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ABSTRACT

Steady, transverse boundary layer flow and heat transfer caused by an exponentially stretching cylinder of
constant radius immersed in an uniform flow of an incompressible, viscous nanoliquid are considered in
the present study. The paper discusses a systematic procedure of obtaining a local similarity transformation
that reduces the governing partial differential equations into ordinary differential equations. Power series
solution is then obtained for velocity, temperature and nanoparticle concentration distributions using the
uni-variate differential transform method. Help is sought from Domb-Sykes plots in making a decision on
the minimum number of terms required in the power series expansion to ensure convergence. Radius of
convergence is quite naturally suggested by these plots. Padé approximants are then appropriately decided
upon to increase the radius of convergence. The algorithm used succeeds in capturing boundary effects, free
stream flow effects and nanoparticle effects on flow and heat transfer. An important finding of the paper is
the prediction of accelerated cooling of the stretching cylinder due to the nanoparticles in the cooling liquid.
In having a desirable property for the extruding cylinder nanoliquid coolant seems an attractive proposition.
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NOMENCLATURE

Cp specific heat at constant pressure
C f skin friction coefficient
p dimensionless pressure
R radius of the cylinder
Rex local Reynolds number
ūw(x̄) stretching velocity in axial direction
ū∞(x̄) free stream velocity in axial direction
u,v dimensionless axial and radial velocity components
vw dimensionless suction/injection velocity
x,r dimensionless axial and radial coordinates

γ transverse curvature
η similarity variable
κ thermal conductivity
λ free stream parameter
µ dynamic viscosity
ϑ kinematic viscosity
θ dimensionless temperature
ρ density
τw surface shear stress
ψ stream function

1. INTRODUCTION

The boundary layer flow and heat transfer on
continuous moving sheet or cylinder are of
practical importance in a number of engineering
processes like continuous casting and spinning of
fibers, polymer fiber coating in fiber technology,
aerodynamic extrusion of plastic sheets, cooling
of an infinite metallic plate in a cooling bath, the
boundary layer along a liquid film in condensation

process, coating of cylindrical wires, a polymer
sheet or filament extruded continuously from a
die, or a long tread traveling between a feed roll
and a wind-up roll. In view of these applications,
boundary layer flow behavior over a continuous
solid surface moving with constant speed in a
Newtonian fluid was initially studied by Sakiadis
(1961a, 1961b). Crane (1970, 1975) extended the
work for flow of a viscous fluid past a linearly
stretching surface and the axisymmetric flow due
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to a stretching cylinder. Lin and Shih (1980)
considered the laminar boundary layer and heat
transfer along horizontally and vertically moving
cylinders with constant velocity and found that
the similarity solutions could not be obtained due
to the curvature effect of the cylinder. The steady
flow of viscous and incompressible fluid outside of
a stretching hollow cylinder in an ambient fluid at
rest has been studied by Wang (1988, 2002, 2007,
2009, 2012) and Wang and Ng (2011). There are
several works covering the effect of transverse
curvature on forced, free and mixed convective
flows over a cylinder (Ishak et al. (2008), Ishak
and Nazar (2009), Bachok and Ishak (2009, 2010),
Rangi and Ahmed (2012)). In some works the flow
over cylinders is considered to be two-dimensional
when the body radius is very large compared to the
boundary layer thickness. For a slender cylinder,
the radius of the cylinder is of the same order
as the boundary layer thickness and hence the
flow is axisymmetric. In this case, the governing
equations contain the transverse curvature term in
the momentum and temperature equations.
Several researchers considered various aspects of
momentum, heat and mass transfer characteris-
tics in boundary layer flow over a exponentially
stretching surface (Elbashbeshy (2001), Khan
and Sanjayanand (2005), Sanjayanand and Khan
(2006), Sajid and Hayat (2008), Bidin and Nazar
(2009), Siddheshwar et al. (2014a, 2014b)). Gupta
and Mahapatra (2003), Sharma and Singh (2009),
Singh et al. (2012) analyzed stagnation point
flow towards a stretching surface and reported
that a boundary layer is formed when stretching
velocity is less than the free stream velocity. As
the stretching velocity exceeds the free stream
velocity then an inverted boundary layer is formed.
Sparse literature is available on stretching sheet
problems, stretching exponentially, in a fluid that is
flowing with uniform velocity called generally as
uniform free stream (Vajravelu and Hadjinicolaou
(1997), Magyari and Keller (1999), Abo-Eldahab
and Ghonaim (2003), Partha et al. (2005), Gireesha
et al. (2014) and Xu (2005)).
In the context of the cooling application situations
mentioned above it seems desirable to consider
high thermal conductivity liquids. Nanoliquids
(Choi and Eastman (1995)) have been shown
to possess high thermal conductivity and hence
exhibit convective heat transfer performance. This
aspect can prove useful in having a desirable final
product in application situations discussed earlier.
Recently, the study of convective transport of
nanoliquids has gained considerable importance
due to such applications. Numerous investigations
on the stretching sheet have been made considering
nanoliquid (Yacob et al. (2011), Hamad (2011),
Noghrehabadi et al. (2011), Nourazar et al. (2011),

