write, for large values of the Rayleigh 

number, that equilibrium exists between buoyancy 

forces and inertia forces, and has a value of 50. This 

explains the noticed distortion of the isotherms 

shown in Fig. 2(d). 

 

The thermal structure of the flow is illustrated by 

the isotherms of Fig. 2(d) clearly shows the 

formation of thermal boundary layers along the 

vertical walls. Here also the temperature profiles in 

the core region extending from X= 0.25 to X =0.75 

are linear. As can be noticed from Fig. 2(d) plotted 

using a temperature increment Δθ=0.05 between 

two consecutive isotherms, the isotherms are denser 

on the lower part of the hot vertical wall and on the 

top part of the cold vertical wall. This indicates the 

presence of intense heat transfer across these parts 

of the walls. 
 

After that, we confronted our results with the results 

obtained by the references (1999) where the 

magnetic field is applied. 

 

 
(a)                                (d) 
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(c)                               (b) 

Fig. 2. (a) Velocity vector plot. (b) Distribution of 

vertical Velocity. (c) Distribution of horizontal 

Velocity. (d) Isotherms for Ha=0 and 

Ra=105.(1997) 

 

 

 

 

Benhadid Results. Current results 

Fig. 3. Validation of the results of the current 

functions obtained for various values of 

Hartmann with that from Ben Hadid : a- Ha=0; 

b- Ha=5; c- Ha=10; d- Ha=100, Gr= 8x10 2, 

Pr=0, 01, A=4. 

 

In order to give a better insight into the physics 

behind the change in flow pattern, sketches of the 

current path corresponding to Ha= 25 and Ha =50 

are given, respectively, in Figs. 4(a) and (b). 

 

 
(a)                                     (b) 

Fig. 4. (a) Current path for Ha= 25. (b) Current 

path for Ha=50. 

 

The Lorentz forces produced by the interaction 

between these currents and the applied vertical field 

are given, respectively, in Figs. 5(a) and (b). As can 

be noticed from Figs. 4, the flowing fluid generates 

under the action of the magnetic field, currents 

which are positive in the neighborhood of the top 

wall and negative in the neighborhood of the 
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bottom wall. This difference in sign is due to the 

different directions of the fluid in contact with the 

top and bottom walls. Because of this difference in 

sign, the Lorentz force acting on the top layers of 

the fluid is negative (i.e. a retarding force) and that 

acting on the bottom layers positive (i.e. also a 

retarding force since the fluid flows in the 

negative). When the value of Ha is increased, the 

magnitude of Lorentz forces increases (Fig. 5) and 

therefore reduces the magnitude of the velocity. 

This provokes the damping of the flow.  

 

 
(a)                                   (b) 

Fig. 5. (a) Component Fx of the Lorentz force for 

Ra=800 and Ha=25.(b) Component Fx of the 

Lorentz force for Ra= 800 and Ha=50. 

 

b Test and Choice the Grid 

We go tested the effect of various kinds of grid to 

see the behavior of the Nusselt number average and 

the current function in the enclosure and this by 

fixing the following parameters: Pr = 0.024, Gr. = 

5000, α = 0 and Ha = 30.  With a dimensional step: 

Δt=0,0001. 

 

Table 1 Tested the grid 

Ψmin Ψmax x ANu 
 

0xNu   Grid 

2.440E-07 1.794190 0.2500866 0.2501304 82x32 

6.619E-07 1.790469 0.2500819 0.2501372 98x42 

6.487E-07 1.789955 0.2500816 0.2501345 112x42 

 

The grid used for Ha =0 was chosen after 

performing grid independency tests. The computed 

average Nusselt numbers for grids finer than 

112x42 only differ hence the choice of this grid 

fig.6. Convergence of the numerical solution was 

obtained when the mass, momentum and energy 

residuals are below 10-4. 

 

 
Fig. 6. Grid employed for the rectangular 

enclosure A=4. 

 

c Discussion 

Streamlines and isotherms for (Ha = 0) are 

presented herein Figs. 7–8 for various enclosure 

inclinations, When the enclosureis tilted 45°in the 

clockwise direction (γ=−45°), the hot and cold walls 

form the upper left and rightwalls of the enclosure 

while the adiabatic walls constitute the lower walls. 

On the other hand, the hotand cold walls form the 

lower and upper left walls of the enclosure while 

the lower and upper right wallsare adiabatic when 

the enclosure is tilted 45°in the counterclockwise 

direction (γ=45°). The buoyancyforce which ascend 

the fluid particles heated near the hot acts parallel to 

the hot wall when the enclosureis not inclined but 

forces them toward to and away from the hot wall 

when the enclosure is inclined in theclockwise and 

counterclockwise directions, respectively. 

