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ABSTRACT 

This work aims to study numerically the steady natural convection in a vertical cylinder filled with an Al2O3 

nanofluid under two different external magnetic fields (Br, Bz) either in the radial   or axial directions. The 

cylinder having an aspect ratio H/R0=1 is bounded by the top and the bottom disks at temperatures Tc and Th, 

and by an adiabatic side wall. The equations of continuity, Navier-Stokes and energy are non-dimensionalized 

and then discretized by the finite volume method. A computer program based on the SIMPLER algorithm is 

developed and compared with the numerical results found in the literature. The effects of nano-size solid 

volume fraction ranging from 0 to 0.1 and application of the magnetic field in either directions axial and 

radial for various values of Hartmann numbers on flow and thermal fields, and on local and average Nusselt 

numbers are presented and discussed for two values of Rayleigh numbers (Ra=103  and 104). The behaviors of 

average Nusselt number, streamlines, temperature contours, and the both components of velocity are 

illustrated. The results indicate that for small values of the Hartmann number, where the flow remains due to 

the convection, the average Nusselt number decreases when increasing the solid volume fraction and this 

decrease is more important if the magnetic field is applied in the axial direction and by increasing the 

Hartmann numbers. The increasing in the solid volume fraction increases the performance of heat transfer in 

the nanofluid. 

 
Keywords: Natural convection; Nanofluid; Magnetic field. 

NOMENCLATURE 

B magnetic field, Tesla 

Cp specific heat, J kg-1 K-1 

g gravitational acceleration, m s-2 

H cylinder height, m 

Ha Hartmann number (𝐵0𝑅0√𝜎𝑛𝑓 𝜌𝑛𝑓𝜈𝑓⁄ ) 

k thermal conductivity, W m-1 K-1 

NuR local Nusselt number on thebottom hot disk 

Num Average Nusselt number 

p fluid pressure, Pa 

P dimensionless pressure (𝑝̅𝑅0
2 𝜌𝑛𝑓𝛼𝑓

2⁄ ) 

Pr Prandtl number (𝜈𝑓 𝛼𝑓⁄ ) 

r, z cylindrical coordinates, m 

R, Z dimensionless coordinates (𝑟 𝑅0,⁄ 𝑧 𝑅0⁄ ) 

Ra Rayleigh number (𝑔𝛽𝑓𝑅0
3(𝑇ℎ − 𝑇𝑐) 𝜈𝑓⁄ 𝛼𝑓) 

R0 cylinder radius, m 

Sφ source term in Eq. (15) 

T temperature, K 

u, v radial, axial velocities,  m s-1 

U, V dimensionless radial and axial velocities 

 

α thermal diffusivity, m2 s-1 

β thermal expansion coefficient, K-1 

 solid volume fraction 

φ non-dimensional parameter in Eq. 

 (15) 

Г𝜑 diffusion term in Eq. (15) 

μ dynamic viscosity, kg-1m-1s-1 

ν kinematic viscosity, m2 s-1 

θ dimensionless temperature (T-

 Tc)/(Th-Tc) 

ρ density, kg m-3 

σ electrical conductivity, μS cm-1 

ψ dimensionless stream function 

 

Subscripts 
 

ccold, hot 
 

h hot 

f fluid (pure water) 

nf nanofluid 

p nanoparticle 

r, z radial and axial directions 
 

 

http://www.jafmonline.net/


M. Battira and R. Bessaih / JAFM, Vol. 9, No. 1, pp. 407-418, 2016.  

 

