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ABSTRACT 

An analysis is performed to investigate the ohmic heating and viscous dissipation effects on an unsteady 

natural convective flow over an impulsively started vertical plate in the presence of porous medium with 

radiation and chemical reaction. Numerical solutions for the governing boundary layer equations are 

presented by finite difference scheme of the Crank Nicolson type. The influence of various parameters on the 

velocity, the temperature, the concentration, the skin friction, the Nusselt number and the Sherwood number 

are discussed. It is observed that velocity and temperature increases with increasing values of permeability 

and increasing values of Eckert number, whereas it decreases with increasing values of magnetic parameter. 

An increase in ohmic heating and viscous heating increases the velocity boundary layer. An increase in ohmic 

heating decreases the temperature. An increase in magnetic field reduces the temperature profile. The velocity 

profile is highly influenced by the increasing values of permeability. It is observed that permeability has 

strong effect on velocity. An enhancement in ohmic heating increases the shear stress, decreases the rate of 

heat transfer and induces the rate of mass transfer. 

 
Keywords: Ohmic heating; Viscous dissipation; Chemical reaction; Porous medium; Finite difference. 

NOMENCLATURE 

c
  ambient concentration 

wc   concentration near the wall   

C concentration 

D mass diffusivity  

Ec Eckert number  

g acceleration due to gravity 

Gc mass Grashof number 

Gr thermal Grashof number 

k thermal conductivity 

kc chemical reaction parameter 

km mean absorption coefficient 

M magnetic parameter  

R radiation parameter 

Sc Schmidt number
 

 

T temperature 

T
  ambient temperature  

wT   wall temperature t time 

u velocity in x- direction 

u0 uniform velocity of the plate 

Pr Prandtl number 

v velocity in y-direction 
   

 

cp specific heat at constant pressure 

υ kinematic viscosity 

λ permeability parame 

μ dynamic viscosity 

σ Stephan Boltzmann constant 

 
1. INTRODUCTION 

Heat and mass transfer effects on natural convection 

due to the combined buoyancy effects of thermal 

diffusion and diffusion of chemical species in the 

presence of porous medium has attracted many 

researches for the past few decades. This is because 

of its real time importance in the fields of 

geothermal and geophysical engineering such as 

migration of moisture through air contained in 

fibrous insulation, nuclear wastes disposal through 

underground, disposal of chemical contaminants 

through water saturated soil, food processing, 

chemical catalytic reactors and cooling of nuclear 

reactor.  So far the existing work has been devoted 

to the phenomenon of natural convection with 

porous medium driven by combined buoyancy 

effect due to temperature and concentration 
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variations, not to phenomenon driven by unsteady 

combined buoyancy effect due to temperature and 

concentration variations in the presence of porous 

medium with ohmic heating and viscous heating 

effects. 
 

Ruan et al. (2001) discussed many aspects about 

ohmic heating. The principle of ohmic heating is 

based on the passage of alternating electrical current 

(AC) through a body such as a liquid-particulate 

food system which serves as an electrical resistance 

in which heat is generated. AC voltage is applied to 

the electrodes at both ends of the product body. The 

concept of ohmic heating of foods is not new. In the 

nineteenth century, several processes were patented 

that used electrical current for heating flowable 

materials. In the early twentieth century, ‘electric’ 

pasteurization of milk was achieved by passing milk 

between parallel plates with a voltage difference 

between them. 
 

Bejan and Khair (1985) discussed the phenomenon 

of natural convection heat and mass transfer near a 

vertical surface embedded in fluid saturated porous 

medium. They are the first to introduce the 

combined buoyancy effects across the boundary 

layer in the presence of porous medium. Later in 

(1986) Trevisan and Bejan investigated the 

analytical and numerical study of natural 

convection heat and mass transfer through a vertical 

porous layer subjected to uniform fluxes of heat and 

mass from the side. Bejan and Neild (1992) 

analyzed the natural convection boundary layer 

flow in porous media owing to combined heat and 

mass transfer. 
 

