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ABSTRACT 

In the present research work, we introduce a new method for estimating the slip length on superhydrophobic 

surfaces. Hence, a dynamic force is added to momentum equations and velocity boundary condition is 

rewritten in a new form. Laminar and turbulent channel flows are considered and two force functions are used 

with different profiles to investigate their effects on results. The turbulent channel flow is considered at 

Re 180   and the Large Eddy Simulation (LES) method has been applied to analyze this flow. All results 

indicate that this method can predict the streamwise slip length with a good accuracy, which is comparable 

with the Navier’s method. So, using this numerical solution and also measuring pressure drop and mass flow 

rate in the channel, slip length can be calculated. Consequently, the errors and difficulties of slip length 

measurements in typical methods such as AFM and µPIV would be eliminated. 
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1. INTRODUCTION 

From an economic point of view, drag reduction has 

been an important topic in hydrodynamics 

problems. Reducing the fluid frictional drag means 

increasing the system efficiency and decreasing 

energy losses. So, many studies have been 

conducted over years on this issue and some 

solutions such as microbubbles injection 

(McCormick and Bhattacharyya 1973), adding 

polymers (Xueming et al. 2002), riblets (Bechert  et 

al. 1997), active blowing, and suction (Kim 1999) 

have been developed. 

Recent researches in material science have led to 

creation of superhydrophobic surfaces. Many 

experiments have shown that slip and noticeable 

drag reductions are observed in flow passing over 

these surfaces. Tretheway and Meinhart (2002) used 

micron particle image velocimetry (µPIV) to 

measure the velocity profile in a hydrophobic 

microchannel. They reported that the velocity slip 

reached approximately 10% of free stream velocity. 

Hao et al. (2009) used the same coating on their 

hydrophobic surfaces and achieved 10% to 30% 

pressure drop in smooth and patterned 

microchannel. They also used µPIV and measured 

apparent slip velocity of about 8% of centerline 

velocity at the wall. 

The hydrophobicity of the surface is specified by 

slip length, which is also an indicator of drag 

reduction. Many researchers confirmed that higher 

slip length improves drag reduction. However, 

greater slip length is caused by a combination of 

surface chemistry and micro scale surface 

roughness. In many smooth hydrophobic surfaces, 

no drag reduction is observed, whereas in ultra 

hydrophobic surface with their very rough surface, 

pressure drop of up to 40% is reported (Perot and 

Rothstein 2004). Although this roughness is 

favorable in drag reduction, it changes to a 

controversial issue in hydrophobic surfaces, due to 

making uncertainties in wall position and therefore 

in slip length. For example, Choi et al. (2003) 

reported slip velocity over the hydrophilic surface 

due to the sensitivity of the analysis to channel 

height. Bouzigues et al. (2008) used three 

techniques for measuring slip length and they 

indicated that errors were linked to the method of 

determination of the wall location. To sum up, 

although the instrumentation in micro fluidic 

devices is vastly expanded, measuring the slip 

length has remained a challenge due to the fact that 

the scale must be addressed within a range of a few 

to hundreds of nanometer. 

Besides, most numerical investigations have used a 

Navier’s law to model super hydrophobic surfaces. 

Based on Navier’s theory, the relationship that 

defines the slip length (b) is 
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Where 0u is magnitude of the slip velocity at the 

wall and /
w

u y  is the wall shear rate. Despite 

many researches indicating that slip length is linked 

to shear rate (Choi et al. 2003), it is assumed 

independent in numerical simulations, which is 

acceptable for moderate shear rates (Min and Kim 

2004; Nouri et al. 2012). The most researchers used 

direct numerical simulation (DNS) or large eddy 

simulation (LES) to investigate the effects of 

hydrophobicity on drag reduction. You and Moin 

(2007) applied DNS and LES to analyze the flows 

around the circular cylinder with hydrophobic 

boundary condition at Reynolds numbers of 300 

and 3900. At both Reynolds numbers, decreased 

drag is observed. Min and Kim (2004) used 

Navier’s slip model with DNS method to 

investigate turbulent channel flow of Re 180t   with 

hydrophobic walls. They assumed slip boundary 

condition in streamwise and spanwise direction and 

concluded that only the streamwise slip velocity led 

to the reduction in pressure drop. Nouri et al. (2012) 

performed a variety of slip lengths with Navier’s 

slip boundary condition in LES method and 

confirmed that a noticeable effect on the near wall 

turbulence structures occurred when the slip length 

was greater than a certain value. 

As cleared in the literature, the slip length is one of 

the most important parameters in hydrophobic 

surfaces and drag reduction still remains an 

unresolved problem both in experimental and 

numerical investigations. And therefore, measuring 

slip length in experimental research works or 

estimating slip velocity in numerical works remains 

a challenging subject. 

