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ABSTRACT 

Electroosmosis is the predominant mechanism for flow generation in lab-on-chip devices. Since most 

biofluids encountered in these devices reveal non-Newtonian behavior, a special understanding of the 

fundamental physics of the relevant transport phenomena seems vital for an accurate design of such 

miniaturized devices. In this study, a numerical analysis is presented to explore transport characteristics of 

typical non-Newtonian biofluids through annular microchannels under combined action of pressure and 

electrokinetic forces. The flow is considered steady and hydrodynamically fully developed. A finite 

difference method is used to solve the Poisson-Boltzmann and Cauchy momentum equations, while the 

classical boundary condition of no velocity-slip for the flow field is applied. The Poisson-Boltzmann equation 

is solved in the exact form without using the Debye-Hückel approximation. After numerically solving the 

governing equations, role of the key parameters in hydrodynamic behavior of the flow is analyzed and 

discussed. 

 

Keywords: Annular microchannel; Non-Newtonian Biofluid flow; Electrokinetic and rheological behaviors; 

Numerical investigation 

NOMENCLATURE 

e  proton charge [C] 

E  electric field intensity [V m-1] 

f  friction factor 

F  body force vector [N m-3] 

Bk  boltzmann constant [J K-1] 

n  flow behavior index [–] 

n  ion density [m-3] 

p  pressure [Pa] 

r  radial coordinate [m] 

R  radius ratio [–] 

Re  Reynolds number [–] 
*R  dimensionless radial coordinate [–] 

0T  ambient temperature [K] 

,u v  axial/radial velocity component[ms-1] 

refu
 

reference velocity [m s-1] 

*U  dimensionless axial velocity [–] 

V  velocity vector [m/s] 

x  axial coordinate [m] 

TDMA  tridiagonal matrix algorithm  

 
*R  dimensionless step size [–] 

  relative dielectric constant [–]  

0  fluid permittivity [C V-1 m-1] 

  dimensionless Debye-Hückel parameter 

 [–] 

D  debye length [m] 

  forcing ratio [–] 

  effective viscosity [Pa s] 

0  flow consistency constant [Pa sn] 

  fluid density [kg m-3] 

e  net electric charge density [C m-3] 

  shear stress [Pa] 

  electric potential [V] 

*  dimensionless electric potential [–] 

  dimensionless wall zeta potential [–] 
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valence number of ions in the solution 

EDL  electric double layer 

EOF  electroosmotic flow 

PDF  pressure driven flow 

PDEOF  combined pressure driven and 

 electroosmotic flow 

  wall zeta potential [V] 

i o  inner/outer cylinder 

m  mean 

w  wall 

  previous iteration 

   th grid node 

 

1. INTRODUCTION 

Recently, because of the rapid development in 

micro-fabrication technology, transport phenomena 

at micro-scale have attracted much attention, 

especially in the area of Micro-Electro-Mechanical-

Systems (MEMS). Meanwhile, the concept of 

electroosmotic flow (EOF) is considered to be an 

inseparable part of many scientific and engineering 

applications, used for pumping, separating, and 

mixing in MEMS devices. Electroosmosis refers to 

the bulk liquid motion induced by an applied 

external electric field along electro-statically 

charged surfaces. An important characteristic of the 

electroosmosis-based microfluidic systems is that 

they do not require any moving components. This, 

in turn, results in a simpler design, an easier 

fabrication and more importantly, enhanced 

functionality for such systems compared to other 

mechanical-based configurations (Karniadakis et al. 

2005; Probstein 1994). 

In many practical applications, a compound 

electroosmotic and pressure driven force may be 

involved. However, hydrodynamic characteristics 

of combined pressure-driven and electroosmotic 

flow (PDEOF) differ significantly from those of 

both conventional pressure-driven flow (PDF) and 

pure electroosmotic flow (EOF). 

Microfluidic devices, however, are more 

frequently involved in analyzing and/or processing 

biofluids (such as solutions of blood, saliva, 

protein and DNA), polymeric solutions and 

colloidal suspensions. These fluids reveal non-

Newtonian characteristics and their behaviors are 

rather more complicated when compared with 

their Newtonian counterparts. For such fluids, 

both the fluid rheological behavior and the 

microscale effects are absolutely important and 

influential. Moreover, in order to describe the flow 

features of these flows, the more general Cauchy 

momentum equation with appropriate fluid 

constitutive relations must be used instead of the 

Navier-Stokes equations. Since electrokinetics 

results from the coupling of hydrodynamics and 

electrostatics, it is straightforward to believe that 

non-Newtonian hydrodynamics would modify the 

conventional Newtonian electrokinetics. Among 

various models proposed as fluid constitutive 

relations for non-Newtonian fluid flow behavior 

are power-law, Bingham, Eyring, PTT, and 

FENE-P models. 