408 

1. INTRODUCTION 

Numerous studies were devoted to numerical and 

experimental modeling of the natural convection 

heat transfer problem, because of its wide presence 

in industrial and technological applications, such as 

nuclear reactor systems, heating and cooling  

buildings,solar technology, grain storage, food and 

metallurgical industries. Enhancement of heat 

transfer in such systems is very fundamental from 

the energy saving perspectives. Aprincipal 

constraint against enhancing the heat transfer in 

such systems is low thermal conductivity of the 

usually used fluids like air, water and oil. An 

innovative technique, which insert within the fluid, 

metallic particles of nanometer size hope to increase 

the thermal conductivity of the mixture was first 

introduced by Choi (1995). The term nanofluid was 

then generally used to characterize this type of 

mixture. Many investigations have been carried out 

in rectangular and square enclosures which showed 

an immense increase in thermal conductivity with 

addition of small amounts of nanoparticles (Purta et 

al., 2003; Oztop and Abu-Nada, 2008; Abu-Nada, 

2009). However, very few numerical models have 

been proposed to predict the natural convection in 

vertical cylinder. Haddad et al.(2012) review 

experimental, numerical and theoretical studies for 

natural convection of nanofluid in different types of 

enclosures. They find that most of numerical results 

showed that nanofluids significantly improve the 

heat transfer capability of conventional heat transfer 

fluid. Whereas, experimental results showed that 

the presence of nanoparticles deteriorates heat 

transfer systematically. In some fields of industries, 

such as crystal growth of semi-conductors, material 

manufacturing and the geothermal energy 

extraction, the natural convection is under the 

influence of a magnetic field. There exist several 

studies (Okada and Ozoe, 1989 and 1992; Garandet 

at al., 1992; Kolsi et al. 2007; Kherief et al., 2012) 

dedicated to understanding the influence of 

magnetic field on the flow behavior and the heat 

transfer in the enclosures that are filled with 

electrically conducting fluids. The most significant 

results occur in this context is the existence of 

Lorentz force that affects heat transfer rate. The 

application of magnetic field, decrease the heat 

transfer rate and the use of nanofluid enhance the 

heat transfer in the enclosure. In some engineering 

systems like the magnetic fields sensors, the 

magnetic storage media and the cooling systems of 

electronic equipment, the application of magnetic 

field is necessary and the enhanced  heat transfer 

rate is desirable. The idea of using nanofluids as 

working fluid in an enclosure to improve the heat 

transfer performance in such devices was first 

presented by Ghasemi et al. (2011). The authors 

investigated the effect of transverse magnetic field 

on the natural convection in a nanofluid filling a 

square enclosure and they studied the effects of 

appropriate parameters such as Rayleigh number, 

Hartmann number and solid volume fraction on the 

heat transfer performance of the enclosure. They 

find that the heat transfer rate increases with an 

increase of Rayleigh number but it decreases with 

an increase of the Hartmann number. Depending on 

the value of Hartmann number and Rayleigh 

number, an increase of the solid volume fraction 

may result in enhancement or deterioration of the 

heat transfer performance.  

Aminossadati et al. (2011) examined numerically 

the laminar forced convection of a water-Al2O3 

nanofluid flowing through a horizontal micro-

channel. The middle section of the micro-channel is 

heated by a constant and uniform heat flux and 

influenced by a transverse uniform magnetic field. 

The results show that the micro-channel performs 

better heat transfers at higher values of the 

Reynolds and Hartmann numbers. For all values of 

the Reynolds and Hartmann numbers considered in 

this study, the average Nusselt number on the 

middle section surface of the micro-channel 

increases as the solid volume fraction increases. 

The rate of this increase is considerably more at 

higher values of the Reynolds number and at lower 

values of the Hartmann number. Abouali et al. 

(2012); made a critical review on the subject of 

numerical simulation of natural convection in 

enclosures filled with nanofluids. It was shown that 

based on the assumption of single phase flow idea 

for the nanofluids, the same correlations exist for 

prediction of pure fluids heat transfer rate could 

also be used to predict the overall heat performance 

of enclosures filled with nanofluids. It was also 

found that the results of numerical simulations and 

those existing correlations would coincide if the 

correlation proposed by Corcione (2011) is used for 

calculation of the effective thermal conductivity and 

viscosity.  Syam et al. (2012) evaluated 

experimentally the convection heat transfer 

coefficient and friction factor characteristics of 

Fe3O4 nanofluid for flow in a circular tube. They 

found that nanofluid heat transfer is higher 

compared to water and increases with volume 

concentration. Mahmoudi et al. (2013) investigated 

numerically the entropy generation and 

enhancement of heat transfer in natural convection 

flow and heat transfer using copper Cu-water 

nanofluid in the presence of a constant magnetic 

field. The analysis uses a two-dimensional 

trapezoidal enclosure with the left vertical wall and 

inclined walls kept in a low constant temperature 

and a heat source with constant heat flux placed on 

the bottom wall of the enclosure. Their results show 

that at Ra=104 and 105 the enhancement of the 

Nusselt number due to the presence of nanoparticles 

increases with the Hartmann number, but at higher 

Rayleigh number, a reduction has been observed. 

Reza Ashorynejad et al. (2013) investigated 

numerically the effect of static radial magnetic field 

on natural convection heat transfer in a horizontal 

cylindrical annulus enclosure filled with nanofluid. 

The inner and the outer cylinder surfaces are 

maintained at the different uniform temperatures. 

