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ABSTRACT 

Exact analysis of miscible dispersion of solute with interphase mass transfer in a poorly conducting couple 

stress fluid flowing through a rectangular channel bounded by porous layers is considered because of its 

application in many practical situations.  The generalized dispersion model of Sankarasubramanian and Gill is 

used, which brings into focus the exchange coefficient, the convective coefficient and the dispersion 

coefficient.  The exchange coefficient comes into picture due to the interphase mass transfer and independent 

of solvent fluid viscosity.  It is observed that the convective coefficient increases with an increase in the 

porous parameter while it decreases with an increase in the couple stress parameter.  The dispersion 

coefficient is plotted against wall reaction parameter for different values of porous parameter and couple 

stress parameter.  It is noted that the dispersion coefficient decreases with an increase in the value of couple 

stress parameter but increases with porous parameter. 

 
Keywords: Poorly conducting fluid; Generalised dispersion; Interphase mass transfer; Couple stress fluid.  

NOMENCLATURE 

a  couple stress parameter 

C  concentration of solute 

D  mass diffusion 

E  electric field. 

h  width of the channel  

iJ  current density 

K  ratio of mass diffusion to kinematic viscosity 

k  permeability of porous media 

sk  reaction rate constant  

p  pressure 

Pe  Peclet number   

T  absolute temperature 

bT  conduction temperature 

U  non dimensional velocity 

u  velocity component in the x direction 

bu  slip velocity at permeable surface 

pu  Darcy velocity in the porous layer 

u  average velocity of the flow 

0  reference quantity  

X  non dimensional x co-ordinate 

 

  couple stress coefficient in the free flow 

  porous parameter 

e  distribution of electric charge density 

p  slip parameter 

  conductivity variation parameter 

h  volumetric expansion coefficient of   
  kinematic viscosity 

c  electrical conductivity 

0  dielectric constant for free space 

  dielectric constant 

  viscosity of fluid 

 

  electric potential 

  density of fluid 

  reaction rate parameter 

1  couple stress coefficient  

  non dimensional y co-ordinate 
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V  applied uniform electric potential 

We  Electric number 

 

  non dimensional concentration 

m  dimensionless cross sectional average 

 concentration     

  dimensionless time 

 
1. INTRODUCTION 

In our recent paper (2011) we have developed an 

exact analysis of generalized dispersion of unsteady 

convective diffusion in a couple stress poorly 

conducting fluid bounded by porous layers in the 

presence of an electric field with no interphase mass 

transfer.  But in many biomedical problems, the 

interphase mass transfer plays a significant role.  

Hence, it is necessary to develop a technique to 

handle physiological problems, which involve 

interphase mass transport.  Early works on dispersion 

were mainly concerned with Taylor’s (1953) 

dispersion, which is valid asymptotically for large 

time.  Physiological fluid flow problems have been 

mainly concerned with transient phenomena where 

Taylor’s model is not valid.  However, 

Sankarasubramanian and Gill (1973) have developed 

an analytical method to analyse the transient 

dispersion of a non-uniform initial distribution, called 

generalized dispersion in laminar flow in a tube with a 

first order chemical reaction occuring at the tube wall.  

This method can be applied to physiological problems 

where a first order chemical reaction occurs at the 

tube wall.  One such situation is the transport of 

oxygen and nutrients to tissue cells and removal of 

metabolic waste products from tissue cells.  

Interphase mass transfer also takes place in pulmonary 

capillaries where the carbon dioxide is removed from 

the blood and oxygen is taken up by the blood.  

Rudraiah et al. (1989) have studied the effect of 

couple stress and electric field on the dispersion of 

erythrocytes in a channel bounded by rigid walls 

and showed that the couple stress augments 

haemolysis.  Rudraiah et al. (2005, 2006) have 

shown that self-generated electric field reduces the 

concentration of RBC’s and hence increases 

dispersion. In bioengineering problems, particularly 

in the mechanism of controlling haemolysis, the 

assumption of “micro-capillaries bounded by rigid 

walls” is unrealistic, because there is transport of 

oxygen, proteins and other nutrients from micro 

capillaries to the permeable tissues of cartilages, 

endothelium of arteries and so on.  The 

physiological fluids flowing in the micro capillaries 

slip at the boundaries of the permeable tissues.  