Raptis et al. (1987) presented the explicit finite 

difference scheme to study the unsteady free 

convective flow through a porous medium bounded 

by a semi-infinite vertical plate. Soundalgekar 

(1973) analyzed the viscous dissipative heat on the 

unsteady free convective oscillatory flow past an 

infinite vertical porous plate. Soundalgekar and Pop 

(1974) discussed the viscous dissipation effects on 

natural convective flow past an infinite vertical 

porous plate with variable suction. Effect of viscous 

dissipation on non-Darcy natural convection flow 

along a vertical wall embedded in a saturated 

porous medium was initiated by Murthy and Singh 

(1997). Viscous dissipation and radiation effects on 

hydromagnetic free convection flow past an 

impulsively started vertical plate with variable 

surface temperature and concentration is studied by 

Suneetha et al. (2008). Finite difference scheme is 

used to present the solution.  
 

Poornima and Bhaskar reddy (2013) presented the 

approximate solution for the effects of thermal 

radiation and chemical reaction on 

magnetohydrodynamic natural convective flow past 

a semi-infinite vertical plate in the presence of 

moving porous plate. Palani and Srikanth (2009) 

studied the magnetohydrodynamic effects in a 

natural convective flow past a semi-infinite vertical 

plate with mass transfer. Gnaneswara Reddy (2012) 

presented an approximate solution to the unsteady 

laminar flow of a viscous incompressible 

micropolar fluid past a vertical porous plate in the 

presence of a transverse magnetic field and thermal 

radiation with variable heat flux. 
 

Unsteady laminar free convection boundary layer 

flow of a moving infinite vertical plate in a radiative 

and chemically reactive medium in the presence of 

transverse magnetic field was investigated by 

Reddy et al. (2013). Combined effects of viscous 

and ohmic heating in the transient, natural 

convective flow of a doubly stratified fluid past a 

vertical plate with radiation and chemical reaction 

was analyzed by Ganesan et al. (2013). MHD 

forced convective flow through porous medium 

over a fixed horizontal channel with thermal 

insulated and impermeable bottom wall in the 

presence of viscous dissipation and Joule heating 

was discussed by Raju at al. (2014). Combined heat 

and mass transfer of an electrically conducting fluid 

in MHD natural convection adjacent to a vertical 

surface is analyzed, taking into account the effects 

of ohmic heating and viscous dissipation was 

illustrated by Chen (2004). 
 

Based on the important factors discussed by various 

authors, the present article analyzes the viscous 

dissipation and ohmic heating effects on an 

unsteady natural convective flow over a impulsively 

started vertical plate in the presence of porous 

medium. Also, the MHD (magnetohydrodynamic), 

radiation and chemical reactions are taken into 

account. The governing boundary layer equations 

are solved by finite difference scheme of Crank-

Nicolson scheme. The numerical results are 

compared with the previous study to ensure the 

accuracy. The effects of various parameters on 

velocity, temperature, concentration, skin friction, 

Nusselt number and Sherwood number are 

computed. The various results are illustrated 

graphically. 

2. MATHEMATICAL ANALYSIS  

An unsteady, two dimensional, laminar natural 

convective flow over an impulsively started vertical 

plate in the presence of porous medium is 

considered. Initially, it is assumed that the fluid and 

the plate are at the same temperature and 

concentration. As time increases, the plate is given 

an impulsive motion in the vertical upward 

direction with a constant velocity 0u  and at the 

same time the temperature of the plate is raised to 

wT  and the concentration near the plate is raised to 

wc  . All the fluid properties are assumed to be 

constant except the body force term. The Rosseland 

approximation is used to describe the radiative heat 

flux and the viscous dissipation and ohmic heating 

are also considered in this analysis. The x -axis is 

taken along the direction of vertical moving plate 

and y -axis is taken normal to the plate. The flow 

model and the coordinate system are given in Fig.1. 