The results reveal that the flow oscillations can be 

suppressed effectively by imposing an external 

radial magnetic field. Also, it is found that the 

average Nusselt number is an increasing function of 

nanoparticle volume fraction and Rayleigh number, 

while it is a decreasing function of Hartmann 

number.Nasrin and Alim (2014) examined 
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numerically the influence of nanofluid with double 

nanoparticles on the forced convection in a flat 

plate solar collector, they compared heat transfer 

phenomena among four nanofluids. They found that 

the average Nusselt number for water-Ag nanofluid 

is higher than others.  

To the best of our knowledge, no attempts have 

been made as yet to study the effect of the direction 

of an external applied magnetic field on nanofluid 

natural convection in a vertical cylinder. The main 

objective of the present research is an investigation 

of the effect of various parameters such as Rayleigh 

number, Hartmann number and solid particle 

volume fraction on the steady natural convection in 

a vertical cylinder filled with an Al2O3 nanofluid 

under two different external magnetic fields either 

in the radial (Br) or axial (Bz) directions. 

2. PROBLEM FORMULATION 

Figure 1 shows a schematic diagram of the vertical 

cylindrical enclosure having an aspect ratio H/R0=1 

and filled with water-Al2O3 nanofluid. The bottom 

disk is maintained at a hot temperature Th, while the 

top disk is maintained at a cold temperature Tc 

(Tc<Th). The sidewall of the cylinder is assumed to 

be adiabatic.It is assumed that the Al2O3 

nanoparticles and water are in thermal equilibrium 

and the nanofluid is Newtonian and incompressible. 

 
Fig. 1. Geometry of the problem. 

Two different external magnetic fields either in the 

radial (Br) or axial (Bz) directions are applied. The 

thermo-physical properties of the base fluid and the 

nanoparticles presented in Table 1aregiven by Abu-

Nada et al. (2008). The Boussinesq approximation 

for buoyancy flow is adopted.Therefore, the 

governing equations are written in dimensional 
form as follows:  

Table 1 Thermo-physical properties of water 

and nanoparticles 

 Pure Water Alumina (Al2O3) 

Pr 6.2  

ρ (kg/m3) 997.1 3970 

Cp (J/kg K) 4179 765 

k (W/m K) 0.613 40 

β (K-1) 21×10-5 0.85×10-5 
 

Continuity equation in both directions of magnetic 

field: 

𝜕(𝑟𝑢)

𝜕𝑟
+

𝜕(𝑟𝑣)

𝜕𝑧
= 0                                               (1) 

The magnetic field is radial: 

r-Momentum equation: 

𝑢
𝜕𝑢

𝜕𝑟
+ 𝑣

𝜕𝑢

𝜕𝑧
= 

         
1

𝜌𝑛𝑓
[−

𝜕𝑃

𝜕𝑟
+ 𝜇𝑛𝑓 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
) +

𝜕2𝑢

𝜕𝑧2 − 𝜎𝑛𝑓𝐵0
2𝑢)]  

                                                                        (2) 

z-Momentum equation: 

𝑢
𝜕𝑣

𝜕𝑟
+ 𝑣

𝜕𝑣

𝜕𝑧
=

1

𝜌𝑛𝑓
[−

𝜕𝑃

𝜕𝑧
+ 𝜇𝑛𝑓 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣

𝜕𝑟
) +

𝜕2𝑣

𝜕𝑧2
+

(𝜌𝛽)𝑛𝑓𝑔(𝑇 − 𝑇𝑐))]                                           (3) 

The magnetic field is axial: 

r-Momentum equation: 

𝑢
𝜕𝑢

𝜕𝑟
+ 𝑣

𝜕𝑢

𝜕𝑧
=

1

𝜌𝑛𝑓
[−

𝜕𝑃

𝜕𝑟

+ 𝜇𝑛𝑓 (
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
) +

𝜕2𝑢

𝜕𝑧2
)] 

                                                                        (4) 

z-Momentum equation: 

𝑢
𝜕𝑣

𝜕𝑟
+ 𝑣

𝜕𝑣

𝜕𝑧
=

1

𝜌𝑛𝑓
[−

𝜕𝑃

𝜕𝑧
+ 𝜇𝑛𝑓 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣

𝜕𝑟
) +

𝜕2𝑣

𝜕𝑧2
+

(𝜌𝛽)𝑛𝑓𝑔(𝑇 − 𝑇𝑐) − 𝜎𝑛𝑓𝐵0
2𝑣)]                           (5) 

Energy equation in both directions of magnetic 

field: 