It is obvious that estimating the slip length without 

doing expensive experiments or using micro/nano 

instruments can be valuable. Knowing this 

parameter can help calculating slip velocity and 

drag reduction. 

 This paper is aimed to introduce a new method for 

estimating slip length in superhydrophobic surfaces. 

For this purpose, slip velocity at the wall is related 

to pressure drop, shear stress and the non-

conservative force, which is added to momentum 

equations. It means that the no slip boundary 

condition only occurs when this added force is in 

the same order as wall shear rate, otherwise, the 

flow can slip on the wall, as it occurs on 

hydrophobic surfaces. 

To investigate the flow behavior in numerical 

methods, some researchers have applied a force in 

streamwise direction. Xu et al. (2007) used the 

controlling force for a sustained reduction in the 

skin friction. Mamori and Fukagata (2011) 

performed a sinusoidal profile of the wall-normal 

body force in a fully developed turbulent channel 

flow to investigate skin-friction drag reduction 

effect of traveling wave-like as the wall-normal 

Lorenz force. Nouri et al. (2013) used non-

conservative force to model the effects of 

microbubbles on pressure drop in turbulent channel 

flow. However, adding the force to the momentum 

equations is not limited to these applications. 

Volavy et al. (2010) introduced a method to 

generate turbulence on the inlet of the channel for 

LES method by performing the force in particular 

points of the computational domain.  

As mentioned before, in this paper a non-

conservative dynamic force acts to oppose the flow. 

Also, each time, the slip velocity on the wall is 

corrected by a renewed boundary condition, which 

is related to added force and pressure drop. The 

simulation is performed in laminar and turbulent 

channel flow due to homogeneity in streamwise and 

spanwise directions. By this simulation, estimating 

slip velocity requires knowing pressure drop and 

mass flow rate. It should be noticed that to simulate 

the effects of hydrophobicity in this method, the slip 

velocity is obtained directly from boundary 

condition rather than using Navier’s model, which 

has been used by most researchers. In the next step, 

the slip length could be calculated by Navier’s law. 

In other words, most researchers calculate slip 

velocity and drag reduction of hydrophobic surfaces 

using slip lengths measured in experiment and 

utilized in Navier’s theory. But this inverse method 

can predict slip velocity by entering measured mass 

flow rate and pressure drop magnitudes in 

numerical simulation. Afterwards, calculated slip 

velocity and wall shear stress in simulation are 

placed in Navier’s theory. As a result, the slip 

length could be extracted. 

From the practical point of view, this method not 

only overcomes the difficulties of measurement of 

slip length in experimental research works, but also 

it has the ability of investigating the effects of 

hydrophobic surfaces with slip boundary condition 

without having a certain slip length and also 

presents a new application of body force in 

momentum equations. 

2. MATHEMATICS AND 

GOVERNING EQUATIONS 

2.1.   LES Equations  

The Navier-Stokes and continuity equations for 

incompressible flows are 

= 0i
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LES is a three-dimensional unsteady methodology; 

with which the large-scale fluctuations are directly 

computed from the spatially filtered Navier-Stokes 

equations and the effect of small-scale fluctuations 

are modeled using the Sub-Grid-Scale (SGS) 

model. 
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The equations for LES are given by applying the 

filtering operation (denoted by the over-bar) to mass 

conservation and momentum equation  
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where iu  is the resolved velocity component in the 

ix  direction, and the p  ,   and   are the 

pressure, density, and kinematic viscosity, 

respectively. In the context of LES, ij  is called the 

SGS Reynolds stress, which is modeled and written 

as  

=  i j i j i ju u u u                                       (6) 

Substituting =i i iu u u  into Eq. (6), we obtain  

 =

= + +

ij i j i j i j j i i j

i j i j i j

u u u u u u u u u u

L C R

       
       (7) 

Here =i j i j i jL u u u u  is a convection of large 

eddies driven by themselves, 

 =i j i j j iC u u u u    is the interaction of large-

scale and SGS components, and =i j i jR u u 
 
is 

the SGS describing the extraction of energy by 

small eddies. 

These terms represent the “closure problem” as it 

relates to LES and requires to be modeled. Two 

widely used models are the Smagorinsky model 

(Smagorinsky 1963) and the dynamic Smagorinsky 

model (Germano et al. 1991). The current work 

applies the dynamic Smagorinsky model, which 

compensates for some Smagorinsky’s 

shortcomings. In the Smagorinsky model, the SGS 

stress tensor ij  is modeled by an eddy-viscosity 

concept:  

1
= 2

3
i ji j i j kk t S    , 

1
= +

2

ji
i j

j i

uu
S

x x
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 
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 

,  

2 2=t sc S  , = 2 i j i jS S S                     (8) 

where t  is the eddy viscosity, ijS  is a strain rate 

of the large-scale or resolved field, and S  is its 

magnitude. In this model, the parameter sc  is 

called the Smagorinsky coefficient, which needs to 

be specified. In simulations, sc  is based on 

predetermined expressions that relate sc  to flow 

parameters, such as the Kolmogorov constant. 