Therefore, while the streamlines form a singleeddy 

with clockwise rotation for γ=0°and−45°, a pair of 

counter-rotating eddies are formed for γ=45°. 

 

Circulation is weak due to relatively low Grashof 

numberand the isotherms are spread almost radially 

between the hot and cold walls resembling heat 

transfer bypure conduction only. 

 

a  
b 

 

c  

Fig. 7. Evolution of the current function for 

various orientation angle of the inclination. 

a) γ=0°. b) γ=45°. c)γ=-45°. And Ha=0, 

Gr=10000, α=0°. 
 

a  

b  

c  

Fig. 8. Evolution of the Isotherm for various 

orientation angle of the inclination. a) γ=0°. b) 

γ=45°. c)γ=-45°. And Ha=0, Gr=10000, α=0°. 
 

Streamlines and isotherms in a tall rectangular 

enclosure with the presence of a strong magnetic 

field (Ha = 100)for various enclosure inclinations, 

magnetic field directions and Grashof numbers are  
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Gr=10000 α=00 Ha=50 γ=-450                                           Gr=10000 α=00 Ha=50 γ=450 

 

           
Gr=10000 α=00 Ha=100 γ=00                                   Gr=10000 α=900 Ha=50 γ=-450 

 

           
Gr=10000 α=900 Ha=100 γ=0                                   Gr=1000 α=00 Ha=100 γ=450 

 

           
Gr=105 α=00 Ha=50 γ=-450                                              Gr=105 α=900 Ha=50 γ=450 

 

             
Gr=105 α=00 Ha=50 γ=-450                                          Gr=107 α=00 Ha=50 γ=-450 

 

           
Gr=107 α=900 Ha=100 γ=00                                                        Gr=107 α=900 

Fig. 9. Evolution of the current function for various Grashof numbers according to a Hartmann 

number, orientation angle of the magnetic field and the inclination angle. 

 
shown in Figs. 9–10. 

 

Figures showthat the streamlines form a clockwise 

rotating eddy for cases of γ=0°and −45°. The strong 

magnetic field suppresses the circulation and 

vorticity. The center of the eddy is near the cold 

wall for magnetic field applied normal to the hot 

wall and near the hot wall for magnetic field applied 

normal to the cold wall due to the decelerating 

effect of the Lorentz force. The center of the eddy 

also shifts away from the magnetic flow direction 

when it is applied X-direction. The strong magnetic 

field suppresses both the circulation and vorticity. 

Circulation is increased by increasing Grashof 

number as it can be seen from the higher values of 

the streamlines. The isotherms are somewhat 

equally spaced or slightly deformed for Gr = 104 

and they are bulged near the cold wall and squeezed 

near the lower hot wall as the Grashof number 

increases up to 105 and 107. This result is stronger 

when the magnetic field is applied normally to the 

cold wall (α=90°)and when the enclosure is tilted 

45°inthe clockwise direction (γ=−45°)or nor tilted 

(γ=0°). The flow field displays a very complex 

patternfor the case of γ=45°. There exist a pair of 

counter-rotating when the magnetic field is applied 

X-directionto the hot wall. The dividing extends 

diagonally from a point on the hot wall near the 

upper corner to apoint on the upper right adiabatic 

wall near the lower corner. The lower eddy encloses 

two loops with a stagnation point between them for 

Gr = 104. When the magnetic field is applied Y-

direction, the lowereddy is observed to extend to the 

cold wall and push the upper eddy toward the upper 

adiabatic wall. 

 

The loops within the lower eddy are more visible in 

this case. As the magnetic field is further  
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Gr=1000 α=00 Ha=50 γ=-450                                Gr=1000 α=00 Ha=50 γ=450 

 

     
Gr=1000 α=00 Ha=100 γ=00                                     Gr=1000 α=900 Ha=50 γ=-450 

 

     
Gr=1000 α=900 Ha=100 γ=0°                                 Gr=1000 α=00 Ha=100 γ=450 

 

     
Gr=105 α=00 Ha=50 γ=-450                                  Gr=105 α=900 Ha=50 γ=450 

 

     
Gr=105 α=00 Ha=50 γ=-450                                     Gr=107 α=00 Ha=50 γ=-450 

 

     
Gr=107 α=900 Ha=100 γ=00                                             Gr=107 α=900 Ha=100 γ=-450 

 

Fig. 10. Evolution of the Isotherm for various Grashof numbers according to a Hartmannnumber, 

orientation angle of the magnetic field and the inclination angle. 

 
rotatedcounterclockwise and applied normal to the 

cold wall, the lower eddy grows along the hot wall 

withthe loops disappearing and the dividing 

streamline is almost parallel to the hot wall. 