Vajravelu et al. (2011), Rosmila et al. (2012), Khan
and Pop (2010), Makinde and Aziz (2011), Rana
and Bhargava (2012), VanGorder et al. (2010),
Hassani et al. (2011), Noghrehabadi et al. (2012),
Anwar et al. (2012), Gashemi and Aminossadati
(2009), Devi and Andrews (2011), Hamad et al.
(2011), Kousar and Liao (2011), Akyildiz et al.
(2011), Vajravelu et al. (2013), Sheikhzadeh et al.
(2011) and references therein).
From the literature survey it is obvious that there is
no reported work on the exponentially stretching
cylinder problem involving a nanoliquid taking free
stream into account. In the present paper, we find
the velocity and temperature fields for boundary
layer flow of a nanoliquid past a stretching cylinder
using the DTM-Domb Sykes-Padé technique. We
study the influence of free stream, curvature, suc-
tion/injection, Prandtl number, Brownian diffusion
and thermophoresis on velocity and temperature
fields, skin-friction coefficient and Nusselt number.

2. MATHEMATICAL FORMULATION

A steady, two-dimensional, boundary layer flow of
an incompressible nanoliquid over an exponentially
stretching cylinder of constant radius is consid-
ered. In the laminar sublayer near the wall, Brow-
nian diffusion and thermophoresis are important
for nanoparticles of any material and size (Buon-
giorno (2006)). Based on this hypothesis the phys-
ical model and coordinate system considered are as
shown in Figure 1. The steady governing equations
conservation of mass, momentum, thermal energy
and nanoparticles including the dynamic effects of
nanoparticles (eqs. 14, 17, 18 and 23 in Buongiorno
(2006)) using the boundary layer approximations
can be written as follows:
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Fig. 1. Schematic diagram of the problem
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ū
∂T̄
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. (4)

where ū and v̄ are the velocity components in the
axial and radial directions x̄ and r̄ respectively, T̄
and T∞ are the local temperature and the constant
temperature far away from sheet of the nanoliq-
uid, C̄ is the volume fraction of solid nanopar-
ticles. p̄, ρ, ϑ, α = κ/(ρCp) and κ are pres-
sure, density, kinematic viscosity, thermal diffusiv-
ity and thermal conductivity of the fluid respec-
tively, τ = (ρCp)p/(ρCp)b f is the ratio of heat ca-
pacities of solid particles and base fluid, DB and DT
are the Brownian and thermophoretic diffusion co-
efficients. The boundary conditions are taken to be

r̄ = R : ū = ūw(x̄) =U0em x̄
L , v̄ = v̄w, T̄ = Tw,C̄ =Cw,

r̄→ ∞ : ū = ū∞(x̄) =U∞en x̄
L , T̄ = T∞,C̄ =C∞, (5)

where U0, U∞, L, Tw, Cw and C∞ are characteristic
stretching velocity, characteristic free stream
velocity, characteristic length, surface temperature,
nanoparticle concentration at the surface and in the
quiescent fluid respectively, v̄w is suction/injection
velocity when v̄w < 0 and v̄w > 0 respectively. m
and n are the stretching exponents taken in general.