Under the above assumptions the boundary layer 

equations for the flow using Boussinesq’s 

approximation are given by 

u v
0

x y

 
 

 
                                                          (1) 
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Fig. 1. Flow model and the coordinate system. 
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Initial and boundary conditions are  

0 0, 0, , 
       t u v T T c c for all x and y  

0,0 0, ,       w wt u u v T T c c  at y = 0 

0, 0, , 
     u v T T c c

 
at x = 0               (5) 

0, , 
    u T T c c  as  y  
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(6) 

The governing equations in non-dimensional form 
is given by 

0
 

 
 

U V

X Y
                                                        (7) 
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(8) 
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(9) 
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1   
   

   
c

C C C C
U V k C
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                  (10) 

The corresponding boundary conditions are 

0 0, 0, 0, 0    t U V T C for all X and Y  

0 1, 0, 1, 1t U V T C      at Y = 0 

0, 0, 0, 0U V T C   
 
at X = 0                (11) 

0, 0, 0U T C    as Y   

3. NUMERICAL PROCEDURE 

The two-dimensional, unsteady, coupled, non-linear 

partial differential equations (7) to (10) subject to 

the boundary conditions in equation (11) are 

discretized with Crank Nicolson implicit finite 

difference scheme which converges faster and is 

unconditionally stable. Based on the boundary 

conditions in equation (11), the region of 

integration is decided as Xmax=1 and Ymax=14, 

where Ymax corresponds to Y=∞. Here the subscript 

i designates the grid points in the direction of X, j 

designates the grid points in the direction of Y, and 

n along the t - direction. The equations at every 

internal nodal point for a particular i-level constitute 

a tridiagonal system. This system of tridiagonal 

matrix can be solved by Thomas algorithm (1969). 

Hence the values of U, V, T, and C are known at all 

nodal points in the region at (n+1)th time level. 

Computations are carried out for all the time levels 

until the steady state is reached. The scheme is 

proved to be unconditionally stable using the Von 

Neumann technique. The local truncation error for 

the scheme is 
2 20( )t Y X     and it approaches 

zero as ∆t, ∆Y and ∆X tends to zero. Stability and 

compatibility of the scheme ensures convergence.  

4. METHOD OF SOLUTION 

The Crank Nicolson finite difference scheme for the 
governing equations (7) to (10) are given by 

1 1 1 1
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(15) 

These equations (12) to (15) at every nodal point 

for a particular ith level constitute a tridiagonal 

system of equations. In order to get the physical 

insight into the problem the numerical values of 

U, V, T and C are computed for different values 

of ohmic heating and viscous dissipation, thermal 

Grashof number, mass Grashof number, Prandtl 

number, Schmidt number, permeability 

parameter, magnetic parameter, radiation and 

chemical reaction parameter. Knowing the 

velocity, temperature and concentration it is 

interesting to calculate the skin friction 

coefficient, local Nusselt number, local 

Sherwood number, average skin friction, average 

Nusselt number and average Sherwood number. 

Five point approximations is used to approximate 

the derivatives in local skin friction, local Nusselt 

number and local Sherwood number. Newton 

Cote's formula is used to calculate the average 

skin friction, average Nusselt number and 

average Sherwood number. 

5. RESULTS AND DISCUSSIONS 

In order to get the physical insight into the 

problem, numerical computations are carried out 

for various values of parameters that describe the 

flow characteristics and the results are illustrated 

graphically. Finite difference scheme of Crank 

Nicolson type is used to obtain the results for the 

velocity, temperature, concentration, local skin 

friction, local Nusselt number, local Sherwood 

number, average skin friction, average Nusselt 

number and average Sherwood number. The 

fluids considered under study are air (Pr = 0.73) 

and water (Pr = 7). The Schmidt number is 

choosen in such a way that they represent 

Hydrogen (0.16), Oxygen (0.60), Ammonia 

(0.78), Carbon dioxide (0.94) and Ethyle benzene 

(2.0). 

 

In order to ascertain the accuracy, the results 

from the present study are compared with those 

from previous study. In the absence of porous 

medium and taking the chemical reaction 

parameter as zero, the velocity and temperature 

profile for different values of the Eckert number 

are compared with that of suneetha et al. (2008) 

in Fig. 2. It is observed that the present results are 

in good agreement with that of the previous 

result. 

