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ABSTRACT 

In this study, the onset of nanofluid convection confined within a Hele-Shaw cell is investigated by 

performing a classical linear stability analysis. The model used for nanofluid combines the effects of 

Brownian motion and thermophoresis, while for Hele-Shaw cell Brinkman model are employed. The new 

stability equations are formulated by introducing new characteristic dimensionless parameters such as the 

Hele-Shaw number, the Hele-Shaw Rayleigh number and the nanoparticle concentration Hele-Shaw Rayleigh 

number. The resulting stability equations are solved numerically by using higher order Galerkin method. It is 

found that the nanoparticle concentration Hele-Shaw Rayleigh number, the Lewis number and the modified 

diffusivity ratio hasten the onset of convection, while the Hele-Shaw number delays the onset of convection. 

A comparison is also made between the existing boundary conditions for nanoparticle and obtained that the 

zero nanoparticle flux boundary conditions under the thermophoretic effects has more destabilizing effect 

than the fixed nanoparticle boundary conditions. 

KEYWORDS: Nanofluid convection; Brownian motion; Thermophoresis; Hele-Shaw cell.  

 

1. INTRODUCTION 

This paper concerns the stability of a nanofluid 

layer confined within a Hele-Shaw cell, heated from 

below. A Hele-Shaw cell is a device, whose 

essential features are two parallel flat plates 

separated by an infinitesimally small gap containing 

a thin layer of fluid. Various problems in fluid 

mechanics can be approximated to Hele-Shaw 

flows and thus the study of these flows is of 

significance. Nowadays, the Hele-Shaw flow is 

used in several fields of natural sciences and 

engineering, in particular, matter physics, materials 

science and crystal growth due to manufacturing 

techniques. The equations governing the flow of the 

fluid in the Hele-Shaw cell are similar to those 

governing the flow in a saturated porous medium. 

Hele–Shaw (1898) was the first who showed the 

analogy between the two-dimensional flow in a 

porous medium and Hele-Shaw cell by defining an 

equivalent permeability of 
2 12b for the Hele-Shaw 

cell where b  is the width of the fluid layer gap. 

Several authors have attempted to find the limits of 

applicability for this analogy. Wooding (1961), 

Elder (1967), Hartline and Lister (1977), Kvernvold 

(1979) and Bhadauria et al. (2005) used free 

convection in Hele–Shaw cells to simulate thermal 

convection in porous media. By properly 

identifying the Hele-Shaw permeability, they have 

demonstrated that the Hele-Shaw cell can be a 

powerful tool for quantitative study of two-

dimensional flow in porous media.  

Recently, there has been significant interest in 

nanofluids due to need of heat transfer 

enhancement. The term ‘nanofluid’ denotes a 

mixture of solid nanoparticles and a common base 

fluid. Nanoparticles used in nanofluid have 

diameters below 100 nm. Due to their small size, 

nanoparticles dissolved easily inside the base fluid, 

and as a result, jam of channels and erosion in 

channel walls do not happen. In occurrence of a 

simple few percents of nanoparticles, a significant 

increase of the effective thermal conductivity of 

nanofluids has been found (Xuan and Li 2000; Das 

et al. 2006; Aybar et al. 2014; Malvandi 2015). The 

properties of nanofluids have made them potentially 

useful in many practical applications in industrial, 

commercial, residential and transportation sectors 

(Manna 2009; Yu and Xie 2012).  

Buongiorno (2006) developed a model for 

nanofluid incorporating the effects of Brownian 

diffusion and thermophoresis. Using that model, 

Tzou (2008), Nield and Kuznetsov (2009, 2011a, 

2011b), Kuznetsov and Nield (2010a,b,c), Rana et 

al. (2014), Chand et al. (2012a,b, 2015), Hayat et 

al. (2015), Umavathi and Mohite (2014), Yadav et 

al. (2011, 2012a,b, 2013a,b,c, 2014a,b) and 

Bhadauria and Agrawal (2011a,b,c) studied the 

http://www.jafmonline.net/
http://www.sciencedirect.com/science/article/pii/S0020746204000915#bib1
http://link.springer.com/search?facet-author=%22Monica+B.+Mohite%22
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problem related to thermal instability in nanofluids. 