Most of the available research on non-Newtonian 

liquid flow in microchannels with consideration of 

electroosmotic forces is devoted to pure EOFs 

(e.g., see Zhao et al. 2008; Tang et al. 2009; Vasu 

and De 2010; Zhao and Yang 2011; Ng and Qi 

2013; Huang and Yao 2014), and there are only a 

handful number of studies targeting hydrodynamic 

aspects of the PDEOF counterparts in the 

literature. Berli and Olivares (2008), for example, 

theoretically obtained solutions for predicting the 

flow rate and electric current of non-Newtonian 

fluids as functions of simultaneously applied 

electric potential and pressure gradients in slit and 

cylindrical microchannels. Employing a finite 

volume method, Park and Lee (2008) numerically 

obtained flow field solution of full Phan-Thien-

Tanner (PTT) constitutive equation in a 

rectangular duct under the action of an external 

electric field and an applied pressure gradient. 

Solving the Poisson-Boltzmann and the 

momentum equations using a finite difference 

method, Bharti et al. (2009) investigated 

electroviscous effects on steady, fully developed, 

pressure-driven flow of power-law liquids through 

a uniform cylindrical microchannel. They found 

that compared to the Newtonian liquids, the 

electroviscous effect is stronger in shear-thinning 

and weaker in shear-thickening liquids. Afonso et 

al. (2009, 2011) developed analytical solutions for 

hydrodynamic characteristics of combined 

electroosmotic and pressure driven flow of 

viscoelastic fluids in microchannels. Using a finite 

volume method, Davidson et al. (2010) 

numerically investigated electroviscous effects on 

pressure-driven flow of a Carreau shear-thinning 

liquid in a typical contraction-expansion 

microsystem at low Reynolds numbers. Hadigol et 

al. (2011) numerically analyzed PDEOF of power-

law fluids in microchannels and micropumps 

using a finite volume scheme. Babaie et al. (2011) 

studied the electroosmotic flow of power-law 

fluids in the presence of pressure gradient in a slit 

microchannel. Afonso et al. (2012) used a finite 

volume method to solve the relevant coupled 

equations for general electro-osmotic flows of 

viscoelastic fluids in a cross-slot geometry using 

the upper-convected Maxwell and the simplified 

Phan-Thien-Tanner models. Ng (2013) developed 

analytical solutions for steady EOF of a 

viscoplastic material, namely Casson fluid, 

through a parallel-plate microchannel. Most 

recently, Zhu et al. (2014) have discussed the 

periodical flow of power-law fluids with 

electroviscous effects through a rectangular 

microchannel. In this study, the time evolution of 

velocity field is computed for different types of 

fluids, periodical Reynolds number, zeta potentials 

and dimensionless electrokinetic width. 

In many lab-on-chip systems, the cross section of 

microchannels made by modern micromachining 

http://www.sciencedirect.com/science/article/pii/S0377025714000172
http://www.sciencedirect.com/science/article/pii/S0377025714000172
http://www.sciencedirect.com/science/article/pii/S0377025713001869
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technology is close to an annular shape. Micro-

annulus is a widely applicable form of 

microchannels used in the design and fabrication 

process of many practical micro technologies such 

as micro-heat pipes, -heat exchangers, -mixers, 

and micro-reactors (Nouri-Borujerdi and Layeghi 

2005; Westheimer and “Bud” Peterson 2001; 

Scampavia et al. 1995; Kuznetsov et al. 2009). In 

practice, EOF in a capillary annulus is 

encountered in applications such as 

electrophoretic separation of proteins and 

chemical remediation of contaminated soil. In 

addition, the annulus geometry is also employed 

as a novel microfluidic model for blending 

chemical and biological fluids (Jian et al. 2010). 

However, in studying hydrodynamic features of 

the PDEOF of non-Newtonian fluids, the annular 

geometry has received much less attention 

compared with microchannels with other types of 

cross-section.  

In the present paper, however, an original attempt 

has been made to scrutinize special hydrodynamic 

features of PDEOF of a typical biofluid through 

micro-annuli. A common rheological model for 

biofluids with shear-dependent viscosity, namely, 

the power-law model is employed in this study, 

since it represents adequately, for engineering 

purposes, the rheology of many biofluidic 

substances over a wide range of shear rates. 