𝑢
𝜕𝑇

𝜕𝑟
+ 𝑣

𝜕𝑇

𝜕𝑧
= 𝛼𝑛𝑓 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) +

𝜕2𝑇

𝜕𝑧2]                  (6) 

In the above equations, the density of nanofluid is 

assumed to be constant, except in the buoyancy 

term (−(𝜕𝑝 𝜕𝑧⁄ ) − 𝜌𝑛𝑓𝑔) in the z-momentum 

equation. The buoyancy term can be written 

as−(𝜕𝑝̅ 𝜕𝑧⁄ ) + (𝜌𝑐 − 𝜌𝑛𝑓)𝑔, where 𝑝̅ is the 

modified pressure (𝑝̅ = 𝑝 + 𝜌𝑐𝑔𝑧) and ρc is the 

density of nanofluid at the reference temperature, 

Tc.  

By using the definition of nanofluid thermal 

expansion coefficient,𝛽𝑛𝑓 = −(1 𝜌𝑛𝑓⁄ )(𝜕𝜌 𝜕𝑇⁄ )𝑝, 

the buoyancy term in the z direction can be 

rewritten as: −(𝜕𝑝̅ 𝜕𝑧⁄ ) + (𝜌𝛽)𝑛𝑓𝑔(𝑇 − 𝑇𝑐). 

The classical models reported in the literature by 

Brinkman (1952) are used to determine the 

properties of the nanofluid. 

The thermal diffusivity in equation (6) is given as: 

𝛼𝑛𝑓 = 𝑘𝑛𝑓 (𝜌𝐶𝑝)
𝑛𝑓

⁄                                          (7) 

The electrical conductivity of the nanofluid is given 

as: 

𝜎𝑛𝑓 = (1 − ∅)𝜎𝑓 + ∅𝜎𝑝                                     (8) 

The effective density of the nanofluid is expressed 

as: 

𝜌𝑛𝑓 = (1 − ∅)𝜌𝑓 + ∅𝜌𝑝                                    (9)  

The heat capacitance of the nanofluid is expressed  
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Table 2 A summary of non-dimensional governing equations 

Eqs φ Γφ Sφ (Br) Sφ (Bz) 

Conti-nuity 1 0 0 0 

R-mom-entum U 
𝜇𝑛𝑓

𝜌𝑛𝑓𝛼𝑓
 −

𝜕𝑃

𝜕𝑅
− 𝐻𝑎2𝑃𝑟𝑈 −

𝜕𝑃

𝜕𝑅
 

Z-mom-entum V 
𝜇𝑛𝑓

𝜌𝑛𝑓𝛼𝑓
 −

𝜕𝑃

𝜕𝑍
+

(𝜌𝛽)𝑛𝑓

𝜌𝑛𝑓𝛽𝑓
𝑅𝑎𝑃𝑟𝜃 −

𝜕𝑃

𝜕𝑍
+

(𝜌𝛽)𝑛𝑓

𝜌𝑛𝑓𝛽𝑓
𝑅𝑎𝑃𝑟 − 𝐻𝑎2𝑃𝑟𝑉 

Ene-rgy T 
𝛼𝑛𝑓

𝛼𝑓
 0 0 

 

 

as: 

(𝜌𝐶𝑝)
𝑛𝑓

= (1 − ∅)(𝜌𝐶𝑝)
𝑓

+ ∅(𝜌𝐶𝑝)
𝑝

               (10) 

The thermal expansion of the nanofluid is given as: 

(𝜌𝛽)𝑛𝑓 = (1 − ∅)(𝜌𝛽)𝑓 + ∅(𝜌𝛽)𝑝                  (11) 

The effective dynamic viscosity and thermal 

conductivity of the nanofluid are modeled by 

Brinkman (1952)and Maxwell (1873) 

𝜇𝑛𝑓 = 𝜇𝑓(1 − ∅)−2.5                                       (12) 

𝑘𝑛𝑓 = 𝑘𝑓 [
(𝑘𝑝+2𝑘𝑓)−2∅(𝑘𝑓−𝑘𝑝)

(𝑘𝑝+2𝑘𝑓)+∅(𝑘𝑓−𝑘𝑝)
]                          (13) 

By introducing the dimensionless parameters 

defined as follows: 

𝑅=
𝑟

𝑅0
 ,     𝑍 =

𝑧

𝑅0
 ,   𝑈 =

𝑢

(𝛼𝑓 𝑅0⁄ )
 ,   𝑉 =

𝑣

(𝛼𝑓 𝑅0⁄ )
  ,    

𝑃 =
𝑝 ̅𝑅0

2

𝜌𝑛𝑓𝛼𝑓
2 ,  𝜃 =

𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
 ,𝑅𝑎 =

𝑔𝛽𝑓𝑅0
3(𝑇ℎ−𝑇𝑐)