Therefore, in a study involving the control of 

haemolysis, it is important that the combined effects 

of couple stress and a slip at the boundaries of the 

micro capillaries have to be taken into account.   

Blood mainly consists of plasma in which micron 

sized white blood cells, red blood cells and platelets 

are suspended.  The suspension of these particles 

has spin relative to the plasma and this necessitates 

one to consider conservation of angular momentum 

in addition to the conservation of linear momentum.  

Stokes (1966) introduced a special type of such 

fluid called couple stress fluid, in which the spin 

matches with the natural vorticity.  Therefore, the 

objective of this paper is to consider these effects in 

the study of the unsteady convective diffusion of 

RBCs in the physiological fluid modeled as a 

poorly conducting couple stress fluid.  

Rudraiah et al., (1986) have studied the dispersion in 

a Stokes’s couple-stress fluid flow by using the 

generalized dispersion model of Gill and 

Sankarasubramanian (1970).  The corresponding 

problems for plane-poiseuille flows of micropolar, 

casson and Ostwald-de-Waele fluids have been 

investigated by Siddheshwar and Manjunath (2000, 

2005).  Siddeshwar and Manjunath (1999) have 

studied the effects of buoyancy and homogeneous 

chemical reaction on unsteady convective diffusion 

of solute in a Boussinesq fluid flow.  Siddeshwar and 

Vasanthi  Moses (1989) have studied the effects of 

couple stress and magnetic field on unsteady 

convective diffusion in a rectangular channel.  Their 

work is silent about considering solute reaction at the 

channel walls in their all time analysis of dispersion.  

The problem for Plane-Poiseuille flow of a power-

law fluid with interphase mass transfer has been 

investigated by Siddheshwar et al. (2000).  An exact 

analysis of miscible dispersion of solute with 

interphase mass transfer in a couple stress fluid flow 

has been investigated by Indira et al. (1996). 

Shashikala and  Ranganatha (2008) have studied the 

effect of interphase mass transfer on unsteady 

convective diffusion in a simplified cross model 

fluid.  Manjula (2008) have investigated the  

unsteady convective diffusion with interphase mass 

transfer in a couple stress fluid bounded by porous 

beds. Reaction at the walls is of practical interest and 

in the simplest case, a first order chemical reaction at 

the walls is considered by them in carrying out an 

exact analysis of unsteady convection in couple 

stress fluid flows.  In this paper we present an exact 

analysis of miscible dispersion of solute with 

interphase mass transfer in a couple stress poorly 

conducting fluid bounded by porous beds. The 

generalized dispersion model of Sankarasubramanian 

and Gill (1973) has been used which brings into 

focus the exchange coefficient K0, convective 

coefficient K1 and dispersion coefficient K2. Only 

the last two coefficients (K1, K2) are influenced by 

the porous parameter and couple stress parameter 

arising due to suspension in the fluid. The exchange 

coefficient arises mainly due to the interphase mass 

transfer and is independent of the solvent fluid 

velocity. The interphase mass transfer also influences 

the convection and dispersion coefficients.  

Asymptotically, the large time evaluations have been 

carried out for all the three coefficients to get a feel 

of the nature of these coefficients.   

2. MATHEMATICAL 

FORMULATION  

The physical configuration of the problem 



N. Rudraiah et al. / JAFM, Vol. 9, No. 1, pp. 71-81, 2016.  

 

73 

considered in this paper is shown in Fig. 1. It 

consists of a poorly conducting couple stress fluid 

flowing in a rectangular channel (Region 1) 

bounded by porous layers (Region 2) and separated 

by a distance 2h apart.  A Cartesian co- ordinate 

system is considered such that the origin is at the 

middle of the channel.  

 

 
Fig. 1. Physical configuration. 