Although this model does not asymptote to 

Newtonian behavior in the limits of both zero and 

very large shear rates, it has the advantage of both 

applicability and simplicity to justify its use in 

investigations of shear-dependent flow behaviors 

(Bharti et al. 2009). For instance, the dependence 

of blood viscosity on the shear rate or the non-

Newtonian nature of blood may be described by 

the power-law model. This model can then be 

considered as a scientific basis for the study of 

blood fluidity in different disease conditions 

(Hussain et al. 1999). The governing nonlinear 

equations in the present study are treated 

numerically in the exact form without using the 

Debye-Hückel linearization, which allows the 

solution to cover flows with a wide range of 

electric potential values. In the following, after 

numerically solving the governing equations, role 

of the key parameters in hydrodynamic behavior 

of the flow is analyzed and discussed in detail. 

2. MATHEMATICAL FORMULATION 

A schematic diagram of the problem under 

consideration is shown in Fig. 1. The configuration 

consists of two concentric cylinders of inner and 

outer radii, ir  and or , respectively. It is assumed 

that the fluid passing through the micro-annulus 

obeys the power-law model and the flow is laminar 

and hydrodynamically fully developed. Moreover, 

the electrostatic potentials at the wall-fluid 

interfaces are i  and o , as illustrated in the 

figure. Here, just a half channel is considered due to 

the symmetry through the horizontal mid-plane of 

the micro-annulus. 

 

 
Fig. 1. Schematic diagram of the configuration in 

case of flow with adverse pressure gradient 

( 0dp dx  ). 

 

2.1 Electric Potential Field 

Assuming a symmetrical electrolyte of valence and 

a Boltzmann distribution of electrolyte ions in the 

electric double layer, the electric potential field is 

governed by the following Poisson equation 

 

 
 2

0

1  
    

 

e rd d
r r

r dr dr





 (1) 

 

where   is the electric potential,   is the relative 

dielectric constant of the solution, 0  is the 

permittivity of a vacuum, and  e r  is the net 

charge density at a radial distance r  given by 

 

  0
0

0

2 sinh

 
   

 
e

B

z e
r n z e

k T


  (2) 

 

Here, n  is the ion density, e  is the proton charge, 

0z  is the valence number of ions in the solution, 

Bk  is the Boltzmann constant, and 0T  is the 

ambient temperature. A combination of Eqs. (1) and 

(2) gives 

 

0 0

0 0

21
sinh

  
   

   B

n z e z ed d
r

r dr dr k T




 (3) 

 

Non-dimensionalization of the above Poisson-

Boltzmann equation yields  

 

 
*

* 2 *

* * *

1
sinh

 
 

 

d d
R

R dR dR


   (4) 

 

in which *
0 0Bz e k T  , *

oR r r , ok r  , 

and the parameter k  known as the reciprocal 

of Debye length, D , is given by 

 
1

2 2 2
0 0 0

2  Bk n z e k T .  

 

On the system boundaries, however, we have 

set 

 

   * *, 1 i oR     (5) 
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where i oR r r  and 

 0 0
,Bz e k T i o     .  

 

2.2 Flow Field 

The Cauchy momentum equation governing the 

motion of the power-law electrolyte can be 

described as 

 

    
DV

p F
Dt

   (6) 

 

where   is the density, V  denotes the velocity 

vector, p  is the pressure,   represents the stress 

tensor, and F  is the body force vector. Assuming 

that the body force acts in the x  direction, this 

term can be replaced with  e xr E , where  e r  

represents the local net charge density, and xE  is 

the external electric field intensity applied along the 

axis direction. To ensure that the flow is fully-

developed, it is assumed that L l , where L  is 

the microchannel length and l  is the length of the 

hydrodynamic developing (entry) region (Yang et 

al. 2005; Kandlikar et al. 2014). 

The shear stress for power-law fluids follows the 

below consecutive relation  

 

rx

du

dr
   (7) 

 

In this relation,  u u r  is the axial velocity 

component for the steady-state and 

hydrodynamically fully developed flow considered 

here, while the transverse velocity component v  

equals zero. In addition,   is the effective 

viscosity given by the following relation (Zhao et 

al. 2008; Bharti et al. 2009) 

 
1

2 2

0



  
   

   

n

du

dr
   (8) 

 

where 0  is the flow consistency constant and n  

is the flow behavior index. Depending on the value 

of n , different flow types such as shear-thinning 

flow (for 1n  ) or shear-thickening flow (for 

1n  ) are encountered, and by setting 1n   the 

Newtonian behavior is recovered. 

