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ABSTRACT 

This article is intended for investigating the entropy generation analysis for the peristaltic flow of Cu-water 

nanofluid with magnetic field in a lopsided channel. The mathematical formulation is presented. The resulting 

equations are solved exactly. The obtained expressions for pressure gradient, pressure rise, temperature and 

velocity phenomenon are described through graphs for various pertinent parameters. The streamlines are 

drawn for some physical quantities to discuss the trapping phenomenon. 
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1. INTRODUCTION 

In the antiquity of fluid subtleties, the extent of 

peristaltic transference have gained momentous 

desirability due to its substantial influence in the 

arenas of manufacturing and biomechanics as this 

procedure remnants energetic in numerous organic 

devices and biomedical engineering. 

Unambiguously, it is extremely functional in the 

design of swallowing food through the esophagus, 

chyme motion in the gastrointestinal tract, 

vasomotion of small blood vessels such as venules, 

capillaries and arterioles, urine transport flow from 

kidney to bladder, sanitary fluid transportation, 

transportation of corrosive fluids and a toxic liquid 

flow in the nuclear industry etc. In the opinion of 

such huge influence of peristaltic movements in 

engineering and biomedical many researchers have 

absorbed on the study of peristaltic mechanism. 

Logically, the behavior of regularly used liquids in 

such type of phenomenons is typically non-

Newtonian to concentrated degree. Custody in 

attention the difficulty of non-Newtonian fluids, 

numerous of the investigators have functioned on 

the peristaltic flows of dissimilar non-Newtonian 

models in the intelligence of constitutive relations. 

In the studies ]61[   , the scholars have gained the 

numerous results concerning peristaltic flows in 

different flow geometries. 

In present-days nanofluid is a topic of innumerable 

courtesy among the researchers. Choi (1995) was 

the chief who have habituated the word "nanofluid" 

which elucidate a fluid rescheduling including 

ultrafine units with span less than 50 nm. The 

increase in thermal conductivity of nanofluids has 

been accredited to a volume of varied geniuses with 

Brownian motion, bunching of nanoparticles and 

fluid layering at the liquid/solid border. In 

peristaltic rhyme few studies have been completed 

for nano fluid. Akbar and Nadeem (2014) present 

endoscopic properties on the peristaltic flow of a 

nanofluid. In a further article Akbar et al. (2012) 

considered the peristaltic flow of a nanofluid in a 

non-uniform tube. Very recently Hamad and 

Ferdows (2012) explore the similarity solution of 

boundary layer stagnation-point flow towards a 

heated porous and nonlinear stretching sheet 

saturated with nano fluid with Cu-water nano fluid 

with water as base fluid. 

In thermodynamics, entropy is a measure of the 

number of specific ways in which a thermodynamic 

system may be arranged, often taken to be a 

measure of disorder, or a measure of progressing 

towards thermodynamic equilibrium. Bejan (1979) 

studied the entropy generation in fundamental 

convective heat transfer. Non-Newtonian fluid flow 

in a pipe system with entropy generation is 

considered by Pakdemirli and Yilbas (2006).  

According to them entropy number increases with 

increasing Brinkman number. Entropy generation 

due to heat and fluid flow in backward facing step 

flow with various expansion ratios is studied by 
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Abu-Nada (2005). Further analysis could be seen 

through References. 

Entropy generation for peristaltic flow is not 

explored so far, to fill this gap we have investigated 

the entropy generation analysis for the peristaltic 

flow of Cu-water nanofluid with magnetic field in a 

lopsided channel. The coupled differential 

equations are simplified under long wave length and 

low Reynolds number assumptions. Exact solutions 

are obtained for reduced coupled differential 

equations. The entropy generation is computed by 

evaluation of thermal and fluid viscosities 

contribution. The physical features of pertinent 

parameters have been discussed by plotting the 

graphs of velocity, temperature, entropy number 

and stream functions. 

2. MATHEMATICAL FORMULATION 

Let us discussed an incompressible Cu-

water nanofluid in an asymmetric channel of width 

21 dd  . The channel has a sinusoidal wave 

propagating with constant speed  c   on the channel 

walls induces the flow. The asymmetric of the 

channel is due to different amplitudes. Temperature 

,0T  1T  and nanoparticle concentrations ,0C  1C  are 

given to the upper and lower wall of the channel. 