  

We assume the flow of a poorly conducting couple 

stress fluid to be laminar, fully developed and 

unidirectional flowing with an uniform axial 

pressure gradient.  In the presence of couple stress 

and electric field, the basic equations are given 

below 

For Region 1:  

2 4

2 4
0 e x

p u d u
E

x y dy
  

 
   

 
                        (1) 

0
p

Ee y
y




 


                                                (2) 

For Region 2:   

  xep Eu
kx

p








 110                 (3) 

0
p

Ee y
y




 


                                    (4) 

where equation (3) is the modified Darcy equation 

with 1  a couple stress coefficient given by 

1 k    in the porous media, u  is the velocity 

in the x-direction in the free flow, pu the Darcy 

velocity in the porous layer, p  the pressure,   the 

viscosity of couple stress fluid,   the couple stress 

coefficient in the free flow and k  is the 

permeability of porous media. 

The boundary conditions on the velocity are  

 p

b p

u
u u at y h

y k


  


                   (5a) 

 p

b p

u
u u at y h

y k


   


           (5b) 

2

2
0

u
at y h

y


  


                                    (5c) 

where p  is the slip parameter.  Equation (5a) and 

Eq. (5b) are well known Beavers and Joseph (1967) 

slip conditions at the upper and lower permeable 

surfaces respectively and Eq. (5c) specifies 

vanishing of couple stress. 

To find electric force e xE ,  we now consider 

The conservation of charges 

0e i

j

J

t x

 
 

 
                                         (6a) 

where e is the distribution of charge density 

i e i c iJ q E                                   (6b) 

iJ the current density, which is the sum of 

convective current, qe i , and conduction current, 

c iE , c  the electrical conductivity, iE , the 

electric field. These are supplemented with the 

Maxwell’s Field equations for a conducting 

medium. 

Gauss law   

0

i e

i

E

x









                               (6c) 

where 0  is the dielectric constant for free space.  

In a poorly conducting fluid, the induced magnetic 

field is negligible and there is no applied magnetic 

field, hence the Faraday’s law become

  0
ji

j i

E E

x x

 
 

 
                                              (6d) 

That is, the electric field is conservative, so that 

i
i

E
x


 


                                (6e) 

where  is the electric potential. 

Equation (6a), using Eq. (6b) and q Ee ci i  , 

takes the form 

 
0

c i

j

ED e

Dt x

 
 


                (6f) 

where j
i

D
q

Dt t x

 
 
 

.  

We note that in a poorly conducting fluid 1c 

and hence any perturbation on it is assumed to be 

negligible and increases with conduction 

temperature,
 bT such that 

 0 01c h bT T                                        (6g) 

Here 0  is that of c  at 0bT T , h  is the 

volumetric expansion coefficient of c .   

Further, bT  in Eq. (6g) is the solution of                   

2

2
0bd T

dy
                                                          (6h) 

satisfying the conditions 

0bT T   at y h                   (6i)  

1bT T   at y h                    (6j) 

Non dimensionalising Eq. 6h and Eqs. 6i, 6j using 

,b
b

T y
T

T h



 


  

we have 

2

2
0bd T

d


                                                             

(6k)
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satisfying the conditions 

0bT T   at 1                     (6l) 

1bT T   at 1                    (6m) 

Solution of Eq. (6k), satisfying the conditions (6l, 

m), is 

0
2 2

b

T T
T T

 
  

                      

                   (6n) 

where 1 0T T T    . 

Substituting the solution given by Eq. (6n) into Eq. 

(6g), we get 

0 0

( 1)
[1 ( 1)]c e

 
    


     1 

 

                                                                      
       (6o)  

where  ( 2)h T   is the conductivity variation 

parameter.  

In a poorly conducting fluid, the frequency of 

charge distribution is smaller than the 

corresponding relaxation frequency of the electric 

field, so that eD Dt  in Eq.  (6f) is negligible 

compared to ( )c i jE x  . Then, from Eq. (6f) 

after neglecting eD Dt and using Eqs. (6e) and 

(6o), we get 

2

2

1
0c

cy y y

 



 
 

  
                                        (6p) 

 
subject to the boundary conditions 

hVx   at y h                                 (6q)   

0( )V x x h    at y h
                                  

(6r)
  

where V is the applied uniform electric potential.  