Considering the already mentioned assumptions and 

combining Eqs. (2) and (6)-(8), the streamwise 

momentum equation is reduced to 

 
1

2 2

0

0
0

0

2 sinh

n

x

B

d du du dp
r

r dr dr dr dx

z e
n z e E

k T









 
   

   
    

 

 
  

   

(9) 

Expressing the above equation in a dimensionless 

form, we have 

 

 

1

2 2* * 1
*

* * * *

0

1
*

0

0

1

2 sinh









 
    
     
    

 

n

n

o

n

HS

n

o
xn

HS

d dU dU r dp
R

R dR dR dR u dx

r
n z e E

u






 

(10) 

where 
*

HSU u u , and HSu  represents the 

Helmholtz-Smoluchowski electroosmotic velocity 

for power-law fluids given by Zhao et al. (2008) 

 
1

1

0

0

  
  

 

n n
o xn

HS D

E
u n

 



 (11) 

 

Rewriting Eq. (10) using a new parameter  , we 

will obtain 

 

 

1
2 2* *

*

* * * *

1
*

1 1

sinh





 
     
         

     
 

n

n

n

n

o

d dU dU n
R

R R dR dR n

n






 

(12) 

in which o  is the dimensionless form of o , and 

the forcing ratio,  , is defined as 

 

 
n

PD

n

HS

u

u
 (13) 

 

Here, PDu  is a finite velocity whose value is related 

to the maximum velocity, maxU , of a pressure 

driven power-law flow in a microannulus (with 

0ir  ) as 

 

1

max

0

2
1


 

    
 

nn
n n o
PD

r n dp
u U

n dx
 (14) 

 

After rearranging Eq. (12), the following equation 

can be readily obtained 

 

 

 

2 * *
*

* * *

1
*

1

1
sinh

n n

n

o

d U dU
n R

dR nR dR

n

n n








  
    

  

 
   
 

 (15) 

for which we have introduced 

 

 

1
2 2*

*

*



  
    
   

n

dU
R

dR
 (16) 

 

Meticulously going through Eqs. (13)-(15), one can 

realize that for a positive HSu , positive values of 
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  correspond to the case of pressure assisted flow 

 0dp dx  , while negative values of this 

quantity are associated with the pressure opposed 

flow  0dp dx   and ultimately, 0   refers to 

the pure electroosmotic flow. 

The boundary condition for the velocity field is set 

as  

 
* *( ) 0 , (1) 0 U R U  (17) 

3. SOLUTION PROCEDURE 

Discretization of the governing equations based on 

an implicit finite difference method with a central 

difference scheme yields 

 

   

* *
* * *

1 1* *

2
2 * *

1 2 1
2 2

sinh

  

 



    
       

   



R R

R R

R

  

 

 (18) 
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* *
* * *

1 1* *

1
2

* *

1 2 1
2 2

1
sinh

n n

n

o

R R
n U U U

nR nR

n
R

n n





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 





      
        

     

  
      

   

 

(19) 

where the subscript   represents  -th node in the 

one-dimensional grid considered here. To simplify 

the solution process and also to supply a better 

convergence, the following assumptions are made 

in the numerical simulation. In order to obtain a 

linear system of equations, the term   in the left-

hand side of Eq. (19) is replaced by the 

corresponding value of the previous iteration, say 

 p . This means that this term is considered as a 

constant at each iteration and hence, this quantity 

can be transferred to the right hand side of the 

discrete equation. Furthermore, it is observed that 

treating the term  *sinh   in Eq. (18) as a source 

term leads to the instability of the solution. 

Therefore, this term has been shifted to the left-

hand side of this equation. According to the above, 

the resulting forms of the discrete equations are 

 

  
*
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*
*

1*

1 2
2

1 0
2



  







 
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 
  

 

R
R

R

R

R

  



 

(20) 
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n n

p n

o

R R
U U U

nR nR

R n

n n n






 

(21) 

where 
* *sinh( )     , and the superscript P  

is used to show that the corresponding quantity is 

calculated based on the value of the major variables 

at the previous iteration. After providing initial 

guess values for both equations, the discrete 

algebraic equations are solved by employing the 

Tridiagonal matrix algorithm (TDMA) scheme. 

