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ABSTRACT 

The instinct system of cilia motion with magnetic field and slip for Jeffrey fluid model in a symmetric 

channel is examined. The problem of two-dimensional fluid motion in a symmetric channel with ciliated 

walls is considered. The structures of ciliary motion are stubborn by the sovereignty of viscid possessions 

above inertial properties by the long-wavelength and low Reynolds approximation. Exact solutions for the 

longitudinal pressure gradient, temperature and velocities are obtained. The pressure gradient and volume 

flow rate for different values of the flow parameters are also discussed. The flow property for the Jeffrey fluid 

is presented graphically as a function of the cilia and metachronal wave velocity. 

 
Keywords: Magnetic field; Ciliary motion; Symmetric channel; Jeffrey fluid; Thermal and velocity slip; 

Exact solutions. 

NOMENCLATURE 

a wave’s amplitudes  thermal slip parameter. 

Br brinkman number  ε cilia length 

c wave speed  ν kinematic viscosity of the fluid 

F flow rate μ viscosity of the fluid 

M Hartmann number  velocity slip parameter 

yp  yield stress Θ, T temperature 

Re modified Reynolds number λ1 ratio of relaxation to retardation time 

t time α eccentricity of the elliptical motion 

U,V velocity components  β slenderness parameter 

X,Y coordinates   

 

 

1. INTRODUCTION 

Membrane-enclosed motile structure extending 

from the surface of eukaryotic cells. Cilia usually 

occur in groups and beat rhythmically to move a 

cell (e.g., single-celled organism) or to move small 

particles or fluid along the surface (e.g., trachea 

cells). Ciliary and flagellar beating is characterized 

by a series of bends, originating at the base of the 

structure and propagated toward the tip. High-speed 

strobe microscopy allows the waveform of the beat. 

Virtually all eukaryotic cilia and flagella are 

remarkably similar in their organization, possessing 

a central bundle of microtubules, called 

the axoneme, in which nine outer doublet 

microtubules surround a central pair of singlet 

microtubules (Gray and Hancock,1955; Dillon et 

al., 2007). Very recently Akbar and Butt (2015) 

analyzed the effect of heat transfer in a flexible tube 

with ciliated walls and carbon nanotubes. The 

problem has been formulated in the form of non-

linear partial differential equations, after 

simplification exact solutions are evaluated for 

velocity and temperature profile. They observed 

that the change in throughout pure water is more 
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than that of Cu-water as the Hartmann number 

increases for both the single- and multi-walled 

carbon nanotubes case. In other articles Akbar et al. 

(2014), presented metachronal beating of cilia under 

influence of hartmann layer and heat transfer with 

copper nano fluids. They observed that the 

magnitude of the pressure gradient increases with 

the increase in the slenderness parameter, the 

Hartman number, the eccentricity of the elliptic 

motion and the cilia length. They also analyzed that 

the temperature is greater for pure water as compare 

to Cu-water and with high nanoparticle fraction it 

starts decreasing. Heat transfer analysis of bi-

viscous ciliary motion fluid is quoted by Akbar and 

Khan (2014). According to them the velocity field 

increases uniformly with the increase in slenderness 

parameter. 

Although in the cilia problems less attention have 

been given to analyze the flows in the presence of a 

slip conditions. The application of slip condition in 

such flows has special relevance in physiology and 

polymers. It is now known that the no-slip 

conditions for velocity and the thermal conditions 

are not appropriate for momentum and heat transfer 

in micro devices. The velocity slip and temperature 

jump conditions are adequate for the flow of liquids 

at the micro scale level especially in view of the 

lack of data on the thermal accommodation 

coefficient. Among the application of micro 

devices, several complex micro channels arise. For 

instance, the micro conducts of rectangular, 

triangular or trapezoidal cross section are very 

popular and easier to manufacture in the micro scale 

thermal fluid system see Reference. 

The problem of two-dimensional motion of Jeffrey 

fluid and heat transfer in a planner channel with 

ciliated walls is considered. The features of ciliary 

structures are resolute by the supremacy of viscous 

effects above inertial possessions by the long-

wavelength and low Reynolds approximation. This 

is the first article in literature to discuss heat 

transfer for ciliary motion. Closed-form solutions 

for the longitudinal pressure gradient, temperature 

and velocities are obtained. The pressure gradient 

and volume flow rate for different values of the 

flow parameters are also premeditated. Streamlines 

and Isotherms are displayed for the understating of 

the proposed model. 