We make quantities in Eqs. (6p) and (6q, r) 

dimensionless, using 

*
, ,

x y
X

V hPe h


                                    (6s) 

where the asterisks (*) denote the dimensionless 

quantities. Substituting Eq. (6s) into Eqs. (6p) and 

(6q,r) and for simplicity neglecting the asterisk, we 

get 

2

2

1
0c

c

 

   

 
 

  
                                 (6t) 

satisfying  boundary conditions 

XPe             at            1                   (6u)  

0( )Pe X X         at      1 
              

(6v) 

The solution of Eq. (6t), satisfying the boundary 

conditions (6u,v), is 

0 (1 )
[ ]

( )

y
X e

Pe X
e e



  




  


                             

(6w) 

The expression for e can be obtained, from Eq. 

(6c), using Eq. (6w), as 

2

0

( )

y
PeX e

e
e e




  



  


               

(6x) 

Eq. (6e), using Eq. (6w), becomes

      

 

01,
( )

y
PeX e

E Ex y
e e




 



   


               (6y)

 

 

Hence  

)1(
2

)1(0

)(

0
2























PeX

ee

ePeX

xEe

 
                                                                             (6z) 

We now make the equations (1) (3) and (5) 

dimensionless using  

u
U

u
 ,

2

p
p

u


  ,

y

h
  , 

x
X

hPe
 , 

uh
Pe

D


, 
0

2

e
e

V

h






 
 
 

,
ExEx
V

h



 
 
 

,
Ey

Ey
V

h



 
 
 

,
u p

u p
u


  

where u  is the average velocity of the flow. 

Equation (1) in non-dimensional form after 
replacing for electric force can be written as 

4 2
2 2

1 2 24 2
( )

d U d U
a Ka B B B

d d


 
                 (7) 

where  

2

0
1 2,

2

WePe Xdp
B B

dX


  , l




 , 

h
a

l
  is the 

couple stress parameter, K D   is the ratio of 

mass 

diffusion to kinematic viscosity,    , 

2 2
0 ( )We V h u   is the electric number, 

DhuPe   is the Peclet number. 

Equation (5) in non dimensional form is 

( ) 1p b p

U
u u at  




   


                    (8a) 

( ) 1p b p

U
u u at  




   


              (8b) 

2

2
0 1

u
at 




  


                                    (8c)  

where h k   is the porous parameter. 

The solution of (7) satisfying the conditions (8) is 

21 2

2

22
0 1 2 32

[

]

( ) 2 cosh
1 1

2 cosh

sinh

sinh

K B B a
U

a a

KB a
A A A A

a a




 
 


 

  

    

 
 
 

       (9)
  

where  

0 2
1

2 2 tanh
1

(1 ) p

a
A

a  
  



 
 
 

 

 1 2 2

1 th 1

3

co a
A KB

a a
   , 2

3
6

KB
A




  

 

2 2 2

1

th 1 1

2 (1 )

co a
A KB

a


 
  



 
 
 

               (10)  
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3. GENERALIZED DISPERSION 

MODEL 

We consider the dispersion of reactive solute in the 

fully developed flow through a parallel channel 

bounded by porous beds and introduce a slug of 

concentration 0 ( , )C C f x y  into this flow.  The 

mass balance equation in a fully developed flow 

considering the solute concentration C  undergoing 

heterogeneous chemical reaction is 

2 2

2 2

C C C C
u D

t x x y

   
  

   

 
  
 

                          (11) 

with the initial condition  

0(0, , ) ( , )C x y C f x y                                       (12a)  

where 0C  is a reference concentration.     

The heterogeneous reaction conditions are 

( , , ) ( , , )s

C
D t x h k C t x h

y


 


                            (12b) 

( , , ) ( , , )s

C
D t x h k C t x h

y


  


                          (12c) 

where sk  is the reaction rate constant catalyzed by 

the walls. 