Furthermore, the values of the quantities   and 

  at each iteration are set as guess values for the 

next iteration. This procedure continues until the 

convergence criterion, which is the achievement of 

relative error of 810 , is satisfied. It is worth 

mentioning that although the step size 
* 0.001R   provided us with acceptable results 

in most cases, 15,000 grid points are used in the 

simulation to improve the accuracy and to obtain 

mesh independent results. 

4. OTHER ASSOCIATED QUANTITIES 

To this end, the main features of the problem under 

consideration have been presented and the 

numerical strategy used to solve the governing 

equations is discussed. After determining the 

velocity distribution, other associated 

hydrodynamic quantities such as friction factor, 

mean velocity, and viscosity ratio can be easily 

determined.  

The friction factor is defined as  

 

2

2


w j

j

HS

f
u




 (22) 

 

in which w  is the shear stress at the interface and 

 ,j i o  represents the inner and outer walls, 

respectively. This factor can be expressed in the 

form of the Poiseuille number as follows 
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where 
1





j

R j i
R

j o
 and the Reynolds number 

is specified as 
 2

0Re



n n

HS ou r  . 

The dimensionless mean velocity can be obtained 

through 

 

2

1

* * *

*

2
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
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
R

m

U R dR

U
R

 
(24) 

 

It should be noted that in order to evaluate the value 

of the integral observed in the right-hand side of the 

above equation the trapezoidal rule is employed.  

Another important parameter is the ratio of the 

viscosity at a given point to its value at the outer 

wall, namely the viscosity ratio, introduced as 

 
*( )

(1)




wo

R


 (25) 
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5. RESULTS AND DISCUSSION 

The main parameters governing fluid flow in fully 

developed combined pressure and 

electroosmotically driven flows in the annular 

microchannel considered here are found to be the 

radius ratio, R , dimensionless wall zeta potential, 

 , Debye-Hückel parameter,  , forcing ratio,  , 

and the flow behavior index, n . In the following, 

the interactive effects of the above mentioned 

influential parameters on major quantities such as 

the velocity distribution, Poiseuille number, fluid 

viscosity ratio and dimensionless mean velocity are 

discussed. 

 

5.1 Velocity Distribution 
 

Figure 2 shows a comparison between transverse 

distribution of the dimensionless velocity obtained 

through the current numerical investigation and the 

analytical solution presented in Tsao (2000) for 

pure electroosmotic Newtonian flow through a 

micro-annulus. Note here that since the analytical 

approach is based on the Debye-Hückel 

approximation, in the discrete equations we have set 

 * *sinh    to  
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Fig. 2. Normalized velocity distribution versus 

radial distance: comparison of the results 

obtained in the present study with the exact 

solution given by Tsao (2000). 

 

make a reasonable comparison. As seen, there is an 

excellent agreement between our results and those 

of Tsao (2000) at both low and high values of the 

Debye-Hückel parameter. 

Figure 3 aims at elucidating the effect of the 

dimensionless zeta potential on the velocity field. 

This figure which is associated with the pressure 

assisted shear-thinning flow with 0.5n  , 1   

and 100   reveals that as   approaches higher 

values, the maximum value of the velocity 

increases. As seen, at low values of the 

dimensionless zeta potential (i.e., 0.5  ) the 

simplified solution under the Debye-Hückel 

approximation seems appropriate. Another 

noteworthy point is that at high values of the 

Debye- 
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Fig. 3. Normalized velocity distribution 

across the channel at different values of   

for the shear-thinning flow with 0.5n   in 

case of the pressure assisted flow, while the 

simplified solution is related to 0.5  . 

 
Hückel parameter (such as 100  ) the electric 

double layer is limited to a small region in the 

vicinity of the walls and a vast majority of the 

channel width is outside the electric double layer 

(EDL). 

Presented in Fig. 4a are the dimensionless velocity 

distribution across the channel predicted by the 

current study and the analytical solution given by 

Tsao (2000), at different values of   and for 

0.5n  , 20   and 3i o   . One can readily 

infer from the figure that the simplifying 

assumption of the Debye-Hückel approximation 

seriously affects the flow field solution and leads to 

significant discrepancies between the numerical and 

analytical results not only for the pressure assisted 

flow, but also for the pure electroosmotic and 

pressure opposed flows. Furthermore, as expected, 

higher velocities exist in case of pressure assisted 

flow compared to the other flow patterns due to the 

cooperation of pure electroosmotic and Poiseuille 

flows in determining the final solution for the flow 

field while a favorable pressure gradient is applied. 