3. METHOD OF SOLUTION

Introducing the following non-dimensional vari-
ables

x =
x̄
L
, r =

r̄
R
, u =

ū
U0

, v =
v̄L

U0R
, vw =

v̄wL
U0R

,

p =
p̄

ρU2
0
, T =

T̄ −T∞

Tw−T∞

, C =
C̄−C∞

Cw−C∞

,
(6)

eqs. (1-4) can be written in non-dimensional form
as:
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where γ =
√

ϑL/R2U0, Pr = ϑ/α, Nb = τDB(Cw−
C∞)/ϑ, Nt = τDT (Tw− T∞)/ϑT∞ and Le = ϑ/DB
are transverse curvature parameter, Prandtl num-
ber, Brownian motion parameter, thermophoresis
parameter and Lewis number. The boundary con-
ditions (5) in non-dimensional form are:

r = 1 : u = emx, v = vw, T = 1, C = 1,
r→ ∞ : u = λenx, T = 0, C = 0, (11)

where λ = U∞/U0 is called free stream parameter.
In free stream u = u∞ = λenx reduces eq. (8) to

u∞

du∞

dx
=−d p

dx
, (12)

which gives,

d p
dx

=−λ
2ne2nx, (13)

eliminating
d p
dx

from eq. (8) using eq. (13), we get
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3.1 Procedure of obtaining local similarity
transformation

To attain the similarity solution of eqs. (7), (9), (10)
and (14) with (11), we introduce the stream func-
tion ψ(x,r) with velocity components u = 1
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r = 1 :
∂ψ

∂r
= remx,

∂ψ

∂x
=−rvw, T = 1, C = 1,

r→ ∞ :
∂ψ

∂r
= rλenx, T = 0, C = 0. (18)

The following transformation will now be used in
eq. (15)-(18)

ψ(x,η) = A f (η)esx, T = θ(η), C = φ(η),

η = B(r2−1)etx, (19)

where A,B,s, t are to be determined. The transfor-
mations given by eq. (19) has been obtained by
using Lie-group transformation method. Using the
transformation in eqs. (15)-(18), we get the follow-
ing BVP
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The equations dictate the choice A =
√

2γ, B =
1

2
√

2γ
, m = n = 1 and s = t = 1

2 . With this choice,
the local similarity variable take the following form
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√

2e
x
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e

x
2 . (24)

The above transformations leads to boundary value
problems:

(1+2ηγx) f
′′′
+2γx f

′′
+ f f

′′ −2 f
′2 +2λ

2 = 0, (25)

(1+2ηγx)θ
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Nbθ
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φ
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(1+2ηγx)φ
′′
+2γxφ

′
+Le f φ

′

+
Nt
Nb

[
2γxθ

′
+(1+2ηγx)θ

′′
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= 0, (27)

f (0) =−Vwx, f
′
(0) = 1,θ(0) = 1,φ(0) = 1,

f
′
(∞) = λ,θ(∞) = 0,φ(∞) = 0, (28)

where prime denotes differentiation with respect
to η, γx =

√
2γe−x/2 is the local transverse cur-

vature parameter and Vwx = vw
√

2e−x/2 is local
suction/injection parameter.

3.2 Algorithm

The system of non-linear differential eqs. (25)-(27)
subject to the boundary conditions (28), constitute a
two-point boundary value problem. The solution of
this system in the form of a rational approximation
of the power series in η is obtained in this paper by
following the algorithm below:

1. Convert the boundary value problem to an
equivalent initial value problem (EIVP) as
done by Abel et al. (2011). The decision on ∞

is made computationally. ∞ is so chosen that
the boundary condition of eq. (23) is satisfied.
In our problem ∞ turns out to be around 6. The
initial conditions of the EIVP now are:

f (0) =−Vwx, f ′(0) = 1, f ′′(0) =−A1,
θ(0) = 1,θ′(0) =−A2,
φ(0) = 1,φ′(0) =−A3.


(29)

where A1, A2 and A3 are obtained by shooting
technique as functions of the parameters λ, Pr,
γ, Nb, Nt, Le and Vwx of the problem.

2. Obtain the power series solution of the EIVP
by using the uni-variate differential transform
method (DTM) of Zhou (1986). The differen-
tial transform on the initial conditions (29) and
on the system of nonlinear differential equa-
tions (25)-(27), the F [k]’s, Θ[k]’s and Φ[k]’s
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gives us (Sinha et al. (2014)),

F [0] =−Vwx,F [1] = 1,F [2] =−A1
2 ,

Θ[0] = 1,Θ[1] =−A2,
Φ[0] = 1,Φ[0] =−A3,
F [k+1]
= −1

k(k2−1)

[
2γxk(k−1)2F [k]+2λ2δ[k−2]

+
k−2

∑
r=0

(k− r−1){(k− r)F [r]F [k− r]

−2(r+1)F [r+1]F [k− r−1]}] ,
Θ[k+1] = −1

k(k+1)

[
2γxk2Θ[k]

+Pr
k−1

∑
r=0

F [r](k− r)Θ[k− r]

+PrkΘ[k] (NbΦ[1]+NtΘ[1])

+Pr (1+2γx)
k−2

∑
r=0
{(r+1)(k− r−1)Θ[r+1]

(NbΦ[k− r−1]+NtΘ[k− r−1])}] ,
Φ[k+1] = −1

k(k+1)

[
2γxk2Φ[k]

+Le
k−1

∑
r=0

F [r](k− r)Φ[k− r]

+ Nt
Nb

{
2γxk2Θ[k]+ k(k+1)Θ[k+1]

}]
.