The away boundary conditions are     

( , , ) ( , , ) 0
C

C t y t y
x


   


                            (12d) 

and 

( , , )C t x y finite                              (12e) 

On introducing the following non-dimensional 

quantities  

u
U

u
 , 

y

h
  , 

x
X

hPe
 , 

uh
Pe

D
 , 

0

C

C
  , 

2

tD

h
 

  

 and   sk h

D
                                       (13) 

equations (11) and (12) become 

2 2

2 2 2

1
U

X Pe X

   

 

   
  

   
                         (14)  

and  

(0, , ) ( ) ( )X x                                           (15a) 

( , ,1) ( , ,1)X X


  



 


                               (15b) 

( , , 1) ( , ,1)X X


  



 


                              (15c) 

( , , ) ( , , ) 0
X


    


   


                            (15d) 

( , , )X finite                                                (15e) 

Here the right hand side of (15a) is the assumed 

form of the non-dimensional form of ( , )f x y .  The 

solution of (14), subject to the conditions (15) 

following Gill and Sankarasubramanian (1970), is  

0 1

2

2 2

( , , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ......

m

m m

X f X f

X f X
X X

        

 
   

 

 
 

 

     (16)  

where m  is the dimensionless cross sectional 

average  concentration and is given by 

11

2 1
m d   


                                                   (17)  

Equation (16) signifies that the difference between 

  and its mean m  can be accounted by the 

convective and diffusive contributions.  This is 

based on an observation  by Taylor (1953). 

Integrating equation (14) with respect to   in  

[-1,1] and using the definition of m , we get 

        

 

2

2 2

1 11 1

2 11

m m U d
XPe X

 
 

 

  
   

   

 
 
 

 

                                                                            

(18) 

On using (16) in (18), we get the dispersion model 

for m  as 

2 3

0 1 2 32 3
....m m m m

mK K K K
X X X

   




   
    

   

                                                                            

(19) 

where 
'
siK are given by 

2
12

1( ,1) 1
( ) 2 ( , )

2 1

i i
i i

f
K U f d

Pe

 
   





   

 
 

                                                                            (20)  

(i = 1, 2, 3, ….)   

Here f-1= 0 and i2 is the Kronecker delta defined by 

1

0
ij

i j

i j



 


 

The exchange coefficient 0 ( )K  accounts for the 

non-zero solute flux at the channel wall and 

negative sign indicates the depletion of solute in the 

system with time caused by the irreversible 

reaction, which occurs at the channel wall.  The 

presence of non-zero solute flux at the walls of the 

channel also affects the higher order iK  due to the 

explicit appearance of ( ,1)
fi 





  in (20). Equation 

(19) can be truncated after the terms involving 2K  

without causing serious error because 3K , 4K  etc. 

become negligibly small compared to 2K using Gill 

and Sankarasubramanian (1970).  The resulting 

model for the mean concentration is 

2

0 1 2 2
( ) ( ) ( )m m m

mK K K
X X

  
   



  
  

  
    (21)  

Substituting (16) in (14) and using the generalized 

dispersion model of Sankarasubramanian and Gill 

(1973) in the resulting equation, we get the equation 

for 0f , 1f   and 2f from the general equation of the 

form: 
2

1 22 2

1
,( 0, 1, 2)

0

k
k k i k i

kf fk U f f K f k
iPe 

  

 
    

 

                                                                            (22) 

where 1 2 0f f   . 
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We note that to evaluate 
'
iK s we need to know the 

'
kf s, which are obtained by solving (22) for 

'
kf s 

subject to the boundary conditions 

( ,0)kf finite                                                  (23a) 

( ,1) ( ,1)k
k

f
f  




 


                                     (23b) 

( ,0) 0kf 






                             (23c) 

1

0
1

1
( , ) , ( 0, 1, 2)

2
k kf d k   



                (23d) 

The function 0f and the exchange coefficient 0K

are independent of the velocity field and can be 

solved easily.  It should be pointed out here that a 

simultaneous solution has to be obtained for these 

two quantities since 0K  which can be obtained 

from (20) as 

0
0

1
1

( )
2 1

f
K 






 

 
 
 

                                            (24) 

appears in the defining differential equation for 0f  

which may be written from (20) for 0k   as 

2
0 0

0 02

f f
f K

 

 
 

 
                                            (25) 

We now derive an initial condition for 0f  using 

(17) by taking 0   in that equation to get 

11
(0, ) (0, , )

2 1
m X X d    


                            (26) 

Substituting 0   in (16) and setting ( ) 0kf y  (k 

= 1, 2, 3, …….) gives us the initial condition for 

0f  as 

0

(0, , )
(0, )

(0, )m

X
f

X

 



                                           (27) 