Interestingly, in case of pure electroosmotic flow 

with 0.5n  , the results show that the maximum 

velocity exceeds the Helmholtz-Smoluchowski 

velocity. It, however, is beyond the capability of the 

analytical solution to capture this phenomenon. To 

also consider the case with walls of arbitrary zeta 

potential, the effect of the ratio of zeta potentials, 

 r o i   , on the velocity distribution for the 

shear-thinning and shear-thickening flows with 

10.0   and 5.0   is demonstrated in Fig. 4b. It 

is observed that an increase in the value of r  -

which corresponds to increased values of the zeta 

potential at the outer wall, o , when i  is set to 

0.1- results in higher/lower amounts of velocity and 

consequently, greater/smaller mean velocity at the 

channel cross-section for the shear-thinning/shear-

thickening flow pattern. The difference in the trends 

observed for the two flow patterns is due to the 
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diverse impact of the dimensionless zeta potential at 

the outer wall on the velocity distribution through 

Eq. (12) for different values of the flow behavior 

index. 
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Fig. 4. Velocity profile across the channel at 

different values of (a)   (b) r . 

 
Figure 5 illustrates normalized velocity distribution 

across the channel at different values of n  and   

for both pressure assisted and pressure opposed 

flows with 40  . Figure 5a states that for a 

positive value of the forcing ratio like 5  , the 

velocity profile pertained to the shear-thinning fluid 

exceeds its shear-thickening counterpart. This 

difference in velocity magnitude originates from the 

effect of n  on the effective viscosity in Eq. (8). 

Furthermore, the shear-thinning flow is found to be 

more sensitive to the dimensionless zeta potential 

parameter, which shows that such a flow is 

absolutely prone to miscalculation of associated 

flow field quantities while applying the Debye-

Hückel approximation. Similar to the pressure 

assisted flow, for the pressure opposed flow, the  

 

effect of   on the shear-thinning flow is more 

pronounced, which is depicted in Fig. 5b. As is 

obvious from this figure, opposite contributions of 

the  

pressure and electroosmotic forces to the fluid 

motion in this case bring about a velocity 

distribution with both a local minimum value at 

moderate radial distances and sharp gradients in the 

vicinity of the system boundaries inherited from the 

pure electroosmotic and Poiseuille flows. 

Furthermore, just like the flow with favorable 

pressure gradient, in case of flow with adverse 

pressure gradient, increasing the dimensionless zeta 

potential increases the velocity for the shear-

thinning flow, while the opposite is true for the 

shear-thickening flow throughout much of the 

channel cross section.  
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Fig. 5. Normalized velocity distribution 

across the channel at different values of n  

and   for (a) pressure assisted flow (b) 

pressure opposed flow. 

 

5.2 Fluid Viscosity Ratio and Poiseuille 

Number  
 

The fluid viscosity ratio versus the radial distance at 

different values of the flow behavior index for 

pressure assisted flow with 10  , 5   and 

1i o    is plotted in Fig. 6. It can be deduced  

 

from the figure that for the shear-thinning flow a 

singularity occurs in the associated profiles due to 

the definition of the fluid viscosity ratio in Eq. (25). 

In addition, the shear-thickening fluids exhibit 

inviscid characteristics at special values of the 

radial distance where the viscosity ratio becomes 

zero. These observations, however, are related to 

the unrealistic physical results, introduced by the 
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power-law correlation, that viscosity either vanishes 

or becomes infinite in the limits of large or small 

shear-rates, respectively. Before the singularity 

point the viscosity increases with increasing the 

radial distance, while after the singularity the 

behavior is vice versa. Note that the singularities 

take place at the radial distances where the velocity 

gradient equals zero. For a Newtonian fluid, the 

viscosity remains constant across the channel, as 

expected. The behavior of the viscosity ratio 

associated with the shear-thickening fluids 

completely differs from that of the shear-thinning 

fluids so that this quantity exhibits a  
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Fig. 6. Effect of the flow behavior index on the 

viscosity ratio for flow with 10  , 5   and 

1i o   . 

 

decreasing-increasing trend from the inner wall up 

to the outer boundary.  