2. FLOW EQUATION 

We consider an incompressible MHD Jeffrey fluid 

in a planner channel. Channel is ciliated with 

metachronal wave pattern which propagates along 

the wall of the channel.  The y-coordinate is 

measured along the channel, where x-coordinate 

transverse to it. The magnetic field 0B is imposed 

on the flow in the x-direction normal to the flow. It 

is assumed that the wall of the channel is heated 

uniformly at a constant temperature 0T with 

symmetry at center. The physical model and 

coordinate system are shown in Fig. 1. 

 
Fig.1. A physical sketch of ciliated channel. 

 
The geometry of the metachronal wave form 

proposes that the covering of the cilia advices can 

be stated precisely as 
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Sleigh [2,3] observed that cilia tips move in 

elliptical paths; therefore, the horizontal position of 

the cilia tips can be written as            
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The horizontal and vertical velocities of the cilia are 

given as [2, 3] 
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The expression for fixed and wave frames are 

related by the following relations 

   , , , , ,x X ct y Y u U c v V p x P X t      

.                                                                           (5) 

Introducing the following non-dimensional 

quantities  
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The stream function and velocity field are related 

by the expressions 

,  u v
y x


 

  
 

.                                            (7) 

Under the long wavelength and low Reynolds 

number assumption, the dimensionless governing 

equations take the following form  
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Fig. 2. Velocity profile along y-axes for different flow parameters. 
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Corresponding boundary conditions are 
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The flow rates in fixed and wave frame are related 

by [14] 

1Q F                                                              (12) 

3. SOLUTION OF THE PROBLEM 

The moment equation (8) for the proposed model is 

a second order linear differential equation, which 

has a closed-form solution  
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The constants of integration ,  iC i  1, 2 are 

obtained using boundary conditions (10) and (11) 

through Mathematica 9. A closed form expression 

for the pressure gradient is,       
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The dimensionless pressure rise is obtained by 

substituting (11) into the following equation  
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The energy equation (9) has also a closed-form 

solution 
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where 1  and 2 are constants of integration, 

which are obtained using boundary conditions (10) 

and (11).  

4. RESULTS AND DISCUSSION 

In this section, the effects of the different flow 

parameters, such as the slenderness parameter β, 

Hartman number M , eccentricity of the elliptic  
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Fig. 3 Temperature profile along y-axes for different flow parameters. 
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Fig. 4. Variations in pressure rise versus flow rate for different flow governing parameters.  

 

motion α, flow rate Q, ratio of relaxation to 

retardation time λ1 and cilia length ε on the pressure 

rise, pressure gradient, velocity, temperature, 

streamlines and isotherms has been discussed and 

physically interpreted.   

4.1 Flow Characteristics 

The velocity field is illustrated in the Fig. 2(a-d), for 

different values of ratio of relaxation to retardation 

time λ1 with change in Hartmann number M, 

eccentricity of the elliptic motion α and flow rate Q 

for both slip and no slip case.  It is seen that 

velocity field decreases at the center of the channel 

by increase in ratio of relaxation to retardation time 

λ1 and Hartmann number M but near the channel 

walls behavior is different i.e. velocity field 

decreases for increase in ratio of relaxation to 

retardation time λ1 and Hartmann number M.  

Influence of eccentricity of the elliptic motion α and 

flow rate Q on velocity profile is different as 

compare to ratio of relaxation to retardation time λ1  

and  Hartmann number M. Velocity profile 

increases at the center of the channel but decreases 

near the channel walls by rise in eccentricity of the  
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Fig. 5. Influence of the governing parameters on the pressure gradient along x-axes. 
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Fig. 6. Variations in streamlines with the Hartmann number M. 

 

elliptic motion α and flow rate Q. It is also seen that 

velocity for the case of slip is high for all the 

parameters as compare to the no slip case. 

Temperature profile is displayed in Figs. 3(a-e). It is 

observed that for different values of ratio of 

relaxation to retardation time λ1 , Hartmann number 

M , flow rate Q, Brinkman number Br, velocity slip 

parameter   and eccentricity of the elliptic motion 

α temperature field increases in whole channel . 

It is also analyzed the temperature rise rapidly for 

thermal slip case as compare to no thermal slip.  