The main advantage of using the dynamic 

Smagorinsky model is that there is no need for 

artificial adjustments of SGS viscosity, such as 

damping function. For this purpose, two different 

filters are used: a grid filter and a test filter, which 

is twice the width of the first filter. By applying the 

test filter to the Navier- Stokes equations, we have  

=i j i j i jT u u u u                                         (9) 

The resolved stress tensor is  

ˆ= =i j i j i j i j i jL u u u u T                         (10) 

By replacing ijT  and îj  with their respective 

prediction from the Smagorinsky model, we obtain  

1
= 2

3
i j i j kk i jL L C M                            (11) 

where   is the width of the test filter ( = 2 )   

and  

 2 2=  i j i j i jM S S S S                         (12) 

One way for solving Eq. (11) for C  is to minimize 

the square error average over all independent tensor 

components, as represented by Lilly (1992)  

2

1
=

2

i j i j

i j

L M
c

M
                (13) 

2.2   Force Balance 

Due to the simplicity of measuring pressure drop 

and mass flow rate of the channel, many researchers 

consider the channel flow as a suitable case to study 

hydrophobic parameters. The present work 

introduces a new method in computing slip length 

based on channel experimental data. For this 

purpose, pressure drop and mass flow rate are 

measured in experimental and then used in 

numerical method as the input data. 

In the steady flow in a channel, force balance 

between pressure gradient and wall shear stress 

exists which is shown in Eq. (14):  

0

1
| [ ]

2
y

du dp
h

dy dx
  

  

             (14) 

Where: dp dx is the pressure gradient in channel, 

h  is the channel height, 0|ydu dy   is the velocity 

gradient on the wall and   is the viscosity of fluid. 

Considering the above relation and knowing the 

pressure drop from experiments, one can achieve 

the wall shear stress and its force. Therefore, we 

should first simulate the shear stress on the wall by 

using the non-conservative force. So, the body force 

( , , )x y zF F F F  with specific function is 

generated each time and is added to the momentum 

equations. The function of this force should have its 

maximum near the wall and gradually decrease as it 

goes further from the wall. The appropriate 
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function, which is determined among several 

profiles, was exponential as described by the 

following function: 

( , , ) ( .exp( ), 0, 0)
2

y
F x y z F


                 (15) 

Where: y is the normal distance from the wall, is 

standard deviation indicating the influence 

domination of force and F  shows the maximum 

magnitude of force distribution. By adding this 

force to momentum equations, we would have: 

  21
. .

u
u u P u F

t





       


               (16) 

It should be noticed that the integral of body force 

( TF ) throughout the control volume is equal to wall 

force. So, according to the pressure drop, the 

integral of body force ( TF ) is constant in the 

simulation. Eq. (17) shows its magnitude. 

0 exp( )
2

T

v

y
F F dv


                  (17) 

As mentioned before,   determines the region 

influenced by force. It is assumed that the wall 

force affects channel flow as long as half of channel 

height at most, so the quantity of   is chosen 

depending on how the affected region from force is 

less than this height. Hence, 0F  will be calculated 

based on  and wall force ( TF ) and then 0F  and 

 can be specified as input data.  

By applying the body force in the opposite direction 

of flow, velocity gradient appears in the 

simulations. This velocity gradient supplies part of 

the wall force. This force, noted as sF  and shown 

in Eq. (18), appears because of balancing boundary 

condition performance. So, this new velocity 

boundary condition would introduce:  

0|s y

du
F A

dy
                   (18) 

By considering the fact that the purpose of this 

method is applying a specified force ( TF ) to the 

domain equal to pressure drop effect, at each time 

step, SF  must be detracted from the total force 

( TF ). Consequently, remaining force, shown by 

VF , must operate in momentum equation. VF could 

be positive or negative that means it could be either 

in the same direction as the flow or in the opposite 

direction. The direction of this part depends on 

velocity gradient and indeed on the magnitude 

of SF . Eq. (19) displays VF  and the relation 

between VF , SF  and TF as represented in Eq. (20). 

, exp( )
2

v t x

v

y
F F dv


                  (19) 

V T SF F F                   (20) 

As shown in Eqs. (17) and (19), the profiles of TF  

and VF  have the same function. However, their 

coefficients are different. 0F  is the coefficient of 

total force distribution and ,t xF is calculated at each 

time step by substituting Eqs. (17), (18) and (19) 

into Eq. (20). This unsteady coefficient ( ,t xF ) is 

given by Eq. (21). In order to simplify Eq. (21), "q" 
is introduced by Eq. (22). 