In all of those studies, the nanoparticle volumetric 

fraction on the boundaries was fixed which is quite 

hard to recognize physically. Very recently, Nield 

and Kuznetsov (2014) and Agrawal (2014) studied 

thermal instability in a porous medium layer 

saturated by a nanofluid using the Darcy model 

with a very new set of boundary condition that the 

nanoparticle flux is assumed to be zero rather than 

prescribing the nanoparticle volumetric fraction on 

the boundaries. This shows that nanoparticle 

fraction value at the boundary adjusts accordingly.  

The objective of the present investigation is to study 

the onset of convection in a nanofluid layer 

confined within a Hele-Shaw cell using the 

Brinkman’s model with the new set of boundary 

conditions. The new stability equations are derived 

which are solved numerically by using higher order 

Galerkin method. The effects of the Hele-Shaw 

number and the nanoparticle parameters on the 

onset of convection are studied. To the best of 

authors’ knowledge this type of investigation is still 

to be added in the literature of the nanofluid flow. 

2. PROBLEM FORMULATIONS 

Consider a nanofluid layer of height ,d  vertically 

confined between two parallel rigid impermeable 

boundaries at 
* 0z   and 

* ,z d  which are 

maintained at constant but different temperature 
*

hT  

and 
*

cT  (
* *  >h cT T ), respectively. The nanofluid 

shall be infinitely extended in the -x direction, but 

confined in the -y direction by vertical 

impermeable boundaries (sidewalls) at 
* 0y   

and  *  y b d . The schematic diagram of the 

system considered here is as shown in Fig.1. 

Asterisks are used to distinguish the dimensional 

variables from the non-dimensional variables 

(without asterisks).  

 

Fig. 1. Physical configuration of the 

system considered. 

 

2.1   Assumptions 

The mathematical equations describing the physical 

model are based upon the following assumptions: 

(i) Nanofluid is dilute and nanoparticles are 

suspended in the nanofluid using either surfactant or 

surface charge technology. This shows that the 

stratified state has had no time to be settled and 

nanofluid behaves like pure fluid.  

(ii) The thermophysical properties except for 

density in the buoyancy force (Boussinesq 

hypothesis) are constant for the purpose of 

characterization and estimates of the various effects 

on the order of magnitude. 

(iii) The fluid phase and nanoparticles are in 

thermal equilibrium state. 

(iv) Nanoparticles are spherical. 

(v) Nanofluid is incompressible, Newtonian and 

laminar; 

(vi) Each boundary wall is assumed to be 

impermeable and perfectly thermal conducting. 

(vii) Radiative heat transfer between the sides of 

wall is negligible when compared with other modes 

of the heat transfer. 

 

2.2   Governing Equations 

When the Hele-Shaw cell gap width is not 

sufficiently small with regard to the appearing 

wavelength of the instability, the correction to 

Darcy’s law is needed. Therefore, on employing the 

Brinkman model, the governing equations 

formulated by Buongiorno (2006) and Nield and 

Kuznetsov (2009) with Hele-Shaw approximation 

are: 
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with the boundary conditions as: 

*
* * *

*

* *

* * *

0,  ,  

0,

h

T
B

c

dw
w T T

dz

d D dT
D

dz T dz



  

 

    at     
* 0z   ,        (5a) 

*
* * *

*

* *

* * *

0,  ,

 0

c

T
B

c

dw
w T T

dz

d D dT
D

dz T dz



  

 

      at     
*z d .        (5b) 
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In these equations, subscripts p  and c  refer to the 

nanoparticles and a reference quantity, respectively, 

 * * * *, ,u v wv  is the nanofluid velocity, 

2 12K b is the permeability of the fluid flow, 

* is the nanoparticle volumetric fraction, *T  is 

the temperature, BD  is the Brownian diffusion 

coefficient, TD is the thermophoresis diffusion 

coefficient, g  is the gravitational acceleration, 

 c  is the heat capacity, T  is the thermal 

volumetric expansion coefficient,   is the 

viscosity,   is density and k  is the thermal 

conductivity of the nanofluid. 