 We note that the left hand side of (27) is a function 

of m  only and the right hand side is a function of 

both X and  .  Thus clearly the initial 

concentration distribution must be a separable 

function of X and  .  This is the justification for 

the chosen form of (0, , )X   in (27).  Substituting 

(15a) into (27), we get 

0

( )
(0, )

11
( )

2 1

f

d

 


  






                                      (28) 

The solution of the reaction diffusion equation (25) 

with these conditions may be formulated as  

0 0 0( , ) ( , )exp[ ( ) ]
0

f g K d


                        (29) 

 from which it follows that 0 ( , )g   has to satisfy 

2
0 0

2

g g

 

 


 
                                                      (30) 

along with the conditions 

0 0

( )
(0, ) (0, )

11
( )

2 1

f g

d

 
 

  

 




                    (31a) 

( ,0)kg finite                                                 (31b) 

0
0( ,1) ( ,1)

g
g  




 


                                     (31c) 

The solution of (30) subject to conditions (31) is  

2
0 ( , ) cos( )exp[ ]

0
n n ng A

n
     


 


              (32) 

where 
'

n
s are the roots of  

tann n   ,       n = 0, 1, 2, …                      (33) 

 and 
'

n
A s are given by 

1
2 ( )cos( )

1
1sin(2 )

1 ( )
2 1

n

n
n

n

d

A

d

    


  






 
  

 

                          (34) 

Now from (29) it follows that 

0
0

0

2

2

2 ( , )
( , )

1
( , )

1

9
exp[ ]cos( )

0
9

exp[ ]sin( )
0

n n n

n
n n

n

g
f

g d

A
n

A

n

 
 

  

   

  













               (35) 

The first ten roots of the transcendental equation 

(33) are obtained using mathematica and are given 

in Table 1.  We find that these ten roots ensured 

convergence of the series seen in the expansions for 

0f and 0K .  Having obtained 0f , we get 0K from 

(24) in the form 

2

0
2

9
exp[ ]sin( )

0( )
9

exp[ ]sin( )
0

n n n n

n
n n

n

A
nK

A

n

   



  



 




                (36) 

 

Table 1 Roots of the equation tann n  
.
 

  0  1  2  3  4  

0.01 0.0998 3.1447 6.2847 9.4258 12.567 

0.05 0.2217 3.1574 6.2911 9.4300 12.570 

0.1 0.3110 3.1731 6.2990 9.4353 12.574 

0.5 0.6532 3.2923 6.3616 9.4774 12.606 

1 0.8603 3.4256 6.4373 9.5293 12.645 

5 1.3138 4.0335 6.9096 9.8927 12.935 

10 1.4288 4.3058 7.2281 10.200 13.214 

100 1.5552 4.6657 7.7763 10.887 13.998 

  5  6  7  8  9  

0.01 15.708 18.850 21.991 25.133 28.274 

0.05 15.711 18.852 21.993 25.134 28.276 

0.1 15.714 18.854 21.995 25.136 28.277 

0.5 15.739 18.876 22.013 25.152 28.292 

1 15.771 18.902 22.212 25.172 28.309 

5 16.010 19.105 22.212 25.327 28.448 

10 16.259 19.327 22.410 25.506 28.610 

100 17.109 20.220 23.332 26.445 29.557 
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By considering the simplest case of the initial 

concentration occupying the entire cross section of 

the channel, we take ( ) 1    and then 0 ( )K  for 

this case becomes  

2

2 2

0
2

2 2 2

9 1
exp[ ]

0 ( )
( ) , 0 (1) 9

9 1
exp[ ]

0 ( )

n

n

n

n n

n
K n

n

 
  



 
   


  

  


  

                                                                             (37) 

We now proceed and do only long time analysis of 

0 1 2, , ,.......K K K  As   , we get the asymptotic 

solution for 0K from (37) as 

2( )
0 0

K                                                      (38) 

where 0 is the first root of the equation (33).  

