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ABSTRACT 

MHD and thermal radiation effects on unsteady flow past an oscillating  semi-infinite vertical plate with 

variable surface temperature and uniform mass flux  have been studied. The dimensionless governing 

equations are solved by an efficient, more accurate, unconditionally stable and fast converging implicit finite 

difference scheme. The effect of velocity, concentratiion and temperature profiles  for different parameters 

like magnetic field , thermal radiation, Schmidt number, thermal Grashof number, mass Grashof number  are 

studied. It is observed that the velocity decreases with increasing values of the magnetic field parameter or 

radiation parameter. 
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NOMENCLATURE 

*a  absorbtion constants 

C   species concentration in the fluid  

C  dimensionless concentration 

wC   concentration of the plate 

C  concentration in the fluid far away from the 

 plate  

pC  specific heat at constant pressure  

D  mass diffusion coefficient  

Gc  mass Grashof number 

Gr  thermal Grashof number 

g  acceleration due to gravity  

k  thermal conductivity  

R thermal radiation parameter 

P r  Prandtl number 

Sc  Schmidt number 

M magnetic field parameter   

xNu  dimensionless local Nusselt number 

Nu  dimensionless average nusselt number 

xSh  dimensionless local Sherwood number 

Sh  dimensionless average Sherwood number 

vu,  velocity of the components of the fluid in 

 X, Y-directions respectively 

x coordinate along the plate 

y coordinate axis normal to the plate  

X dimensionless coordinate along the plate   

Y dimensionless coordinate axis normal to 

 the plate 

 

  thermal difusivity 

  volumetric coefficient of thermal expansion  

  volumetric coefficient of expansion with  

 concentration  

  coefficient of viscosity  

  frequency of oscillation 

  dimensional  frequency of oscillation 

t  phase angle 

t  dimensional phase angle 

  kinematic viscosity  
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T  temperature of the fluid near the plate 

T   temperature 

wT  temperature of the plate 

T  temperature of the fluid far away from the plate 

t   time   

0u  velocity of the plate  

 

σ electric conductivity 

  density of the fluid  

  dimensionless temperature 

x  dimensionless local skin friction 

  dimesionless average skin friction 

w  conditions at the wall 

  free stream conditio 

 

1. INTRODUCTION 

MHD plays an important role in 

agriculture,petroleum industries, geophysics and in 

astrophysics.  Important applications in the study of 

geological formations, in exploration and thermal 

recovery of oil,and in the assessment of 

aquifers,geothermal reservoirs and underground 

nuclear waste storage sites. MHD finds applications 

in electromagnetic pumps, controlled fusion 

research, crystal growing, MHD couples and 

bearings, plasma jets, chemical synthesis and MHD 

power generators 

 

 MHD flow has application in metrology, solar 

physics and in motion of earths core. Also it has 

applications in the field of stellar and planetary 

magnetospheres, aeronautics, chemical engineering 

and electronics. In the field of power generation, 

MHD is receiving considerable attention due to the 

possibilities it offers for much higher thermal 

efficiencies in power plants. Examples include 

magnetic control of molten iron flow in the steel 

industry, liquid metal cooling in nuclear reactors 

and magnetic suppression of molten semi-

conducting materials  

 

Soundalgekar,Patil, Jahagirdar(1981) have studied 

MHD Stokes problem for a vertical plate with 

variable temperature.   Again  Mass Transfer effect  

on the Flow Past an Oscillating Infinite Vertical 

Plate with Constant Heat Fluxstudied by 

Soundalgekar et al(1994). Muthucumaraswamy 

(2009)have analyzed MHD effects on flow past an 

infinite oscillating vertical plate in the presence of 

an optically thin gray gas.  Soundalgekar and 

Akolkar(1983)  have studied Effects of free 

convection currents and mass transfer on the flow 

past a vertical oscillating plate. 

 

Raptis, Perdikis (1999) have analyzed   Radiation 

and free convection flow past a moving plate. 

England and Emery (1969) have studied the thermal 

radiation effects of a optically thin gray gas 

bounded by a stationary vertical plate.Soundalgekar 

, Gupta and Aranake(1979) have  analyzed Free 

convection currents on MHD Stokes problem for a 

vertical plate. Soundalgekar , Gupta and Birajdar 

(1979) have studied the Effects of Mass transfer and 

free convection currents on MHD Stokes problem 

for a vertical plate. 