𝜈𝑓𝛼𝑓
 ,  

𝐻𝑎 = 𝐵0𝑅0√
𝜎𝑛𝑓

𝜌𝑛𝑓𝜈𝑓
 ,𝑃𝑟 =

𝜈𝑓

𝛼𝑓
                                   (14) 

The dimensionless form of the governing equations 

(1)-(6) are presented as:   

𝜕(𝑈𝜑)

𝜕𝑅
+

𝜕(𝑉𝜑)

𝜕𝑍
=

𝜕

𝜕𝑅
(Г𝜑

𝜕𝜑

𝜕𝑅
) 

             + 
𝜕

𝜕𝑍
(Γ𝜑

𝜕𝜑

𝜕𝑍
) + 𝑆𝜑                                       (15) 

Where 𝜑 stands for the dependent dimensionless  

parameters U, V and θ and Гφ and Sφ are the 

corresponding diffusion and source terms, 

respectively, as summarized in Table 2. 

The governing equations are subject to the 

following boundary conditions: 

Symmetry axe: 

At   R=0  U =
∂V

∂R
= 0

∂θ

∂R
= 0                          (16a) 

Adiabatic lateral wall: 

At   R=1U=V=0         
∂θ

∂R
= 0                          (16b)  

Hot bottom disk: 

At   Z=0   U=V=0         θ=1                            (16c) 

Cold top disk: 

AtZ =
H

R0
  U=V=0     θ=0                               (16d) 

The local Nusselt number on the top cold disk is 

defined by: 

NuR(R) = −
knf

kf
(

∂θ

∂Z
)

Z=H
R0

⁄
                              (17) 

The average Nusselt number (Num) is determined 

by integrating the local Nusselt along the hot disk: 

Num = ∫ NuR(R)dR
1

0
                                       (18) 

3. NUMERICAL APPROACH AND 

VALIDATION 

The non-dimensional governing equations (15) with 

the associated boundary conditions (16) were 

discretized using a finite-volume formulation given 

by Patankar (1980). The vectorial quantities (u and 

v) are stored on the faces of volumes and the scalar 

quantities (P and θ) are stored in the centers. For the 

convection and diffusion fluxes were approximated 

by a second-order accurate central differencing 

schemeand the SIMPLER algorithm was utilized to 

handle the pressure-velocity coupling. Finally, the 

discretized algebraic equations are solved by the 

line-by-line tri-diagonal matrix algorithm (TDMA). 

The numerical method was implemented in a 

FORTRAN program. 

3.1   Grid Independency Study 

The effect of grid resolution was examined for ϕ 

=0.1, Ra= 104, and Ha=10 (Br), in order to select the 

appropriate grid density. Results given in Fig. 2 

show that a grid size of 112 × 112 nodes satisfies 

the grid independence. This grid is therefore 

adopted for all numerical simulations, in order to 

optimize theCPU time and the cost of computations. 

 

Fig. 2. Result of grid independence at =0.1, 

Ra=104, Ha=10 ( Br). 
 

3.2   Validation of the Computer Code 

The results of our numerical simulations have been 
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compared to the numerical results of Ghasemi et al. 

(2011). Figure 3. Shows the dimensionless y-

velocity along the horizontal mid-span of the 

enclosure for Rayleigh number Ra=105, solid 

volume fraction ϕ =0.03 and Hartmann numbers 

Ha=0, 30 and 60. Figure 4 provides also, the 

comparisons of streamlines (a) and(c), and 

isotherms (b) and (d) with the same workfor 

Rayleigh number Ra=105, solid volume fraction ϕ 

=0.03 and Hartmann number Ha=30.It can be seen, 

that a good agreement is obtained 
 

0.0 0.2 0.4 0.6 0.8 1.0

-80

-40

0

40

80

 

 

V
(Y

=
0
.5

)

X

       Ra=10
5
,  =0.03

 Present result, Ha=0

 Present result, Ha=30

 Present result, Ha=60

 Ghasemi et al., Ha=0

 Ghasemi et al., Ha=30

 Ghasemi et al., Ha=60

 
Fig. 3. Validation of the present code with results 

of Ghasemi et al. (2011). 

 

 
(a)                                (b) 

Present results 
 

 
(c)                                  (d) 

Results of Ghasemi et al. (2011) 
 

Fig. 4. Validation of the present code with results 

of Ghasemi et al. (2011) for 

Ra=105, =0.03 and Ha=30: 

Streamlines(a) and (c), 

Isotherms (b) and (d). 