Physically this represents first order chemical 

reaction coefficient.  Having obtained 0 ( )K  , we 

can now get 1( )K  from (20) (with i = 1) knowing 

( , )0f   and 1( , )f  .  Likewise, 

2 3( ), ( )...K K   require the knowledge of 

0 1 0 1, , ,K K f f  and 2f .  Equation (35) in the limit 

  reduces to 

0
0 0

0

( , ) cos( )
sin

f


  


                                 (39) 

We then find 1 1 2, ,f K f  and 2K . For 

asymptotically long times, i.e.,   , (20) and 

(22) give us 
'
iK s and 

'
kf s as   

 2
12

1
( ) ( ,1) ( , )

1

i
i i iK f f d

Pe


       


    

(40)       

 (i = 1, 2, 3, ….)                                                      

2
2
0 1 1 2 22 2

1
( )k

k k k

f
f K f K f

Pe



 


   


        (41) 

(k = 1, 2)          

The 
'

kf s must satisfy the conditions (23) and this 

permits the eigenfunction expansion in the form 

,

9
( , ) cos( )

0
k j k jf B

j
    


, k = 1, 2, 3, ….   (42) 

Substituting (42) in (41) and multiplying the 

resulting equation by  cos( )j   and integrating 

with respect to   from -1 to 1, we get after 

simplification  

, 2 ,2

, 2 2
0

, 1

1

1
1

1
9sin 2

1 ( , )
2 0

j k j k i i

j k

jj
l k

j

k
B B K

iPe

B

B I j l
l

 



 



 


 


  


 
 
 
  
  
  
  

(k = 1, 2)                                                            (43) 

where  

 
1

( , ) cos( ) cos( )1 l jI j l U d                    (44) 

, 1 ,00, 0j jB B    for  j = 1 (1) 9                      (45) 

The first expansion coefficient 0,kB  in (42) can be 

expressed in terms of ,j kB  ( j = 1 (1) 9) by using 

the conditions (23) as 

0
0, ,

0

9 sin

sin 1

j
k j k

j

B B
j



 
   



 
 
 

                  (46) 

( k = 1, 2, 3, 4, ………)                   
 

Further, from (42) and (39) we find that   

0
0,0

0sin
B




                                                    (47) 

Substituting 1i  in (40) and using (44), (45) and 

(47) in the resulting equation, we get 
 

1

0

0

(0,0)
( )

sin 2
1

2

I
K





  


 
 
 

                                  (48) 

Substituting 2i  in (40) and using (43), (44) and 

(47) in the resulting equation, we get 
 

0
2 ,12

0

0

9sin1
( ) (0, )

1sin 2
10

2

lK B I l
lPe








   



 
 
 

 

                                                                             (49)  

Using the asymptotic coefficients 0 ( )K  , 1( )K   

and 2 ( )K   in (21) one can determine the mean 

concentration distribution as a function of ,X  and 

the parameters of the problem , ,a Pe  and  . 

This distribution is valid only for long time and is a 

gross approximation at short and moderate times. 

The initial conditions for solving (21) can be 

obtained from (15a) by taking cross-sectional 

average.  Since we are making long time 

evaluations of the coefficients, we note that the side 

effect is independent of m on the initial 

concentration distribution.  In view of this, the 

solution to (21) with asymptotic coefficients can be 

written as 

2

2
1

0
2

1
( , )

2 ( )

[ ( ) ]
exp ( )

4 ( )

m X
Pe K

X K
K

K

 
 









 
 



  
 
    

                                                                             

(50) 

where 

( , ) 0, ( , ) 0m
m

X


  


   


                              (51)  

Equation (51) is obtained from (15d) and 0 ( )K  , 

1( )K    and 2 ( )K  are given by the Eqs. (38), (48) 

and (49). 

4. RESULTS AND DISCUSSION  

An exact analysis of unsteady convective diffusion of 

solute with interphase mass transfer in a couple stress 
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poorly conducting fluid flow through a rectangular 

channel bounded by porous beds has been considered 

using the generalized dispersion model of 

Sankarasubramanian and Gill (1973). The walls of the 

channel act as catalysts to the reaction. The problem 

brings into focus three important dispersion 

coefficients namely the exchange coefficient 0K  

which arises essentially due to the wall reaction, the 

classical convective coefficient 1K , and the diffusion 

coefficient 2K . One of the major purposes of this 

work is to study the effect of interfacial mass transfer 

on 0K , 1K  and 2K . With this aim, the asymptotic 

values of these three coefficients are plotted in figures 

2 to 6 for various values of couple stress parameter a , 

porous parameter  and reaction rate parameter  . 