 

Radiation effect on mixed convection along a 

isothermal vertical plate were studied by Hossain 

and Takhar (1996).  Raptis and Perdikis (2003) 

have studied the effects of thermal radiation of an 

optically thin gray gas. Free convection effects on 

the flow past a vertical oscillating plate was studied  

by Soundalgekar  (1979). Shanker and Kishan 

(1997) have analyzed  the effect of mass transfer on 

the MHD flow past an impulsively started infinite 

vertical plate with variable temperature or constant 

heat flux. MHD Stokes problem for a vertical 

infinite plate with variable temperature was studied 

by  Soundalgekar, Patil and Jahagirdar(1981). Singh 

and Sacheti(1988) have studied the Finite difference 

analysis of unsteady hydromagnetic free-convection  

flow with constant heat flux. 

 

Flow past an impulsively started vertical plate with 

constant heat flux and mass transfer were studied by 

Muthucumaraswamy and Ganesan(2000).Deka and 

Neog(2009) have analyzed the Unsteady MHD flow 

past a vertical oscillating plate with thermal 

radiation and variable mass diffusion. Finite 

difference analysis of radiative free convection flow 

past an impulsively started vertical plate with 

variable heat and mass flux studied by Prasad et 

al(2011). Palani and Srikanth(2009) have studied  

MHD flow past a semi-infinite vertical plate with 

mass transfer. Prasad, Reddy and 

Muthucumaraswamy (2007) have analyzed 

Radiation and mass transfer effects on two 

dimension flow past an impulsively started infinite 

vertical plate. Thermal radiation  effects on MHD 

flow past a vertical oscillating plate were studied by 

Chandrakala,.Bhaskar(2009). 

 

Rajput and Kumar (2011) have analyzed  MHD 

flow past an impulsively started vertical plate with 

variable temperature and mass diffusion.  

 

Unsteady free convection flow past an oscillating 

plate with constant mass flux in the presence of 

radiation were studied by Chaudhary and 

Jain(2007). 

 

Muthucumaraswamy and Vijayalakshmi(2008) 

have studied Effects of heat and mass transfer on 

flow past an oscillating vertical plate with 

variabletemperature.Neog and Das Rudra (2012) 

have analyzed Unsteady Free Convection MHD 

flow past a vertical plate with variable temperature 

and chemical reaction. Radiation effects on  MHD 

flow past an impulsively started vertical plate with 

variable heat and mass transfer were studied by 

Rajput and Kumar(2012). 
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Finite difference solution on natural convection along 

an oscillating isothermal vertical plate under the 

combined buoyancy effects of heat and mass diffusion 

in the presence of thermal radiation has not received 

attention of any researcher. This study found useful in 

distribution of cooling in a closed environment.  

Hence, the present study is to investigate the unsteady 

flow past an oscillating semi-infinite vertical plate 

with thermal radiation by an implicit finite-difference 

scheme of Crank-Nicolson type. 

2. MATHEMATICAL FORMULATION 

OF THE PROBLEM 

A transient, laminar, unsteady natural convection 

flow of a viscous incompressible fluid past an 

oscillating semi-infinite isothermal vertical plate in 

the presence of thermal radiation has been 

considered. It is assumed that the concentration 'C  

of the diffusing species in the binary mixture is very 

less in comparison to the other chemical species 

which are present. Here, the x-axis is taken along 

the plate in the vertically upward direction and the 

y-axis is taken normal to the plate. The physical 

model of the problem is shown in figure 1. 

 

 
Fig. 1. Physical model of the problem. 

 
Initially, it is assumed that the plate and the fluid 

are of the same temperature and concentration. At 

time 0>t , the plate starts oscillating in its own 

plane with frequency   againstgravitational field. 

The temperature of the plate is raised

))(( n

w axTxT  
  and the concentrationlevelnear 

the plate is raised at a constant rate. The fluid 

considered here is a gray, absorbing-emitting 

radiation but a non-scatteringmediumand the 

viscous dissipation is assumed to be negligible. 

Then under the above assumptions, the governing 

boundary layer equations of mass, momentum and 

concentration for free convective flow withusual 

Boussinesq’s approximation are as follows(Gebart 

and Pera(1971): 
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The initial and boundary conditions are  

0 :t  = 0, 0, ,u v T T C C       

> 0:t
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= 0, = , = = 0u T T C C at x     

0, ,u T T C C as y       
                                                                              (5) 

In the case of an optically thin gray gas the local 

radiant absorption is expressed by 

 * 4 4= 4 'rq
a T T

y
 


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
                                          

(6) 

We assume that the temperature differences within 

the flow are sufficiently small such that T' may be 

expressed as a linear function of the temperature. 