Figure 7 examines the effect of the Debye-Hückel 

parameter on the distribution of the viscosity ratio 

for the pressure assisted shear-thickening flow with 

1.2n  , 5   and 1i o   . It is observed that 

small values of   generate more monotonous 

viscosity distributions, while large values of this 

parameter cause sharp viscosity variations near the 

walls. In fact, at small values of   the velocity 

profile is nearly similar to that for the Poiseuille 

flow and a nearly uniform driving force exists in the 

flow domain. By increasing the dimensionless 

Debye-Hückel parameter, as stated before, EDL 

becomes limited to smaller regions close to the 

walls, restricting the electroosmotic driving force to 

smaller portions of the  

flow. This, in turn, results in more plug-like 

velocity profiles and consequently, high velocity 

gradients inside the electric double layer as well as 

a sharp viscosity rise in the vicinity of the solid 

boundaries. 

The Poiseuille number, which is considered as a 

crucial variable especially for optimization 

objectives, is discussed in the following. The inner 

and outer Poiseuille numbers as functions of R  at 

different values of n  and   for flow with 5   

and 1i o    are demonstrated in Fig. 8. As is 

clear, the behaviors of the Poiseuille numbers at the 

inner and outer walls are almost similar; i.e., at 

fixed values of the flow behavior index and the 

forcing ratio, both Reif  and Reof  decrease with 

increasing the radius ratio. In addition, at a fixed 

value of  , higher values of Poiseuille number are 

observed for the shear-thickening flow compared to 

the shear-thinning counterpart. It is also inferred 

from the figure that the pressure assisted flow 

exhibits greater values of shear stress than the 

pressure opposed flow; however, the discrepancy 

tends to diminish as the annular space becomes 

smaller ( R  increases). This observation  
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Fig. 7. Effect of the Debye-Hückel 

parameter on the viscosity ratio for the 

pressure assisted shear-thickening flow with 

1.2n  , 5   and 1i o   . 

 

may be explained regarding the fact that the former 

flow pattern obtains higher velocity magnitudes and 

consequently greater velocity gradients inside the 

electric double layer.  

Figure 9 is the exhibition of the Poiseuille number 

at the inner wall versus the Debye-Hückel 

parameter for different values of the wall zeta 

potential and flow behavior index, while the forcing 

ratio is fixed at 5  . It can be stated that 

increasing both   and   monotonously increases 

the magnitude of Reif , regardless of the value of 

n . The reason is that an increase in the value of the 

former parameter leads to the production of greater 

electroosmotic driving forces within the domain, 

while enhancing the latter causes a reduction in the 

Debye length. Both of the aforementioned attitudes 

bring about larger velocity gradients inside EDL 

and consequently, greater Poiseuille numbers are 

achieved. In addition, considering similar behaviors 

of the Poiseuille numbers related to flows with 

0.5   and 5   (not shown here), the conclusion 

made while comparing Reif  for the shear-thinning 

and shear-thickening flows in Fig. 8 is shown to 

apply not only to the special case of 5  , but to 

the whole range of the Debye-Hückel parameter 

considered here. Another interesting point is that at 

lower values of   for which the effect of the 

electroosmotic force is dominant in wider portions 
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of the microchannel, the discrepancy between the 

Poiseuille number associated with the shear-

thinning and shear-thickening flows becomes 

negligible.  
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Fig. 8. Variation of the Poiseuille number with 

n  and   in terms of R  for flow with 5   

and 1i o   : (a) inner wall (b) outer wall. 
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Fig.9. Variation of the Poiseuille number at 

the inner wall with n  and   in terms of   

for flow with 5   and 0.5R  . 

 

5.3 Dimensionless Mean Velocity 
 

The variation of the dimensionless mean velocity, 

*
mU  -which can be considered as a measure for the 

volumetric flow rate- with n  and   as a function 

of R  is displayed in Fig. 10. Here, we have set 

5   and 1i o   . Generally speaking, for 

both shear-thinning and shear-thickening flows, 

higher dimensionless mean velocities are 

encountered while applying the favorable pressure 

gradient. However, for both fluids, the difference 

between the velocities pertained to the pressure 

assisted and pressure opposed flows becomes nearly 

undistinguishable at higher values of the radius 

ratio. In addition, regardless of the value of  , at 

lower values of R  the mean velocity associated 

with the shear-thinning flow is greater than that of 

the shear-thickening flow, while at higher values of 

the parameter it is vice versa. Another noteworthy 

feature is that for all values of the flow behavior 

index and forcing ratio considered here, increasing 

values of R  lead to a decrease in the dimensionless 

mean velocity. 
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Fig.10. Variation of the dimensionless mean 

velocity with n  and   in terms of the radius 

ratio for flow with 5   and 1i o   . 