To write the governing equations in the non-

dimensional form, we introduce the following 

scales:  

 
 * * *, ,

, , ,
x y z

x y z
d


*

2
,

t

d


 

*

,
d




v
v

* 2

,
p d

p



* *

*
,c

c

 







* *

* *
.c

h c

T T

T T






             (6) 

The non-dimensional form of equations (1)-(5) with 

the help of equations (6) become as: 

0,  v                                                                (7) 
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with boundary conditions as: 

0,  1,  

0A

dw
w

dz

d d
N

dz dz



 

  

 

    at  0z                        (11a) 

0,  0,

 0A

dw
w

dz

d d
N

dz dz



 

  

 

  at  1z  .                       (11b) 

Here ˆmH zp p R e    . The non-dimensional 

parameters that appear in the equations (7)-(11) are 

defined as: 

* *( )c T h c
H

g Kd T T
R

 




  is the Hele-Shaw 

Rayleigh number, 

* *{ (1 )}p c c c
mH

gKd
R

   



 
 is the basic-

density Hele-Shaw Rayleigh 

number,
  *

p c c

nH

gKd
R

  




 is the 

nanoparticle concentration Hele-Shaw Rayleigh 

number, rP



  is the Prandtl number, 

2S

K
H

d
 is the Hele-Shaw number,

 
e

B

L
D


 is 

the Lewis number, 
 * *

* *

T h c

A

B c c

D T T
N

D T 


 is the 

modified diffusivity ratio and

*( )

( )

p c
B

c
N

c

 


 is the 

modified particle density increment. 

3. BASIC SOLUTION 

The basic state of the nanofluid is assumed to be 

time independent and is described by 

0,v   ,b z    ,bp p z  b z  .       (12) 

Then Eqs (9) and (10) become: 

22

2
0,b b b bB A B

e e

d d d dN N N

L dz dz L dzdz

    
   

 
   (13)  

2 2

2 2
0,b b

A

d d
N

dz dz

 
                                          (14) 

under the following boundary conditions: 

1,  0b b
b A

d d
N

dz dz

 
             at 0z  ,      (15a) 

0,  0b b
b A

d d
N

dz dz

 
            at 1z  .      (15b) 

On solving equations (13) and (14) subject to the 

above boundary conditions (15), we have 

1b z   and
*

b c AN z   ,                    (16a,b) 

where *
c  is the reference value of nanoparticle 

volume fraction.  

4. PERTURBATION EQUATIONS 

For small disturbances onto the primary flow, we 

assume that: 

,v v ( ) ,b z    ( ) ,bp p z p  

( ) ,b z    ( ) ,b z                         (17) 

where prime indicates perturbation quantities over 

their equilibrium counterparts and assumed to be 

small. On substituting equation (17) into equations 

(7) - (11) and neglecting the product of prime 

quantities, we have: 
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0,  v                                                            (18) 
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Operating on Eq. (19) with ˆ  ze  and using 

the identity
2        together with Eq. 

(18), we obtain z -component of the momentum 

equation as: 

2 2 2
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where 
2

P  is the Laplacian operator in the 

horizontal plane. 

Very recently, Nield and Kuznetsov (2014) 

observed that the oscillatory convection cannot 

occur with this new set of boundary conditions due 

to absence of the two opposing agencies who affect 

the instability. Therefore, in the absence of 

oscillatory convection, we can take the perturbation 

quantities are of the form: 

       ,  ,  ,  ,  
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w W z z z

ik x ik y
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       (23) 

where ,  x yk k  are the wave number along 

the x and y directions respectively and 

2 2
x ya k k   is the resultant wave number.  

On substituting equation (23) into the differential 

equations (20), (21) and (22), the linearized 

equations in dimensionless form are as follows: 
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and the boundary conditions become: 

0,   

D 0A
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N D

   
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at 0 and 1z  ,             (27) 
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d

D
dZ

  

5. METHOD OF SOLUTION 

Equations (24)–(26) together with the boundary 

conditions (27) constitute a linear eigenvalue 

problem of the system. The resulting eigenvalue 

problem is solved numerically using the Galerkin 

weighted residuals method. In this method, the test 

(weighted) functions are the same as the base (trial) 

functions. Accordingly ,  W  and  are taken in 

the following way: 

1
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s s
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where ,sA sB and sC  are constants. The base 

functions ,sW  s and s represented by power 

series as trivial functions satisfying the respective 

boundary conditions and are assumed in the 

following form: 
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Using equation (28) into equations (24)-(26) and 

multiplying Eq. (24) by s , Eq. (25) by s and Eq. 