4.2 Pumping Characteristics 

Numerical integration is performed for the pressure 

rise per wave-length. It is noticed that the pressure 

rise and volume flow rate have opposite behaviours. 

From Figs. 4(a-c). It is found that in pumping 

region  0P  , the pressure rise decreases with 

the increase of ratio of relaxation to retardation time 

λ1, while pressure rise increase with the increase in 

Hartmann number M and cilia length  . Figs. 4(a) 

to 4(c) also show that in the augmented pumping 

region for 0P  , pressure rise gives the opposite 

results for all the parameter as compared to the 

pumping region  0P  . Free pumping region 

holds for 0P  . Moreover Pressure rise increases 

rapidly for velocity slip case as compare to no slip 

case.  

The pressure gradient for different values of the 

flow parameters is plotted in the Fig. 5(a-d). 

Magnitude of pressure gradient decreases with the 

increase in the ratio of relaxation to retardation time  
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Fig. 7.  Effects of the slip parameter  on the streamlines. 
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Fig. 8. Effects of the ratio of relaxation to retardation time λ1 on the Isotherms. 
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Fig. 9. Effects of the velocity slip parameter on the Isotherms. 

 

 

λ1 but increases for increasing values of Hartmann 

number M flow rate Q and cilia length  . It is also 

observed that the maximum pressure gradient 

occurs when x=0.48 and near the channel walls the 

pressure gradient is small. This leads to the fact that 

flow can easily pass in the middle of the channel. 

Again it is seen that pressure gradient is high for 

velocity slip case as compare to no slip 

4.3 Trapping Phenomena and Isotherms 

The trapping phenomena for different values of 

Hartmann number M is shown through Fig. (6a) to 

(6c). It is seen that for large values of Hartmann 

number M, size of the bolus increases but number 

of bolus decreases, From Figs. 7 display that for 

increasing slip parameter size and number of bolus 

both decreases. Streamlines for ratio of relaxation to 

retardation time λ1 are shown in the Figs. (8a) to 

(8c). Fig 8, shows that with an increase in λ1 size of 

the trapping bolus decreases but number of bolus 

increases. 

A line connecting points of equal temperature is 

called an isotherm. From Figs. 8 and 9, the small 

orange numbers are contour labels, which identify 

the value of an isotherm (75, 85 degrees 

Fahrenheit). So it analyzed that when we increases 

velocity slip parameter then temperature is going 

less than 75, 85 Fahrenheit, but with the increase in 

thermal slip parameter than temperature is 75, 85 

degrees Fahrenheit See Figs. 9 and 10. 

5 CONCLUSIONS 

Impact of thermal and velocity slip for Jeffrey fluid  
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Fig. 10. Effects of the thermal slip parameter on the Isotherms. 

 

in a ciliated symmetric channel with metachronal 

wave pattern is discussed. Key points of the 

performed analysis are as follows: 

 It is seen that velocity field decreases at the 

center of the channel by increase in ratio of 

relaxation to retardation time λ1  and  Hartmann 

number M. 

 Velocity profile increases at the center of the 

channel but decreases near the channel walls by 

rise in eccentricity of the elliptic motion α and 

flow rate Q. 

 It is observed that for different values of ratio of 

relaxation to retardation time λ1 , Hartmann 

number M , flow rate Q, Brinkman number Br, 

velocity slip parameter   and eccentricity of 

the elliptic motion α temperature field increases 

in whole channel. 

 It is also analyzed the temperature rise rapidly 

for thermal slip case as compare to no thermal 

slip.   

 The pressure rise decreases with the increase of 

ratio of relaxation to retardation time λ1, while 

pressure rise increase with the increase in 

Hartmann number M and cilia length  . 

 Free pumping region holds for 0P  . 

 Pressure rise increases rapidly for velocity slip 

case as compare to no slip case.  

 Magnitude of pressure gradient decreases with 

the increase in the ratio of relaxation to 

retardation time λ1 but increases for increasing 

values of Hartmann number M, flow rate Q and 

cilia length  . 

 With an increase in λ1 size of the trapping bolus 

decreases but number of bolus increases. 

 It analyzed that when we increases velocity slip 

parameter then temperature is going less than 

75, 85 Fahrenheit, but with the increase in 

thermal slip parameter than temperature is 75, 

85 degrees Fahrenheit 
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