(30)

The inverse differential transform now yields
the power series solution for f (η), θ(η) and
φ(η) in the form (Sinha et al. (2014)):

f (η) =
N

∑
k=0

F [k]ηk, (31)

θ(η) =
N

∑
k=0

Θ[k]ηk, (32)

φ(η) =
N

∑
k=0

Φ[k]ηk. (33)

3. The decision on the minimum number of
terms required in the power series solution ob-
tained by DTM is made after inverse Domb-
Sykes plots (Domb and Sykes (1957), Mercer
and Roberts (1990)) shown in figures 2(a) and
2(b). The minimum number of terms required
in the power series for f (η), θ(η) and φ(η)
are 15, 20 and 20 respectively. Details of this
procedure are given in the work of VanDyke
(1974).

4. Use the correct Padé-approximant [m,n] for
a given N to improve the convergence of the
power series solution. Padé-approximant is
nothing but a rational approximation that gives
convergent solution when m < n. The rational
approximation is a ratio of two finite degree
polynomials (Baker (1975)).

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ
æ

æ
æ

æ
æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

æ

Γ = 0,  Vwx = -1,  Λ = 0.2

0 10 20 30 40

1.70

1.75

1.80

1.85

1.90

n

c n
-

1

c n

(a) f (η)

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ
æ

æ
æ

æ æ æ æ æ æ æ æ æ æ

æ

æ

æ

æ

æ

æ æ

æ æ

�

Γ = 0,  Vwx = -1,  Λ = 0.2Γ = 0,  Vwx = -1,  Λ = 0.2Γ = 0,  Vwx = -1,  Λ = 0.2Γ = 0,  Vwx = -1,  Λ = 0.2

Γ = 0,  Vwx = -1,  Λ = 0.2,

Pr = Le = 10,  Nb = Nt = 0.01

0 10 20 30 40

0.37

0.38

0.39

0.40

0.41

0.42

n

c n
-

1

c n

(b) θ(η)

Fig. 2. Sample inverse Domb-Sykes plots for (a)
f (η) and (b) θ(η).

5. Increase N and follow steps 2 and 3 till desired
accuracy is obtained. The satisfaction of the
conditions at ∞ by the rational approximation
serves as an indicator for the validation of the
obtained solution.

4. RESULTS AND DISCUSSION

The focus of the present study is on bringing out the
effects of the free stream parameter, the transverse
curvature parameter and the suction/injection pa-
rameter along with Prandtl number, Brownian mo-
tion and thermophoresis parameters, Lewis number
on the velocity profile, skin friction, wall tempera-
ture or wall temperature gradient and the nanopar-
ticle volume fraction. To validate the results, com-
parison of the skin friction coefficient, the wall
temperature gradient and the wall temperature with
those of previously published works in limiting
cases is reported. When the radius of cylinder
R→ ∞, the transverse curvature parameter γ→ 0
and hence the problem reduces to the stretching
sheet case as shown in Figure 3 in the absence of
transverse curvature. In Table 1 and 2 the results of
present study are compared with the results of El-
bashbeshy (2001) for the reduced skin-friction co-
efficient − f ′′(0) and for the reduced Nusselt num-
ber −θ′(0) at different values of suction parameter
Vwx in absence of free stream (λ = 0) for boundary
layer flow of Newtonian liquid (when Nb=Nt = 0)
over an exponentially stretching sheet (γ = 0).
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4.1 Dimensionless Physical Quantities

4.11 Local Skin Friction Coefficient

C f x =
τw

ρu2
w
=
−µ
(

∂u∗
∂r∗

)
r∗=R

ρu2
w

=−Re−1/2
x f

′′
(0).

⇒C f xr = Re1/2
x C f x = A1. (34)

4.12 Local Nusselt Number

Nux =

x∗
[
−κ

∂T ∗
∂r∗ − (ρCp)p (T

∗−T∞)
{

DB
∂C∗
∂r∗ +

DT
T∞

∂T ∗
∂r∗

}]
r∗=R

κ(Tw−T∞)

=−Re1/2
x

[
(1+PrNt)θ

′
(0)+PrNbφ

′
(0)
]
.