(26) by sW ; performing the integration by parts 

with respect to z between 0z   and1 , we obtain 

the following system of algebraic equations: 
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The coefficients jsD  to jsL  involve inner 

products of the base functions and are given by: 
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2 .js nH j sL R a W    Here  

1

0

.fg fgdz    

The above system of homogeneous algebraic 

equations (30) can have a nontrivial solution if and 

only if  



D. Yadav and J. Lee / JAFM, Vol. 9, No. 2, pp. 519-527, 2016.  

 

523 

   E     F  

   H     I  0.

   K     L

js js js

js js js

js js js

D

G

J

                                         (31) 

The inner products involved in the determined are 

evaluated analytically rather than numerically in 

order to avoid errors in the numerical integration. 

Equation (31) gives a relation between HR and a  

for a fixed value of other parameters. The critical 

Hele-Shaw Rayleigh number ,H cR  is obtained by 

minimizing HR  with respect to the wave number 

a  for different fixed values of the other parameters 

using the Newton’s and golden section search 

methods. Thus the critical stability parameters 

 , ,  H c cR a are computed for different values of 

physical parameters involved therein. Convergence 

of the results is achieved by using six terms in the 

Galerkin expansion. 

6. RESULTS AND DISCUSSION 

The effect of Hele-Shaw number on the onset of 

convection in a nanofluid layer is examined by 

considering a physically more realistic boundary 

condition on volume fraction of nanoparticles. For 

the boundary conditions considered, it is not 

possible to obtain exact analytical solution using 

single-term Galerkin method, and therefore we have 

to resort 6-term Galerkin method to solve the 

resulting eigenvalue problem for different values of 

the Hele-Shaw number SH , the nanoparticle 

concentration Hele-Shaw Rayleigh number nHR , 

the modified diffusivity ratio AN , the modified 

particle density increment BN and the Lewis 

number eL . The Newton-Raphson method is used 

to obtain the Hele-Shaw Rayleigh number HR  as a 

function of wave number a  and the bisection 

method is built in to locate the critical stability 

parameters ,( , )H c cR a . The parametric values vary 

with the base fluid and nanoparticles chosen. 

According to Buongiorno (2006), Kuznetsov (2011) 

and Yadav et al. (2014c), we have taken the values 

of nanoparticle concentration Hele-Shaw Rayleigh 

number nHR in the order1 10 , modified particle 

density increment BN of the order 
3 210 10   

and Lewis number is taken in the order of 
21 10 . 

The value of modified diffusivity ratio AN  is not 

more than10 . The range of these parameters has 

been predicted using available experimental range 

of thermo-physical properties of alumina-water 

nanofluid (Buongiorno 2006; Wong and Kurma 

2008).  

In order to validate the exactness of the present 

results, first test computations are carried out in the 

absence of nanoparticles, i.e. for regular fluid by 

taking
* 0c nHR   . The regular critical thermal 

Rayleigh number cR and the corresponding critical 

wave number ca  for different values of Hele-Shaw 

number SH  are computed for regular fluid. The 

computed values are tabled in Table 1 and 

compared with Guo and Kaloni (1995). It is seen 

that our results are in excellent agreement. These 

comparisons verify the accuracy of the numerical 

method used in the present study. 
 

Table 1 ,H cR and 2
ca for different values 

of sH with Guo and Kaloni (1995) for regular 

fluid 

sH  

Guo and Kaloni 

(1995) 
Present study 

,H cR  2
ca  ,H cR  2

ca  

0.01 60.36 10.47 60.395 10.439 

0.1 215.06 9.92 215.02 9.923 

1 1752.20 9.70 1751.871 9.734 

  1707.70 9.71 1707.760 9.709 

 
The significant characteristics of the Hele-Shaw 

number SH and the nanoparticle concentration 

Hele-Shaw Rayleigh number nHR  on the stability 

of the system are exhibited graphically in Figs.2 and 

3. 

 

 
Fig. 2. Effect of the Hele-Shaw number sH on the 

critical Hele-Shaw Rayleigh number ,H cR for 

different values of nanoparticle concentration 

Hele-Shaw Rayleigh number nHR with 2,AN   

BN 0.01, 50.eL   

 

From Fig. 2, we see that an increase in the values of 

SH is to increase the critical Hele-Shaw Rayleigh 

number ,H cR  and hence its effect is to delay the 

onset of nanofluid convection. This may be quality 

to the fact that increasing Hele-Shaw number SH  

amounts to increase in the permeability of the Hele-

Shaw cell i.e. increase in the width of Hele-Shaw 

cell and hence higher heating is required for the 

onset of convection. 