 

 
Fig. 2. Comparison for velocity and temperature. 

 

Fig. 3 illustrates the combined effects of viscous 

dissipation and ohmic heating in the presence of 

porous medium on velocity. The ohmic heating 

effect is characterized by the product of Eckert 

number and magnetic parameter. Ohmic heating is 

the generation of excess heat in the fluid either due 

to direct current or applied magnetic field. Eckert 

number expresses the relation between kinetic 

energy and the enthalphy. 

 

The viscous dissipation is characterized by 

Eckert number. Both ohmic heating and viscous 

dissipation plays an important role in the thermal 

transport of the fluid. It is revealed from the 

figure that, for a particular value of magnetic 

parameter and increasing values of viscous 

dissipation increases the velocity boundary layer. 

Viscous dissipation increases the velocity 

boundary layer when the magnetic field is zero. 

But the viscous dissipation gradually reduces the 

velocity boundary layer with increasing values of 

magnetic field. An increase in ohmic heating and 

viscous heating increases the velocity boundary 

layer.   
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Fig. 3. Viscous and ohmic heating effects 

on velocity profile. 

 

Fig. 4 represents the velocity profile for different 

permeability parameter. Permeability is the measure 

of the materials ability to permit liquid or gas 

through its pores or voids. Filters made of soil and 

earth dams are very much based upon the 

permeability of a saturated soil under load. 

Permeability is a part of the proportionality constant 

in Darcy’s law. Darcy’s law relates the flow rate 

and fluid properties to the pressure gradient applied 

to the porous medium. Hence for an increase in the 

permeability of the porous medium the velocity 

boundary layer increases. Thus the velocity profile 

is highly influenced by the enhancement of 

permeability. 

 

  

Fig. 4. Effects on permeability on the 

velocity profile. 

 

Fig. 5 depicts the combined effects of viscous 

dissipation and ohmic heating in the presence of 

porous medium on temperature. From the figure it 

is viewed that viscous dissipation increases the 

thermal boundary layer when the magnetic field is 

zero whereas the absence of viscous dissipation 

reduces the thermal boundary layer. For fixed 

values of Eckert number an increase in magnetic 

parameter reduces the temperature profile. Hence an 

increase in ohmic heating decreases the thermal 

boundary layer.  
 

 
Fig. 5. Viscous and ohmic heating effects on 

temperature profile. 

Figures (6) and (7) represent the temperature profile 

for Prandtl number and Radiation parameter 

respectively. In Fig. 6 the size of the thermal 

boundary layer increases with increasing values of 

Prandtl number. Prandtl number being the ratio of 

momentum diffusivity to the thermal diffusivity, 

together with ohmic heating induces the 

temperature. Hence, there is an increase in the 

thermal boundary layer. Fig. 7 depicts that increase 

in radiation parameter increases the thermal 

boundary layer.  The increasing value of radiation 

corresponds to an increased dominance of 

conduction. This radiation parameter along with 

Eckert number and magnetic field enhances the 

thermal boundary layer thickness. 

 

 
Fig. 6. Effects of Prandtl number on 

temperature profile. 

 

 
Fig. 7. Effects of radiation on 

temperature profile. 

 

Fig. 8 shows that the concentration boundary layer 

increases with reducing values of chemical reaction 

parameter. The influence of chemical reaction 

parameter is analyzed for kc = 0, 0.1, 0.3, 0.5, 1 and 

2. In the present study a homogeneous first order 

chemical reaction is considered. A first order 

reaction is a reaction that proceeds at a rate that 

depends linearly on only one reactant concentration. 

In a homogeneous reaction the diffusion species can 

either be created or destroyed depending on the 

values of chemical reaction parameter. In the 

concentration profiles, a destructive reaction is 

considered. Hence it is observed that the 
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concentration boundary layer decreases with 

increasing values of chemical reaction parameter.  

 

Fig. 9 depicts that an increase in Schmidt number 

reduces the concentration boundary layer. Schmidt 

number is the ratio between the momentum 

diffusivity and the species diffusivity. The mass 

diffusion is based on the diffusion of the substance. 