⇒ Nuxr = Re−1/2
x Nux = (1+PrNt)A2 +PrNbA3.

(35)

4.13 Local Sherwood Number

Shx =
x∗
(
−DB

∂C∗
∂r∗ −

DT
T∞

∂T ∗
∂r∗

)
r∗=R

DB(Cw−C∞)

= Re1/2
x

[
−φ

′
(0)− Nt

Nb
θ
′
(0)
]
.

⇒ Shxr = Re−1/2
x Shx = A3 +

Nt
Nb

A2. (36)

The local Reynolds number is given by Rex =
uwx
ϑ

.

4.2 Velocity Profiles

Figure 4 scrutinizes the variation of velocity
profiles with various parameters, the free stream
parameter λ, the transverse curvature parameter
γ and the suction/injection parameter Vwx. Figure
4(a) depicts the variation in dimensionless axial
velocity for different values of λ the ratio of free
stream velocity to stretching velocity. It can be
perceived that a boundary layer is formed when the

Table 1. Comparison of results for the reduced
skin-friction coefficient − f ′′(0) at different val-
ues of suction parameter Vwx in absence of free
stream (λ = 0) for boundary layer flow of New-
tonian liquid (when Nb = Nt = 0) over an expo-
nentially stretching sheet (γ = 0).

Vwx Present results Elbashbeshy (2001)

0.0 1.282131502 1.28181
−0.2 1.379148613 1.37889
−0.4 1.484572579 1.4839
−0.6 1.598363997 1.59824

Table 2. Comparison of results for the reduced
Nusselt number −θ′(0) at different values of
suction parameter Vwx and Prandtl number Pr
in absence of free stream (λ = 0) for boundary
layer flow of Newtonian liquid (when Nb = Nt =
0) over an exponentially stretching sheet (γ = 0).

Vwx Pr Present Elbashbeshy (2001)
results (at temperature

parameter γ = 0)

0.0 0.72 0.445683170 0.434717
1 0.552846579 0.549641
3 1.121889583 1.122090

10 2.257320309 2.257430
−0.6 0.72 0.748612591 0.7453955

1 0.987770427 0.9872843
3 2.493270352 2.4933760

10 7.071978100 7.0727307

free stream velocity exceeds the stretching velocity
i.e. at λ > 1 whereas an inverted boundary layer is
found at λ < 1 when stretching velocity exceeds
free stream velocity. The boundary layer thickness
decreases significantly as λ increases at the points
where velocity reaches the boundary condition.
Physically, when λ increases, the increase in U∞

for fixed values of U0 implies increase in straining
motion near the stagnation region resulting in
acceleration of free stream which leads to thinning
of the boundary layer. Hence surface shear stress
also increases. It can be observed that boundary
layer does not form for λ = 1, as the stretching
velocity and the free stream velocity are equal.

The effect of surface curvature on the nanoliquid
velocity can be observed in fig. 4(b). The nanoliq-
uid velocity decreases very close to the surface in a
significant region 0 ≤ η ≤ 0.3 with increase in the
curvature parameter γ. It happens because the ra-
dius of the cylinder reduces on enhancing the cur-
vature and hence the surface area of the cylinder in
contact with the nanoliquid reduces. So the shear
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Fig. 4. Variation of velocity profiles with various
parameters.

stress per unit area increases due to increases in ve-
locity gradient at the surface. But afterwards veloc-
ity starts increasing with γ, as a result the boundary
layer thickness also increases. Figure 4(c) describes
that an increase in injection velocity (Vwx > 0) in-
creases the magnitude of axial velocity U , whereas
an increase in suction (Vwx < 0) retards the nano-
liquid flow, consequently the momentum boundary
thickness decreases with suction.