From Fig. 2, it is also found that the when the 

nanoparticle concentration Hele-Shaw Rayleigh 

number nHR  increases, in terms of the smaller 
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value of the critical Hele-Shaw Rayleigh number 

,H cR , the system becomes more unstable. This 

may be interpreted as an increase in the 

nanoparticle concentration Hele-Shaw Rayleigh 

number nHR , increase the Brownian motion and 

thermophoresis diffusion of the nanoparticles by 

increasing the volumetric fraction of nanoparticle, 

which causes destabilizing effect. The 

corresponding critical wave number ca  is plotted in 

Fig. 3 and shows that an increase in the values of 

Hele-Shaw number SH tends to decrease ca  and 

thus its effects is to make higher the size of 

convection cells, while the size of convection cells 

does not depend on the nanoparticle concentration 

Hele-Shaw Rayleigh number nHR . 

 
Fig. 3. Effect of the Hele-Shaw number sH on 

the critical wave number ca for different values 

of nanoparticle concentration Hele-Shaw 

Rayleigh number nHR  

with 2,AN  BN 0.01, 50.eL   

 

The effect of modified particle density increment 

BN  on the onset of convection is made clear in 

Figs. 4 and 5. From these figures, we observed that 

the modified particle density increment BN  has no 

significant effect on the stability of nanofluids 

convection. This is because the terms containing 

BN involves as a function of B

e

N

L
and the value of 

B

e

N

L
is too small of order

2 510 10 
, pointing to 

the zero contribution of the nanoparticle flux in the 

thermal energy conversation. The effect of the 

Hele-Shaw number SH is same as obtained in Figs. 

2 and 3. 

To consider the effects of the Lewis number  eL  

and the modified diffusivity ratio  AN  on the 

stability of the system, the variation of critical Hele-

Shaw Rayleigh number ,H cR  as a function of 

Hele-Shaw number SH for different values of 

Lewis number  eL  and modified diffusivity 

ratio  AN  are illustrated in Figs. 6 and 7, 

respectively.  

 

 
Fig. 4. Effect of the Hele-Shaw number sH on 

the critical Hele-Shaw Rayleigh number ,H cR  

for different values of modified particle density 

increment BN  with 1,nHR  2,AN  50.eL   

 

 
Fig. 5. Effect of the Hele-Shaw number sH on 

the critical wave number ca for different values 

of modified particle density increment BN  with 

1,nHR  2,AN  50.eL   
 

 
Fig. 6. Effect of the Hele-Shaw number sH on 

the critical Hele-Shaw Rayleigh number 

,H cR for different values of Lewis number 

eL with 1,nHR  2,AN  BN 0.01.  
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Fig. 7. Effect of the Hele-Shaw number sH on 

the critical Hele-Shaw Rayleigh number 

,H cR for different values of modified diffusivity 

ratio  AN with 1,nHR  BN 0.01, 50.eL   

 

We found that with an increase in the values of the 

Lewis number  eL  and the modified diffusivity 

ratio  AN , the critical Hele-Shaw Rayleigh number 

,H cR  decreases, indicating that both accelerate the 

onset of convection in a nanofluid layer. It may be 

quality to the fact that the thermophoresis 

diffusivity is more supportable to the disturbance in 

nanofluids, while both thermophoresis and 

Brownian motion are driving forces in favour of the 

motion of nanoparticles.  

The corresponding critical wave number ca  is 

plotted in Fig. 8 and shows that the critical wave 

number ca does not depend on both the Lewis 

number  eL  and the modified diffusivity ratio  AN . 

The effect of the Hele-Shaw number SH is same as 

obtained in Figs. 2 and 3.  

 
Fig. 8. Effect of the Hele-Shaw number sH on 

the critical wave number ca for different values 

of Lewis number eL  and modified diffusivity 

ratio  AN with 

1,nHR  2,AN  BN 0.01, 50.eL   

 

To see the similarities as well as differences 

between the zero flux and the constant nanoparticle 

boundary conditions (Nield and Kuznetsov 2009) 

on the stability characteristics of the system, the 

critical Rayleigh number for different values of 

Hele-Shaw number SH for these two boundary 

conditions are compared in Tables 2-4.  