It physically relates the relative thickness of the 

viscous boundary layer to the concentration 

boundary layer. Hence, the concentration boundary 

layer decreases with increasing values of Schmidt 

number. 
 

 
Fig. 8. Effects of chemical reaction on 

concentration profile. 

 

 
Fig. 9. Effects of Sc on concentration profile. 

 

Figures (10) and (11) represent the viscous 

dissipation and ohmic heating effects on local skin 

friction and average skin friction respectively. An 

increase in ohmic heating increases the local shear 

stress and the average shear stress. Keeping all the 

other parameters fixed an increase in permeability 

and magnetic parameter decreases the local shear 

stress. An increase in viscous dissipation increases 

the local skin friction and average shear stress. This 

is due to the fact that an increase in the Ec raises the 

velocity which in turn increases the shear stress 

along the plate, and hence there is an increase in the 

skin friction. It is also viewed that an increase in 

permeability increases the average skin friction. 

This is because increase in permeability enhances 

the velocity thereby increasing the skin friction. 
 

 
Fig. 10. Effects of Ec, λ and M on Local 

skin friction. 

 
Fig. 11. Effects of Ec, λ and M on average 

skin friction. 

 

Figure (12) and (13) illustrates the effects of Ec, λ 

and M on Local Nusselt number and average 

Nusselt number respectively. An increase in Ec 

number decreases the local Nusselt number and 

average Nusselt number. An increase in 

permeability and magnetic field reduces the local 

Nusselt number and average Nusselt number. A 

decrease in ohmic heating effect increases the local 

and average Nusselt number. This is because 

increase in ohmic heating increases the temperature 

profile which inturn reduces the heat transfer and 

hence there is a decrease in the Nusselt number. 
 

 
Fig. 12. Effects of Ec, λ and M on Local 

Nusselt number. 
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Fig. 13. Effects of Ec, λ and M on average 

Nusselt number. 

 

Fig. 14 represents the effects of chemical reaction 

and Schmidt number on local Sherwood number. It 

is viewed that an increase in chemical reaction for 

fixed values of Schmidt number the local Sherwood 

number increases. Similar type of behavior is seen 

for fixed chemical reaction parameter and 

increasing Schmidt number. 

 

 
Fig. 14. Effects of Sc and kc Local 

Sherwood number. 

 

In Fig. 15 average Sherwood number is presented 

for Ec, λ and M. Average Sherwood number shows 

a slight influence for increasing values of Eckert 

number. An increase in the ohmic heating effect 

increases the average Sherwood number. Also 

increasing values of permeability and magnetic 

field increase the average Sherwood number. 

6. CONCLUSION 

In the present work, a numerical analysis is carried 

out to analyze the viscous and ohmic heating effects 

on natural convective flow over an impulsively 

started vertical plate in the presence of porous 

medium. The effects of radiation and chemical 

reaction are also considered. The non-dimensional 

governing boundary layer equations are solved 

numerically by finite difference scheme of Crank 

Nicolson type. The effects of Eckert number, 

Prandtl number, Schmidt number, permeability, 

radiation, magnetic field, chemical reaction, thermal 

Grashof number, mass Grashof number on velocity, 

temperature, concentration, skin friction, Nusselt 

number and Sherwood number are investigated. The 

results are illustrated graphically. The results are 

summarized as follows 
 

1) The velocity boundary layer increase with 

increasing values of permeability parameter. 

2) The velocity boundary layer and thermal 

boundary layer thickness reduces for 

increasing values of Eckert number and the 

magnetic field. 

3) The thermal boundary layer increases with 

increasing values of Prandtl number and also 

for increasing values of radiation parameter. 

4) The concentration boundary layer decreases 

with increasing values of chemical reaction 

and Schmidt number.  

5) The local Sherwood number increases with 

increasing values of chemical reaction 

parameter and Schmidt number. 

6) An increase in Eckert number and magnetic 

field increases the shear stress, reduces the heat 

transfer and induces the mass transfer. 

 

 
Fig. 15. Effects of Ec, λ and M on average 

Sherwood  number. 
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