4. RESULTS AND DISCUSSION 

The cylinder is filled with a water-Al2O3 

nanofluid. Streamlines and isotherms for Ra=104 

with three values of the solid volume fraction 

(ϕ=0, 0.04, 0.1) without magnetic field (Ha=0) 

and with two values of Hartmann number (Ha=10 

and Ha=80) for either in the radial or axial 

directions of magnetic field are presented in fig.5 

and fig. 6. All variables U, V, θare given in 

dimensionless form. In fig.5 which illustrates the 

streamlines, the buoyancy-driven circulating flows 

within the cylinder are evident for all values of 

Hartmann numbers and for both directions of the 

magnetic field. By adding the magnetic field 

intensity, the strength of circulation decreases and 

this decrease is more pronounced if the magnetic 

field direction is orientedaxially (Bz). That is to 

say, the addition of nanoparticles to pure water (ϕ 

=0) reduces the strength of the flow field, as 

observed by other researchers such as Ho et al. 

(2008). If the magnetic field is oriented radially 

(Br), the vortex core stretches vertically. The 

shape of the vortex changes from circular to 

elliptic. This phenomenon is due to the magnetic 

force, which is against the flow direction and 

causes a considerable reduction in the intensity of 

streamlines. In addition, by increasing the solid 

volume fraction, the intensity of circulation 

decreases but the trends of the vortex do not 

change.Figure6 shows that by applying the 

magnetic field, the flow field is affected and 

subsequently, the dominant mechanism of heat 

transfer changes. The magnetic field has a 

negative effect on buoyancy force and decrease 

the flow motion. This reduction in velocity causes 

a decrease in the convection heat transfer.At 

Ha=10, it is clear that the isotherms are affected 

by variation in the solid volume fraction and by 

the magnetic field direction. 

The domination of the conduction regime which 

appear in horizontal isotherms is more important if 

the magnetic field is oriented axially and with the 

increasing of solid volume fraction (Ha=10, 

ϕ=0.1). The results also show a conduction-

dominated regime with horizontal isotherms at 

high Hartmann numbers (Ha=80). Figure7 

presents the dimensionless axial velocity profiles 

along the midsection (middle plane) of the 

cylindrical enclosure. It can be seen from this 

figure the effects of the solid volume fraction on 

the axial velocity and the effect of the application 

of the magnetic field (Ha=40 and Ha=80) in either 

directions axial and radial for two values of 

Rayleigh number Ra=103 and 104. It is clear that 

as the solid volume fraction of the Al2O3 

nanoparticles increases the absolute magnitude of 

vertical velocity decreases. This decrease is due to 

the suppression of buoyant flows of the nanofluid 

at a higher solid volume fraction of the 

nanoparticles in the nanofluid. In addition, the 

increase in Hartmann number dramatically 

decreases the amount of vertical velocity. The 

absolute magnitude of velocity increases with 

Rayleigh number, because increasing this number 

means increasing buoyancy force.In fig.8, it is 

observed that the Hartmann number has an 

insignificant influence on the temperature profiles, 

because the heat transfer of  

these important values of Hartmann numbers 

(Ha=40, Ha=80) at these two values of the Rayleigh 

number (Ra=103 and Ra=104) is mainly due to the 

conduction. In addition, this figure shows that the  
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 =0                             =0.04                                 =0.1 
 

 
 

 
 

 
 

 
 

 
 

Fig.5. Streamlines at Ra=104 for different Hartmann numbers Ha 

(radial Br and axial Bz magnetic fields) and solid volume fractions . 

 
increasing of the solid volume fraction of 

nanoparticles in nanofluid increases the temperature 

at the mean part of the cylindrical enclosure and 

decreases it near the adiabatic sidewall. 

Figures 9a-b illustrate the variation of 

dimensionless radial velocity U along the height 

ofthe cylinder at Ha=10 (axial Bz and radial Br 

magnetic fields) and for two values of ϕ. It shows 

Ha=0 

Ha=10 (Bz) 

Ha=10 (Br) 

Ha=80 (Bz) 

Ha=80 (Br) 
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 =0                              =0.04                              =0.1 

 

 
 

 
 

 
 

 
 

 
 

Fig.6. Isotherms at Ra=104 for different Hartmann numbers Ha (radial Br and axial Bz magnetic fields) 

and solid volume fractions . 