 

Table 2 Comparative results of H,cR and ca  for 

different values of sH and nHR with AN = 2,  

BN = 0.01, eL = 50  for the (i) zero flux and (ii) 

the constant nanoparticle boundary conditions 

(Nield and Kuznetsov 2009) 

sH  ca  nHR  
(i)                (ii) 

cR               cR  

0.01 

3.23 

3.23 

3.23 

3.23 

0.5 

1 

2 

3 

9.40 

-41.60 

-143.60 

-245.60 

34.40 

8.40 

-43.60 

-95.60 

0.1 

3.15 

3.15 

3.15 

3.15 

0.5 

1 

2 

3 

164.06 

113.06 

11.06 

-90.94 

189.06 

163.06 

111.06 

59.06 

1 

3.12 

3.12 

3.12 

3.12 

0.5 

1 

2 

3 

1701.21 

1650.21 

1548.21 

1446.21 

1726.21 

1700.21 

1648.21 

1596.21 

 
Table 3 Comparative results of the H,cR and ca  

for sH and eL with nHR = 1,  

AN = 2, BN = 0.01  for the (i) zero flux and (ii) 

the constant nanoparticle boundary conditions 

(Nield and Kuznetsov 2009) 

sH  ca  eL  
(i)               (ii) 

cR               cR  

0.01 

3.23 

3.23 

3.23 

3.23 

10 

30 

50 

70 

38.40 

-1.60 

-41.60 

-81.60 

48.40 

28.40 

8.40 

-11.60 

0.1 

3.15 

3.15 

3.15 

3.15 

10 

30 

50 

70 

193.06 

153.06 

113.06 

73.06 

203.06 

183.06 

163.06 

143.06 

1 

3.12 

3.12 

3.12 

3.12 

10 

30 

50 

70 

1730.21 

1690.21 

1650.21 

1610.21 

1740.21 

1720.21 

1700.21 

1680.21 

 

From Tables 2-4, we obtained that the zero flux 

nanoparticle boundary condition has more 

destabilizing effect than the constant nanoparticle 

boundary conditions. 

7. CONCLUSIONS 

The onset of nanofluid convection in a vertically 

orientated Hele-Shaw cell was investigated 

numerically using linear stability theory. A more 

physical boundary condition where the nanoparticle 

fraction alters itself together with the consequence 

of Brownian and thermophoresis motions on the 

boundaries was taken. A comparison was also made 

between the existing boundary conditions for 

nanoparticle. The critical Hele-Shaw Rayleigh 

http://www.sciencedirect.com/science/article/pii/S0017931012000737#f0040
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number ,H cR  and the corresponding wave 

number ca  were obtained as a function of the Hele-

Shaw number SH for different values of the 

nanoparticle concentration Hele-Shaw Rayleigh 

number nHR , the modified particle density 

increment BN , the Lewis number  eL  and the 

modified diffusivity ratio  AN . It was found that 

the nanoparticle concentration Hele-Shaw Rayleigh 

number, the Lewis number and the modified 

diffusivity ratio accelerate the onset of convection, 

while the Hele-Shaw number delays the onset of 

convection. The size of the convection cells 

depends only on the Hele-Shaw number SH and 

increases with increasing SH . 
 

Table 4 Comparative results of the ,H cR and the 

ca  for different values of sH and AN  with 

1,nHR  BN 0.01,  50eL   for the (i) zero flux 

and (ii) the constant nanoparticle boundary 

conditions (Nield and Kuznetsov 2009) 

sH  ca  AN  
(i)                (ii) 

cR                cR  

0.01 

3.23 

3.23 

3.23 

3.23 

1 

3 

5 

7 

9.40 

-92.60 

-194.60 

-296.59 

9.40 

7.40 

5.40 

3.40 

0.1 

3.15 

3.15 

3.15 

3.15 

1 

3 

5 

7 

164.06 

62.04 

-39.94 

-141.94 

164.06 

162.06 

160.06 

158.06 

1 

3.12 

3.12 

3.12 

3.12 

1 

3 

5 

7 

1701.21 

1599.21 

1497.21 

1395.21 

1701.21 

1699.21 

1697.21 

1695.21 
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