This is accomplished by expanding T'in a Taylor 

series about T and neglecting higher-order terms, 

thus 

4 3 4' 4 ' 3T T T T  
                                                  

(7) 

By using equations (6) and (7), equation (3) reduces 

to  

2
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On introducing the following non-dimensional 

quantities 
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Equations (1) to (4) are reduced to the following 

non-dimensional form  

0
U V

X Y

 
 

 
                                                         (10) 

MU
Y

U
CGcTGr

Y

U
V

X

U
U

t

U




















2

2

=
    

(11) 



R. Muthucumaraswamy and B. Saravanan. / JAFM, Vol. 9, No. 1, pp. 61-69, 2016.  

 

64 

2

2

1
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t X Y Y
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                              (13) 

The corresponding initial and boundary conditions  

in non-dimensional quantities are 

t   0 : U =0,V = 0, T = 0, C =0  

t  > 0: U =Cosωt, V =0,  

T nX , 1
C

Y


 


at  Y = 0                                      (14) 

U = 0,   T = 0,   C = 0             at   X = 0 

U 0,  T 0,  C 0            as    Y  

3. NUMERICAL TECHNIQUE 

In order to solve the unsteady, non-linear coupled 

equations (10) to (13) under the conditions (14), an 

implicit finite difference scheme of Crank- 

Nicolson type has been employed. The finite 

difference equations corresponding to equations 

(10) to (13) are as follows: 
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(18) 

The concentration boundary condition at Y=0 in the 

finite difference form is  
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,1 ,1 , 1 , 11
= 1

2 2

n n n n
i i i iC C C C

Y

 
 

   
 




                         (19) 

At = 0Y  (i.e., j=0) equation (18), becomes 
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After eliminating 1
, 1 , 1
n n
i iC C
   using equation (19), 

equation (20) reduces to the form  
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(21) 

Here the  region of  integration is  considered  as a  

rectangle  with  sides  Xmax( = 1) and Ymax (=20), 

where Ymax corresponds to Y =   which lies very 

well outside both the momentum and energy 

boundary layers. The maximum of Y was chosen as 

20 after some preliminary investigations so that the 

last two of the boundary conditions (14) are 

satisfied with in the tolerance limit 10-5. After 

experimenting with a few set of mesh sizes have 

been fixed at the level  X = 0.05,  Y = 0.25, with 

time step  t = 0.01. In this case, the spatial mesh 

sizes are reduced by 50% in one direction, and later 

in both directions, and the results are compared. It is 

observed that, when the mesh size is reduced by 

50% in the Y-direction, the results differ in the fifth 

decimal place while the mesh sizes are reduced by 

50% in X-direction or in both directions; the results 

are comparable to three decimal places. Hence, the 

above mesh sizes have been considered as 

appropriate for calculation. The coefficients 
,

n

i jU and 

,

n

i jV appearing in the finite difference equation are 

treated as constants at any one time step. Here i-

designates the grid point along the X - direction, j 

along the Y- direction and k to the t-time. The 

values of U, V and T are known at all grid points at t 

= 0 from the initial conditions. 

 

The computations of  U, V , T and C at time level  

(n +1) using the values at previous time level (n) are 

carried out as follows: The finite-difference 

equations (18) and (21) at every internal nodal point 

on a particular i-level constitute a  tridiagonal 

system of  equations. The system of equations is 

solved by using Thomas algorithm as discusses in 

Carnahan et al (1969). Thus, the values of C are 



R. Muthucumaraswamy and B. Saravanan. / JAFM, Vol. 9, No. 1, pp. 61-69, 2016.  

 

65 

found at every nodal point for a particular i at 

(n+1)th  time level. Similarly, the values of T  

arecalculated from equation (17) .Using the values 

of C and T at (n+1)th time level in the equation (16) 

, the values of  U at (n+1)th  time level are found in 

a similar manner.  Thus, the values of C, T and U 

are known on a particular i-level. Finally, the values 

of V are calculated explicitly using the equation 

(15) at every nodal point at particular i-level at 

(n+1)th  time level. This process is repeated for 

various i-levels. Thus the values of C, T, U and V 

are known, at all grid points in the rectangle region 

at (n+1)th  time level. 