The wall surfaces are selected to satisfy the 

following expressions 
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In the above equations 1a  and 1b  are the waves 

amplitudes,   is the wave length, 21 dd   is the 

channel width, 1c  is the wave speed, t  is the time, 

X  is the direction of wave propagation and Y  is 

perpendicular to X . The phase difference   varies 

in the range  0 . When 0  then symmetric 

channel with waves out of phase can be described 

and for ,   the waves are in phase. Moreover, 

2111 ,,, ddba  and   satisfies the following relation 
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The coordinates, velocity components and pressure 

between fixed and wave frames are related by the 

following transformations:, 

   ,,,,,, tXPxpVvcUuYyctXx 

(2) 

in which  ,, yx   vu ,  and p  are the coordinates, 

velocity components and pressure in the wave 

frame. 

With the transformation given Eq. )2(  equations 

governing the flow and temperature in the presence 

of heat source or heat sink with viscous dissipation 

are  
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where x  and y  are the coordinates along and 

perpendicular to the channel, u  and v  are the 

velocity components in the x  and y  

directions, respectively, T  is the local temperature 

of the fluid. Further, nf  is the effective density, 

nf  is the effective dynamic viscosity, nfpc )(  is 

the heat capacitance, nf  is the effective thermal 

diffusivity, and nfk  is the effective thermal 

conductivity of the nanofluid, which are defined as  
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where   is the solid volume fraction of the 

nanoparticles. 

we introduce the following non-dimensional 

quantities  

  

.

,
2

 ,, ,

 ,,,,Re, ,

 ,
2

 ,
2

 , , , ,
2

2
1

1

2

01

2

01

0

1

1

2

1

11

2

2
2

1

1
1

1

1

f

fp
r

fp
c

ff

k

c
P

c

Pd
P

d

d
d

cTT

c
E

TT

TT

c

dS
S

d

a
b

d

a
a

cd

d

h
h

d

h
h

dt
t

c

v
v

c

u
u

d

y
y

x
x








































 
(8) 

in above equations rP  is the Prandtl number, M  is 

Hartmann number and cE  is the Eckert number. 

Stream function and velocity field are related by the 

expressions 

(3) 

(4) 

(5) 

(6) 
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In view of the Eqs. )97(   under the long 

wavelength and low Reynolds number assumption 

we have the following equations 
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The non-dimensionaless   boundary conditions 
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The flow rates in fixed and wave frame are related 

by 
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3. VISCOUS DISSIPATION AND 

ENTROPY GENERATION 

The dimensional viscous dissipation term   can 

be obtained from equations of motion, i.e,  
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The dimensional volumetric entropy generation is 

defined as 
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Dimensionless form of the Entropy Generation in 

terms of stream function is given as: 
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where 
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0  the reference temperature. 

Equation (16) consists of two parts. The first part is 

the entropy generation due to finite temperature 

difference (Nscond) and the second part is the 

entropy generation due to viscous effects (Nsvisc). 

The Bejan number is defined as  

.
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4. SOLUTION PROFILES 

Exact solutions for stream function, temperature 

profile using Mathematica 9 can be written as 
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where 61 cc   are constants evaluated using 

Mathematica .9   

The pressure rise p  in non-dimensional form is 

defined as 

.
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5. RESULTS AND DISCUSSION 

In this section, we present a brief graphical analysis 

of the exact analytical solutions of the governing 

problem. Fig.  a1  and  b1  represent the 

magnitude of the horizontal velocity of the fluid 

inside the channel. We see that with the increase in 

the Hartmann number M  , i.e. ratio of 

electromagnetic   force   to   the   viscous   force, the  

(20) 
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Fig. 1:  Velocity profile a) different M and b) different Q. 
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Fig. 2: Pressure rise P  for a) different M, b) different a and c) different b. 
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Fig. 6: Temperature profile for a) different Q, b) different M and c) different Br. 
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Fig. 7: Entropy generation number for a) different M, b) different Brᴧ-1 and c) different Q. 

 

 

velocity decreases in the center of the tube and 

increases near the walls of the tube, while as we 

increase the flow rate Q  , the magnitude of velocity 

takes a positive shift all around the tube. In both 

cases, it is observed that Cu-water has more 

variation as that of pure water. Also we note that the 

velocity attains its highest values in the center of the 

channel at ,0y  while it sufficiently decreases at 

the walls of the channel. Figs.  a2  to   b3   depict 

that with the addition of copper to the base fluid, the 

pressure rise gradually increases with the increase 

in Hartmann number M and amplitude   while 

decreases with the increase in amplitudes ratio a, b 

and d in the peristaltic pumping region 0P  , 

while in the augmented pumping region 0P   

results are opposite pressure rise gradually 

decreases with the increase in Hartmann number M 

and amplitude   while increases with the increase  
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Fig. 8: Entropy generation number for a) M=2, b) M=4 and c) M=6. 
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Fig. 9: Bejan number for different a) M, b) different Brᴧ-1 and c) different Q. 