 
that the enhancement in the buoyancy-force due to 

the increase of Rayleigh number increment  

substantially the radial velocity, and the 

enhancement of the solid volume fraction reduce 

the radial velocity and this reduction is more 

considerable if the magnetic field direction is axial  

and this has a good corresponding with results 

found previously.Figure 10 shows the effect of 

Hartmann number Ha (radial Br and axial Bz 

magnetic fields) on the variation of the average  

Ha=0 

Ha=10 (Bz) 

Ha=10 (Br) 
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Fig. 7. Variation of dimensionless axial velocity V along the mid-span at Ra=103  and Ra=104  

and different values of . 
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Fig. 8. Variation of dimensionless temperature   along the mid-span at Ra=103 (left) and Ra=104 

(right) and for different values of . 
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Nusselt number Num at ϕ=0.04 and for two values 

of Rayleigh number when the cylindrical enclosure 

is filled with a water-Al2O3 nanofluid (ϕ=0.04). For 

Ra=103, where the heat transfer is only due to 

conduction and the magnetic field does not have an 

important effect on the heat transfer performance, 

the average Nusselt number remains unchanged 

when the Hartmann number increases. The average 

Nusselt number does, however, decrease for Ra=104 

if  Ha˂20 when the heat transfer is mainly due to 

convection and this decrease is more important if 

the magnetic field is applied in axial direction (Bz). 

For Ha≥20, the magnetic field suppresses the 

convection flows, so that the average Nusselt 

number becomes practically constant. 
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Fig. 9. Variation of dimensionless radial velocity 

U along the height of the cylinder at Ha=10 

(axial Bz and radial Br magnetic fields) and for 

two values of . 

 
For Ra=104, table 3 illustrates the variation of the 

average Nusselt number (Num) and the maximum 

stream function (|𝛹|𝑚𝑎𝑥) with the solid volume 

fraction at different values of the Hartmann number 

either in the radialor axial directions of the 

magnetic field. The values show that the solid 

volume fraction has an important influence on the 

heat transfer performance of the cylindrical 

enclosure at all values of the Hartmann 

numbers.For Ha≤20, it is clear that the Nusselt 

number decreases strongly with the increasing 

Hartmann number, especially when the magnetic 

field is applied in axial direction. 
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Fig. 10. The effect of Hartmann number (radial 

Br and axial Bz magnetic fields) on the variation 

of the average Nusselt number at =0.04 and for 

two values of Rayleigh number. 

 
Table 3 Average Nusselt number and the 

maximum steam function at various Ha and ϕ 

(Ra=104) 

Ha 
=0 

Num 

=0.04N

um 

=0.1 

Num 

0 2.2053 2.2616 2.2566 

10       Bz 

Br 

1.6634 

1.8445 

1.5754 

1.7806 

1.3762 

1.5840 

20       Bz 

Br 

0.9956 

1.0430 

1.1140 

1.1141 

1.3090 

1.3108 

40       Bz 

Br 

0.9952 

0.9953 

1.1138 

1.1139 

1.3106 

1.3106 

80       Bz 

Br 

0.9954 

0.9953 

1.1125 

1.1138 

1.3107 

1.3105 

 |Ψ|max |Ψ|max |Ψ|max 

0 3.9934 3.8020 3.3994 

10       Bz 

Br 

2.3935 

2.6923 

2.1420 

1.8062 

1.7175 

1.0469 

20       Bz 

Br 

0.9486 

1.3440 

0.7607 

1.0912 

0.5515 

0.7761 

40       Bz 

Br 

0.2363 

0.3878 

0.1981 

0.3201 

0.1565 

0.2486 

80       Bz 

Br 

0.0638 

0.1173 

0.0547 

0.1003 

0.0443 

0.0807 

 
 

As the Nusselt number describes the intensity of the 

convective heat transfer this observation indicates 

clearly the significant inhibition of the convective 

heat transfer by the magnetic field at Ha˃20. For all 

values of Hartmann number, if the solid volume 

fraction increases |𝛹|𝑚𝑎𝑥 is reduced. The addition 

of solid nanoparticles to the base fluid involves an 

increase of  𝜇𝑛𝑓 𝜌𝑛𝑓⁄  in the diffusive term. This 

means weaker circulation flow and lower values of 

the maximum stream function. Also, for Ha=10, as 

thesolid volume fraction increases the heat transfer 

rate decreases. For high values of the Hartmann 

number (Ha≥20), an increase of the solid volume 

fraction results in the increase of the heat transfer 

performance. 
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Figure 11 illustrates the effect of Hartmann number 

Ha (axial magnetic field, Bz)  on the variation of the 

average Nusselt number Num at Ra=104  and for 

different  values of ϕ.We can observe the increase 

in the heat transfer performance in the case of an 

axial direction of the magnetic field with the 

increasing in solid volume fraction ϕ.  
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Fig. 11. The effect of Hartmann number Ha 

(axial magnetic field, Bz) on the variation of the 

average Nusselt number Num at Ra=104 and for 

different values of . 