In a similar manner computations are carried out by 

moving along i-direction. After computing values 

corresponding to each i at a time level, the values at 

the next time level are determined in a similar 

manner. Computations are repeated until the steady-

state is reached. The steady-state solution is 

assumed to have been reached, when the absolute 

difference between the values of U, and as well as 

temperature T and concentration C at two 

consecutive time steps are less than 10-5 at all grid 

points. 

4. RESULTS AND DISCUSSION 

The numerical values of the velocity, temperature 

and concentation are computed for different 

parameters like radiation parameter, magnetic field, 

Schmidt number, phase angle, thermal Grashof 

number and mass Grashof number. The purpose of 

the calculations given here is to assess the effects of 

the parameters GcGrRt ,,,  and Sc  upon the 

nature of the flow and transport. The value of 

Prandtl number Pris chosen such that they represent 

air (Pr = 0.71) and the Schmidt number Sc = 

0.6(Water vapour). 

 

The steady-state velocity profiles for different phase 

angle are shown in figure 2. The velocity profiles 

presented are those at X  = 1.0. It is observed that 

for different phase angle ( /2,3//6,0,  t

), Gr=5=Gc, M=2 and R=2 the velocity decreases 

with increasing phase angle. Here ωt = 0 represents 

vertical plate and note that the velocity profile 

grows from U = 1 and /2=  t  refers horizontal 

plate and the velocity profiles starting with U = 0. 

The numerical value satisfies with the prescribed 

boundary conditions. It is also observed that the 

time taken to reach steady-state is more in the case 

of vertical plate than horizontal plate.  The trend 

shows that the contribution of mass diffusion is 

very dominant in the velocity field. 

 

 
Fig. 2. steady state velocity profiles for different. 

 

In figure 3, the velocity profiles for different 

thermal Grashof number(Gr=,5,10), mass Grashof 

number(Gc=5,10), /6 t , M=2 and R=2 are 

shown graphically. This shows that the velocity 

increases with increasing thermal Grashof number 

or mass Grashof number. As thermal Grashof 

number or mass Grashof number increases, the 

buoyancy effect becomes more significant, as 

expected; it implies that, more fluid is entrained 

from the free stream due to the strong buoyancy 

effects. 

 
Fig. 3. Steady state velocity profiles for different 

values of Gr & Gc. 

 

The effect of velocity for different radiation 

parameter (R = 0.2, 2, 5, 10), /6 t , M=2 and 

Gr=Gc=5 are shown in figure 4. It is observed that 

the velocity increases with decreasing radiation 

parameter. This shows that due to higher thermal 

radiation the velocity decreases tremendously. As 

expected, the heat loss is more in the presence of 

higher thermal radiation. 

 

 
Fig. 4. Steady state velocity profiles for different 

values of R. 

 

The steady state velocity profiles for different 

magnetic parameter are shown in figure 5. It is 
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observed that for (M=2, 5, 10), Pr=0.71, R=2 and 

Sc=0.6, the velocity decreases in the presence of 

magnetic field. This shows that the increase in the 

magnetic field parameter leads to a fall in the 

velocity.  This agrees with expectation, since the 

magnetic field exerts a retarding force on free 

convection flow. 

 

 
Fig. 5. Steady state velocity profiles for different 

values of M. 

The steady-state velocity profiles for different 

Schmidt number (Sc=0.16,0.3,0.6,2.01), Gr=Gc=5,

/6 t , M=2 and R=2  are shown in figure6. 

The velocity profiles presented are those at X = 1.0. 

It is observed that the velocity decreases with 

increasing Schmidt number and the steady-state 

value increases with increasing Schmidt number. 

The velocity boundary layer seems to grow in the 

direction of motion of the plate. It is observed that 

near the leading edge of a semi-infinite vertical 

plate moving in a fluid, the boundary layer develops 

along the direction of the plate. However, the time 

required for the velocity to reach steady-state 

depends upon the Schmidt number. This shows that 

the contribution of mass diffusion to the buoyancy 

force increases the maximum velocity significantly. 
 

 
Fig. 6. Steady state velocity profiles for different 

values of Sc. 
 