 

 

in amplitudes ratio a and b. Free pumping hold for 

.0P  It is observed that pressure rise for Cu-

water has more variation as compare to pure water. 

We note that the pressure gradient certainly 

increases with an increase in the Hartmann number, 

amplitudes a and b but pressure gradient decreases 

with the rise in amplitude d for both pure and Cu-

water see Figs.5  a  to 6  .b   

Temperature of the fluid in the tube significantly 

increases with an increase in flow rate Q and 

Brinkman number rB  and a decrease in Hartmann 

number .M  However with less copper in the fluid, 

the temperature substantially decreases inside the 

tube. In comparison to the walls of the tube, higher 

temperature exists in the center .  We note that with 

higher the values of the Brinkman number, i.e. the 

ratio of viscous heat generation to external heating, 

the lesser will be the conduction of heat produced 

by viscous dissipation and hence larger the 

temperature rise see Fig.7(a-c). Temperature for 

Cu-water is observed to be higher as compared to 

pure water. 

Figs.    ca 87   are prepared to analyze the 

entropy generation with respect to change in 

different physical constraints involved. Figs.  a8  

to  c8  depict that entropy generation is directly 

proportional to Hartmann number, flow rate Q and 

ratio of Brinkman number Br with   , and that 

entropy generation for pure water is higher than that 

of Cu-water. It has larger values near the walls of 

the channel as compared to the center of the 

channel. It is to be noticed that for significantly 

larger values of these two parameters, entropy 

generation can be larger in the center of the tube 

than to those generated at the walls. 

Figs.    ca 99   are prepared to analyze the Bejan 

number with respect to change in different physical 

constraints involved. Fig.    ca 99   depict that 

with the increase in Hartmann number, and flow 

rate ratio heat transfer irreversibility is high as 

compare to the total irreversibility due to heat 

transfer, fluid friction and magnetic field while 

results are opposite for the case of ratio of 

Brinkman number Br with .   

Fig. 10 . Shows streamlines for different values of 

Hartmann number M  for Copper water. It is seen 

that the size and number of trapped bolus increases 

for increasing M in upper part of the channel, while 

size of   bolus   decreases   but    number   of   bolus  
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Fig. 10: Streamlines for different values of a) M=0.5, b) M=1 and M= 2 parameters for Copper water. 
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Fig. 11: Isotherms for a) Brᴧ-1=0.2, b) Brᴧ-1=0.4 and c) Brᴧ-1=0.6. 

 
increases with the increase in Hartmann number M 

in lower part of the channel. 

A line connecting points of equal temperature is 

called an isotherm. See Figs. 11, the small orange 

numbers are contour labels, which identify the 

value of an isotherm (75, 85 degrees Fahrenheit). 

So it analyzed that when we increases ratio of 

Brinkman number Br with   than temperature is 

75, 85 degrees Fahrenheit. 

CONCLUSION 

This article is intended for investigating the entropy 

generation analysis for the peristaltic flow of Cu-

water nanofluid with magnetic field. Key points of 

the present work are as follows. 

1. We see that with the increase in the Hartmann 

number M , i.e. ratio of electromagnetic force to 

the viscous force, the velocity decreases in the 

center of the tube and increases near the walls of the 

tube, while as we increase the flow rate Q , the 

magnitude of velocity takes a positive shift all 

around the channel. 

2. It is observed that Cu-water has more variation as 

that of pure water. 

3. Temperature of the fluid in the channel 

significantly increases with an increase in flow rate 

Q and Brinkman number rB  and a decrease in 

Hartmann number .M   

4. Entropy generation is directly proportional to 

Hartmann number, flow rate Q and ratio of 

Brinkman number Br with   , and that entropy 

generation for pure water is higher than that of Cu-

water. 

5. It is seen that the size and number of trapped 

bolus increases for increasing M in upper part of the 

channel, while size of bolus decreases but number 

of bolus increases with the increase in Hartmann 

number M in lower part of the channel. 

6. It analyzed that when we increases ratio of 

Brinkman number Br with  than temperature is 75, 

85 degrees Fahrenheit. 
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