From these figures we predict the following. 

From Fig. 2, it is evident that 0K  increases with 

an increase in the value of the wall reaction 

parameter   but it is unaffected by the porous 

parameter and the couple stress parameter. 

Fig. 2. Plots of exchange coefficient(-K) versus 

reaction rate parameter(β). 

The classical convective coefficient 1K  is plotted 

in figures 3 and 4 versus wall reaction parameter 

  for different values of porous parameter  and 

couple stress parameter a respectively for a fixed 

value of slip parameter 0.1p  . 

 
Fig. 3. plots of the convective coefficient-K1 

versus wall reaction parameter β for 

different values of σ. 

Fig. 4. plots of convective coefficient -K1 versus 

wall reaction parameter β for different values of 

couple stress parameter a. 

 

From these figures we conclude that increase in   

and   as well as decrease in a is to increase 1K .  

This is advantageous in maintaining the laminar 

flow.  The scaled dispersion coefficient 
2

2K Pe




is plotted  against   in Fig. 5 for different values 

of  and for fixed values of 1a   and 0.1p   

and in Fig. 6 for different values of a for fixed 

values of 0.1p   and 100  . From these 

figures, it is clear  that the increase in  and a is to 

increase and decrease the effective dispersion 

coefficient respectively.  These are useful in the 

control of dispersion of a solute. 

The cross sectional average concentration m  is 

plotted versus X  in figures 7 to 9 respectively for 

different values of , , a  and for fixed values of 

the other parameters given in these figures.  It is 

clear that the increase in   and   decreases m , 

while an increase in a increases m  as expected on 

the physical grounds.  This may be attributed to the 

fact that an increase in   and 
 
is to reduce the 

velocity and hence decrease m .  

Fig. 5. Plots of scaled dispersion coefficient K(τ)-

Pe-2 versus β for different values of σ. 
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Fig. 6. Plots of scaled dispersion K(τ)-Pe-2 versus 

β for different values of a. 

 

 
Fig. 7. Plots of mean concentration m versus X 

for different values of porous parameter σ. 

 

This m  
is also plotted in figures 10 to 12 

respectively against the time  for different values 

of ,  and a for fixed values of the other 

parameters given in these figures.  We note that the 

peak of m decreases with an increase in 

occurring at the lower interval of time .  We also 

note that, although the peak decreases with an 

increase in  and increases with an increase in a

but occurs at almost at the same interval of time .  

These  information are useful to understand the 
transport of solute at different times. 

Fig. 8. Plots of mean concentration m versus X 

for different values of reaction rate parameter at 

the wall β. 

 
Fig. 9. Plots of mean concentration m versus X 

for different values of couple stress parameter a. 
 

 
Fig. 10. Plots of mean concentration m versus τ 

for different values of reaction rate parameter at 

the wall β. 
 

Fig. 11. Plots of mean concentration m versus τ 

for different values of porous parameter σ. 

 

 
Fig. 12. Plots of mean concentration m versus τ 

for different values of couple stress parameter a. 
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5. CONCLUSIONS 

This paper brings into focus three important 

dispersion coefficients namely the exchange 

coefficient 0K  which arises essentially due to the 

wall reaction, the classical convective coefficient 

1K , and the diffusion coefficient 2K . We study 

the effect of interfacial mass transfer on 0K , 1K  

and 2K . Wide range of parametric study has been 

done to understand the underlying physics and 

draws the following conclusions: 

 Increase in the value of the wall reaction 

parameter  , increases the exchange 

coefficient ( 0K ) but it is unaffected by the 

porous parameter and the couple stress 

parameter.  

 Increase in   and   as well as decrease in 

a is to increase the convective coefficient (

1K ).  

 Increase in  is to increase the effective 

dispersion coefficient ( 2K ). 

 Increase in a is to decrease the effective 

dispersion coefficient ( 2K ). 

 Increase in   and   decreases  mean 

concentration ( m ), while an increase in a

increases m . 

 The peak of m decreases with an increase in 

 occurring at the lower interval of time  .  

 We also note that although the peak decreases  

with an increase in  and increases with an 

increase in a but occurs at almost at the same 

interval of time  .   
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