In all the above graphs(fig.2-fig.6), it is observed 

that the velocity increases near the plate and 

decreases far away from the plate.  This is true  

because the velocity, temperature and  

concentrationeffects outside the boundary layer are 

negligible (Refer last boundary condition in (14)) 
 

The temperature profiles for different values of the 

thermal radiation parameter (R=0.2, 2, 5, 10) are 

shown in figure 7. It is observed that the 

temperature increases with decreasing R. This 

shows that the buoyancy effect on the temperature 

distribution is very significant in air (Pr = 0.71). It 

is clear that the steady state attained for R=0.2 at 

t=14.2 and R=10 at t=5.9. This shows that the time 

taken to reach steady state is more for lower thermal 

radiation parameter as compared to higher thermal 

radiation parameter. It is known that the radiation 

parameter and Prandtl number plays an important 

role in flow phenomena because, it is a measure of 

the relative magnitude of viscous boundary layer 

thickness to the thermal boundary layer thickness. 
 

 
Fig. 7. Temperature profiles for different 

values of R. 

The concentration profiles for different values of 

the Schmidt number (Sc=0.16, 0.3, 0.6, 2.01) are 

shown in figure 8. It is observed that the plate 

concentration increases with decreasing Sc.  It is 

clear that steady state attained for Sc=0.16 at t=11.4 

and Sc=2.01 at t=19.9.  This shows that time taken 

to reach steady state is more for higher Schmidt 

number as compared to lower Schmidt number. 

 

 
Fig. 8. Conecentration profiles for different 

values of Sc. 

 

 Knowing the velocity and temperature field, it is 

customary to study the skin-friction, Nusselt 

number and Sherwood number. The local as well as 

average values of skin-friction, Nusselt number and 

Sherwood number in dimensionless form are as 

follows: 
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The derivatives involved in the equations (22) to 

(27) are evaluated using five-point approximation 

formula and then the integrals are evaluated using 

Newton-Cotes closed integration formula. 
 

The local skin-friction, Nusselt number and 

Sherwood number are plotted in figures 9, 10 and 

11 respectively. Local skin-friction values for 

different phase angle are evaluated from equation 

(22) and plotted in figure 9 as a function of the axial 

coordinate. The local wall shear stress increases 

with decreasing phase angle. The trend shows that 

the wall shear stress is more in the case of vertical 

plate than horizontal plate.  
 

The local Nusselt number for different thermal 

radiation parameter is presented in figure 10 as a 

function of the axial co-ordinate. The trend shows 

that the Nusselt number increases with increasing 

values of the thermal radiation parameter. It is clear 

that the rate of heat transfer is more in the presence 

of thermal radiation.  

 

 
Fig. 9. Local Skin Friction. 

 

 
Fig. 10. Local nusselt number. 

 
The local Sherwood number for different values of 

the Schmidt number are shown in figure 11.As 

expected, the rate of mass transfer increases with 

increasing values of the Schmidt number. This trend 

is just reversed as compared to the concentration 

field for different Schmidt number given in figure 8. 

 

 
Fig. 11. Local cherwood number. 

 
 The average values of the skin-friction, Nusselt 

number and Sherwood number are shown in figures 

12, 13 and 14 respectively. The effects of the 

different phase angle on the average values of the 

skin-friction are shown in figure 12. The average 

skin-friction decreases with increasing values of the 

phase angle. 

 

Figure 13 illustrates the average Nusselt number 

increases with increasing radiation parameter. From 

the figure 14, it is observed that the average 

Sherwood number increases with increasing values 

of the Schmidt number. 
 

 
Fig. 12. Average skin friction. 

 

 
Fig. 13. Average nusselt number. 
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Fig. 14. Average sherwood number. 

 
Local as well as average Nusselt number depends 

on temperature. It is observed that the rate of heat 

transfer coefficient is just opposite trend as 

compared with temperature profiles. The reason due 

to negative sign in equations (24) and (25).  

 

Local as well as average Sherwood number depends 

on concentration.  It is observed that the rate of 

mass transfer coefficient is just opposite trend as 

compared with concentration profiles. The reason 

due to negative sign in equations (26) and (27). 

5. CONCLUSIONS 

The numerical study has been carried out for 

thermal radiation effects on unsteady flow past an 

oscillating semi-infinite isothermal vertical plate 

with prescribed variable surface temperature    

uniform mass flux. The dimensionless governing 

equations are solved by an implicit scheme of  

Crank-Nicolson type. The effect of velocity, 

temperature and concentration for different 

parameter are studied. The local as well as average 

skin-friction, Nusselt number and Sherwood 

number are shown graphically. It is observed that 

the contribution of mass diffusion to the buoyancy 

force increases the maximum velocity significantly. 

It is also observed that the velocity decreases in the 

presence of thermal radiation. The study shows that 

the number of time steps to reach steady-state 

depends strongly on the radiation parameter and 

magnetic field parameter. 
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