4.3 Temperature Profiles

Figure 5(a) shows the effect of free stream parame-
ter λ on temperature distribution keeping the other
parameters fix. It is found that an increase in λ de-
creases the temperature at any point in the bound-
ary layer. Temperature profiles in fig. 5(b) show a
slight decrease in the temperature of nanoliquid in
the neighborhood of the cylinder’s surface as γ in-
creases, and afterwards rise, consequently the ther-
mal boundary layer thickness increases. Due to the

reduced contact surface area the conduction heat
transfer rate also reduces at the surface but after this
region temperature increases because of enhanced
convection heat transfer in the liquid. Figure 5(c)
shows that increasing suction effects suppress tem-
perature. Thermal boundary layer thickness for in-
jection case is significantly greater than for the suc-
tion case. It is observed from fig. 5(d) that the tem-
perature profiles decrease rapidly with an increase
in the Prandtl number Pr. The temperature effects
can be seen very close to the surface as the curves
become gradually more steep. This exhibits that
at higher Prandtl number, liquid has a thinner ther-
mal boundary layer and this increases the gradient
of temperature, hence the reduced Nusselt number
also increases. Figure 5(e) presents the effect of the
Brownian motion parameter Nb on temperature dis-
tribution. The temperature of nanoliquid increases
with increase in Nb . As a consequence, the reduced
Nusselt number decreases with increase in Nb. Fig-
ure 5(f) shows the temperature distribution in the
thermal boundary layer for different values of the
thermophoresis parameter Nt. As Nt increases, the
temperature boundary layer thickness increases and
the curves become less steep thereby diminishing
the reduced Nusselt number. Figure 5(g) shows the
effect of Lewis number Le on the temperature pro-
files. It is found that the increasing value of Lewis
number results in enhancement of the temperature
profiles which is noticeable only in a region close
to the surface as the curves tend to merge at larger
distances from the surface.

4.4 Concentration Profiles

Figure 6(a) illustrates the effect of free stream pa-
rameter λ on concentration boundary layer. From
the definition of free stream velocity it is obvi-
ous that an increase in λ increases the free stream
velocity. This is observed in figure 6(a) as a re-
sult of this increasing velocity the concentration of
nanoparticles in the boundary layer decreases. Fig-
ure 6(b) shows that the concentration profiles of
nanoliquid increases as the surface curvature in-
creases. Figure 6(c) indicates that suction achieves
a strong suppression of nanoparticle species diffu-
sion while injection shows opposite effect on con-
centration distribution. Figure 6(d) shows that as
the Prandtl number Pr increases the concentration
boundary layer thickness decreases but the concen-
tration profile increases near the surface as Pr in-
creases. Figure 6(e) shows that the nanoparticle
concentration is the decreasing function of Brow-
nian motion parameter Nb. Hence the concentra-
tion boundary layer thickness decreases as Nb in-
creases. Figure 6(f) reveals the increasing effect of
thermophoresis parameter Nt on the concentration
distribution of nanoparticles in nanoliquid and also
on reduced Sherwood number. For hot surfaces,
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Fig. 5. Variation of temperature profiles with
various parameters.

thermophoresis tends to blow the nanoparticle vol-
ume fraction boundary layer away from the surface
since a hot surface repels the small sized particles
from it, thereby forming a relatively particle-free
layer near the surface. Figure 6(g) shows the vari-
ation of nanoparticle volume fraction for different
values of Lewis number Le. It can be seen that
the concentration of nanoparticles decreases with
increase in Lewis number. For a base fluid of cer-
tain kinematic viscosity ϑ, a higher Lewis number
implies a lower Brownian diffusion coefficient DB
which must result in a shorter penetration depth for
the concentration boundary layer.

5. CONCLUSION

In the present analysis, the steady, two-dimensional
boundary layer flow and heat transfer of incom-
pressible, viscous, nanoliquids caused by an expo-
nentially stretching cylinder is discussed. The prob-
lem is considered to illustrate the new algorithm
DTM-Domb-Sykes-Padé technique. The results
are presented for different values of various pa-
rameters: free stream parameter, transverse curva-
ture parameter, suction/injection parameter, Prandtl
number, Lewis number, Brownian motion and ther-
mophoresis parameters. The greatest advantage of
the solution presented in the paper is that the so-
lution is a power series for f (η), θ(η) and φ(η)
given by equations (31)-(33) in which the coeffi-
cients F [k]’s, Θ[k]’s and Φ[k]’s are given in equa-
tion (30). The combination of DTM, inverse Domb-
Sykes plots for θ(η) and φ(η), and Padé approx-
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Fig. 6. Variation of concentration profiles with
various parameters.

imation succeeds in giving a convergent solution
with increased radius of convergence. The pre-
sented model is a prototype to understand the com-
plicated applications to practical problems such
as film cooling, polymer fiber coating, coating of
cylindrical wires and extrusion problems wherein
nanoliquid can act as a good cooling liquid that de-
termines the properties of the extrudate.
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