 
Figure 11 is an illustration of the dimensionless 

mean velocity as a function of the Debye-Hückel 

parameter at different values of the dimensionless 

wall zeta potential and flow behavior index in case 

of pressure assisted flow with 5  . Different 

behaviors are observed for the shear-thinning and 

shear-thickening flows. More precisely, 
*
mU  

monotonously increases with an increase in   in 

case of shear-thickening flow, whereas a local 

maximum is observed in the profile related to the 

shear-thinning flow. Moreover, increasing values of 

the dimensionless zeta potential are found to 

drastically increase the mean velocity associated 

with the shear-thinning flow, while that of the 

shear-thickening flow is independent of   in a 

wide range of the Debye-Hückel parameter. This 

figure also suggests that for all values of the Debye-

Hückel parameter presented here, higher volumetric 

flow rates would be attained by choosing a shear-

thinning liquid as the working fluid. 
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Fig. 11. Normalized mean velocity versus the 

Debye-Hückel parameter at different values of 

n  and   in case of flow with favorable pressure 

gradient. 

 
The dimensionless mean velocity versus the flow 

behavior index for the pressure assisted, pure 

electroosmotic and pressure opposed flows with 

10   and 1i o    is plotted in Fig. 12. 

Inclusively going through the figure, one can 

readily deduce that increasing values of the flow 

behavior index tend to monotonously reduce the 

mean velocity for pressure assisted and pure 

electroosmotic flows, while exhibit a different trend 

in the presence of remarkable values of opposed 

pressure. To elucidate more, in case of pressure 

opposed flows, 
*
mU  firstly increases as n  

approaches higher values and after that, a 

decreasing trend is observed. It is instructive to 

mention that at higher values of the flow behavior 

index less sensitivity to the applied pressure 

gradient is observed. The evidence is the closeness 

of the mean velocity profiles for the shear-

thickening flow. Moreover, for the parameters 

mentioned here, the highest value of the volumetric 

flow rate belongs to the pressure assisted shear-

thinning flow with 0.5n  . 
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Fig. 12. Normalized mean velocity versus the 

flow behavior index for pressure opposed, pure 

electroosmotic and pressure assisted flows. 

6. CONCLUSIONS 

In the present study, the hydrodynamically fully 

developed combined pressure and 

electroosmotically driven flow of non-Newtonian 

power-law liquids through a uniform micro-annulus 

is investigated numerically. The Poisson-Boltzmann 

and Cauchy momentum equations are solved under 

the classical boundary condition of no velocity-slip 

for the flow field. Considering the Poisson-

Boltzmann equation in the exact form without using 

the Debye-Hückel approximation, an iterative 

numerical scheme based on a finite difference 

method has been employed to solve the governing 

equations. The main influential parameters are 

found to be the radius ratio, R , flow behavior 

index, n , forcing ratio,  , dimensionless wall zeta 

potential,  , and the Debye-Hückel parameter,  . 

Some key results of this study can be summarized 

as follows: 

 

 As   approaches higher values, the maximum 

value of the velocity increases. Furthermore, at 

high values of the Debye-Hückel parameter the 

electric double layer is limited to a small region 

in the vicinity of the walls and a vast majority 

of the channel width is outside the EDL. 

 For the shear-thinning flows, a singularity 

occurs in the profiles due to the definition of 

the fluid viscosity ratio. Before the singularity 

point, the viscosity increases with increasing 

the radial distance, while after the singularity, 

the behavior is vice versa. The singularities 

take place at the radial distances where the 

velocity gradient equals zero. For a Newtonian 

fluid, however, the viscosity remains constant 

across the channel, as expected. The behavior 

of the viscosity ratio associated with the shear-

thickening flows completely differs from that 

of the shear-thinning fluids so that this quantity 

exhibits a decreasing-increasing trend from the 

inner wall up to the outer boundary. 

 The Poiseuille number is observed to increase 

with increasing values of the dimensionless 

Debye-Hückel parameter, the wall zeta 

potential and the flow behavior index, whereas 

it is a reducing function of the radius ratio. 

 Increasing values of the flow behavior index 

tend to monotonously reduce the mean velocity 

for pressure assisted and pure electroosmotic 

flows, while exhibit a different trend in the 

presence of remarkable values of opposed 

pressure. To elucidate more, in case of pressure 

opposed flows, 
*
mU  firstly increases as n  

approaches higher values and after that, a 

decreasing trend is observed. Another 

noteworthy feature is that for all values of the 

flow behavior index and forcing ratio 

considered here, increasing values of R  

decrease the dimensionless mean velocity. 
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