Circulation of eddies increases as the Grashof 

numberincreases and the loops within the lower 

eddy disappears whenthe magnetic field is applied 

X-direction to the hot wall. When the magnetic field 

is applied Y-direction, theupper eddy grows 

substantially and reaches the hot wall dividing the 

lower eddy into multiple eddies. 

 

However, when the magnetic field is applied X-

direction to the cold wall, a pair of counter-rotating 

eddiesare formed with the dividing streamline 

almost parallel to the hot wall. The isotherms are 

almost equallyspaced between the hot and cold 

walls for Gr = 104 but the increased circulation and 

the formation ofmultiple eddies cause a kinky 

behavior in the isotherms for Gr = 105and Gr = 107. 

 

We noticethat for a small number of Gr, the flow 

generates very weak velocity gradients, when the 

Gr number increases; the flow induced by the 

increasing buoyancy forces becomes animated. 

Significant velocity gradients are then localized 

near the walls, resulting in the production multiple 

eddiesvortices. This is well illustrated in Figs. 11-a, 

b and c. 

 

Concerning the horizontal normalized velocity 

profiles, they are shown in Figs. 11 of the X-  
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Fig. 11. Evolution speed horizontal component in the enclosure center for various Grashof numbers 

according to a Hartmann number,orientation angle magnetic field and the inclination angle. 

 
Table 2 Variation of the average Nusselt number 

γ Gr Nu (Ha=0) 
Nu (Ha=100) 

α=0° α=90° 

0° 

103 

104 

105 

107 

2.065639 

2.649331 

3.889977 

15.763160 

1.995967 

1.993139 

1.952511 

4.637601 

1.997511 

1.996799 

2.436661 

3.062145 

-45° 

103 

104 

105 

107 

2.088343 

2.701963 

3.971976 

16.763160 

1.696850 

1.695311 

1.795707 

5.001252 

1.700009 

1.798000 

2.017178 

5.235416 

45° 

103 

104 

105 

107 

1.588343 

2.301963 

3.071976 

10.763160 

1.797200 

1.782006 

1.802794 

3.095472 

1.786333 

1.756609 

1.846667 

3.999420 

 
direction magnetic field and Y-direction magnetic 

field. 

 

It is clear from the results that as Ha are increased; 

the velocity components tend to diminish. In fact, 

for Ha=100, their values are practically equal to 

zero in the major part of the cavity except near the 

end walls. It is clear that the use of a magnetic field 

can strongly decrease the flow intensity, but cannot 

completely inhibit fluid motion. 

 

The enclosure slope has a strong effect on the flow 

and the heat transfer behavior. A single cell is 

obtained; it appears to be completely stable, 

symmetrical and fills all the enclosure, the effect of 

inclination on the velocity diminishes in the 

presence of the magnetic field. 

 

Average Nusselt numbers are listed in Table 2. 

Average Nusselt number increases naturally with 

Grashof number and it is substantially reduced by 

the magnetic field. The magnetic field appliedY-

direction to the hot wall is more effective reducing 

the convection and therefore the heat transfer for 

enclosure and the magnetic field applied Y-

direction to the cold wall is more effective 

reducingthe convection for shallow enclosures. The 

average Nusselt number is slightly reduced by the 

counterclockwiseinclination in the enclosure.The 

effect of inclination on the average Nusseltnumber 

diminishes in the presence of the magnetic field. 

5. CONCLUSIONS 

The present study considers laminar natural-

convection flow in the presence of a magnetic field 

in aninclined rectangular enclosure heated from the 

left vertical wall and cooled from the top wall while 

theother walls are kept adiabatic. The flow 

characteristics and the convection heat transfer 

insidethe tilted enclosure, depend strongly upon the 

strength and direction of the magnetic field and the 

inclination of the enclosure.Circulation and 

convection become stronger with increasing 

Grashofnumbers but they are significantly 
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suppressed by the presence of a strong magnetic 

field. As a result,formation of multiple eddies of 

counterclockwise inclination greatly influences the 

temperature field.  

Thelocal Nusselt number increases considerably 

with Grashof number since the circulation becomes 

stronger. 

The magnetic field significantly reduces the local 

Nusselt number by suppressing the convection 

currents. 
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