 
Figure 12 shows the variation of local Nusselt 

number NuR along the top cold disk at Ra=104 

and Ha=10 (radial Br and axial Bz magnetic fields) 

for different values of ϕ. The results show that if 

the solid volume fraction increases the local 

Nusselt number decreases in both directions of the 

magnetic field.Also, it is shown that the local 

Nusselt number when the magnetic field is 

applied axially is less than the one when the 

magnetic field is applied radially and this result is 

in good agreement with earlier finding.The effect 

of solid volume fractionϕ on the variation of the 

average Nusselt number ratio (Num/Num,ϕ=0) at 

Ra=104  and for different Hartmann numbers 

(radial Br and axial Bz magnetic fields) is 

presented in fig. 13.The results presented for 

Rayleigh number Ra=104 show that as the 

Hartmann number increases fromHa=0 to Ha=10, 

the average Nusselt number ratio decreases when 

the solid volume fraction increases and the rate of 

this decrease is more important if the magnetic 

field direction is axial. For Ha ≥ 20, the average 

Nusselt number ratio increases as the solid 

volume fraction increases. This behavior is due to 

the great effect of the magnetic field and its 

stronger suppression of the buoyant flows in the 

nanofluid.  

Table 4 presents the effect of the solid volume 

fraction () on the average Nusselt number (Num) 

and the maximum stream function (|𝛹|𝑚𝑎𝑥) at two 

values of the Rayleigh number (Ra=103 and 

Ra=104). 

The value of Hartmann number considered is 

Ha=20. For these two values of the Rayleigh 

number, the buoyant forces are weak and diffusion 

governs the behavior of the fluid. The addition of 

nanoparticles results in weaker buoyancy-driven 

circulations and low values of maximum stream 

function. That being said, the heat transfer rate still 

expected to increase as the solid volume fraction 

increases. This finding is similar to that of the 

previous results. 
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Fig. 12. Variation of local Nusselt number NuR 

along the top cold disk at Ra=104 and Ha=10 

(radial Br and axial Bz magnetic fields) for 

different values of . 
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Fig. 13. The effect of solid volume fraction  on 

the variation of the average Nu number ratio at 

Ra=104 and for different Hartmann numbers. 

 
Table 4 Average Nusselt number and the 

maximum steam function at various  and at 

Ra=103 and Ra=104 (Ha=20) 

 
Ha=20 (Bz) 

Ra=103 Ra=104 

Ha=20 (Br) 

Ra=103 Ra=104 

0         Num 

|Ψ|max 

0.9954   0.9956 

0.0632   0.9486 

0.9953    1.0432 

0.8394    1.3440 

0.02     Num 

|Ψ|max 

1.0523   1.0524 

0.0584   0.8506 

1.0533    1.0540 

0.0776    1.2160 

0.06     Num 

|Ψ|max 

1.1757   1.1756 

0.0503   0.6808 

1.1756    1.1769 

0.0666    0.9746 

0.1       Num 

|Ψ|max 

1.3087   1.3090 

0.0436   0.5515 

1.3107    1.3108 

0.0576    0.7761 

5. CONCLUSION 

Natural convection in a cylindrical enclosure filled 

with a water-Al2O3 nanofluid and under two 

different external magnetic fields (Br, Bz) either in 

the radial   or axial directions has been studied 

numerically. The effect of the magnetic field 
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direction and some parameters such as the solid 

volume fraction and the Hartmann number on the 

flow and temperature fields, and heat transfer rate 

have been examined. 

The main conclusions are summarized as follows: 

The magnetic field reduces the circulation in the 

cylindrical cavity, when the magnetic field becomes 

stronger. 

If the conduction regime dominates, the strength 

and direction of the magnetic field have a weakness 

influence on the heat transfer rate, but the 

increasing of solid volume fraction increment 

considerably the heat transfer performance for all 

values of Hartmann number. 

For low values of Hartmann numbers (Ha˂20) and 

at Rayleigh number Ra=104 where the convection 

mode remains dominate,  the increasing in solid 

volume fraction in the nanofluid decreases the heat 

transfer performance, especially if the magnetic 

field is applied axially. 
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