, 0 0( * | )t x y

A du
F F

q dy


                 (21) 

exp
2

y

y
q dy


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             (22) 

Now we can introduce the new boundary condition 

for channel, which is called balancing boundary 

condition. In this boundary condition there is a 

balance between pressure gradient, shear stress on 

wall, and the non-conservative force, as shown in 

Eq. (23): 

0

1
| [ 2 ]

2
y v

du dp
h F dy

dy dx
    

 

             (23) 

Now the velocity on the wall can be obtained from: 

1
0 1 [ 2 ]

2
v

y dp
u u h F dy

dx
   

 
             (24) 

In the above relation, 0u  denotes the stream-wise 

slip velocity, 1u  indicates stream-wise velocity in 

wall-adjacent grid node. It should be noticed that 

the current form of velocity boundary condition 

includes the slip on stream-wise direction and 

applies no slip condition on two other directions. 

Considering two points can be helpful; first, to 

obtain the correct slip velocity, dynamic non-

conservative force and adaptive boundary condition 

of balancing must update each other through 

simulation process. Second, one should note the 

capability of method in simulating no slip 

condition. If experimental data for the uncoated 

channel is used, zero slip velocity would appear. 

3. DESCRIPTION OF THE TEST 

CASE AND NUMERICAL 

METHOD 

The model is validated as it is applied to two 

different cases. First, we choose the laminar channel 

flow, of which the experimental results of slip 

condition and analytical solutions are available and 

then the turbulent channel flow would be studied. 

The 0.4 0.0005
2m  channel is chosen for laminar 

flow. The periodic boundary condition is applied on 

the span-wise (Z) direction and the balancing 

boundary condition is used on the upper and lower 

walls. The computer code uses finite volume 

method with the second order finite difference 
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scheme in sufficient number of collocated grids. 

In the next step, the turbulent channel flow is 

chosen and the large eddy simulation is used as the 

solution method. So, the non-conservative body 

force is added to filtered Navier-Stokes equations: 

 
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             (25) 

Reynolds numbers based on the half-channel height 

and the friction velocity are Re 180   and the 

initial condition is a flow field with 20% turbulence 

intensity with the mean flow velocity of 15.63m/s in 

the streamwise direction. The flow has been solved 

on a fine mesh with a 65 65 65   grid, along the 

three axes of x, y and z.  

In the turbulent flow, channel dimensions are 

4 2 4 / 3     where   is the half-channel 

height. A uniform mesh is employed in stream-wise 

( 35x xu     ) and span-wise 

( 12z zu     ) directions, whereas in the 

wall-normal direction a non-uniform mesh with the 

hyperbolic tangent function is used. So, the distance 

of the first mesh point off the wall 

is 0.52y yu     . The farthest distance to the 

mesh in the centerline of the channel is equal to 

13.8.  

Two functions with different 0F  and   are used to 

investigate the effects of different force 

distributions and parameters on the results. One of 

the force functions is mentioned in Eq. (15) and the 

other, as used by Nouri et al. (2013) in modeling 

bubbles effect, is Gaussian type with the following 

function: 

2

2
( , , ) ( .exp( ), 0, 0)

2

y
F x y z F


 

           
 (26) 

Two standard deviations of 
31.7 10 , 

41.7 10  

are considered and in each case 0F  is calculated by 

knowing pressure gradient and mass flow rate. The 

results were normalized by the friction velocity at 

the no-slip wall 0u  and channel half height. The 

superscript (  ) denotes the non-dimensionalized 

flow parameters.  

Using the open source Computational Fluid 

Dynamics (CFD) code, called the OPENFOAM, the 

filtered equations are solved. This computer code 

uses the finite volume method and it has been 

extensively validated for the LES method. To 

eliminate the pressure-velocity coupling, the PISO 

algorithm has been applied, the second-order central 

difference scheme is used for the diffusion and 

convection terms and the Crank-Nicholson scheme 

is applied for the time term discretization. 

4. RESULTS AND DISCUSSION 

4.1 Numerical Validation: Laminar 

Channel Flow 

Before applying the force model to turbulent 

channel flow, we validated this model in laminar 

channel flow. The results are illustrated in Fig. 1. 

The mean velocities from analytical solution of two 

dimensional Poiseuille flow and force model show a 

good agreement. In this situation, nearly 20% of 

drag reduction is observed in both numerical and 

analytical solutions, which are in suitable agreement 

with experiment results of Nouri et al. (2012). They 

measured drag reduction of laminar flow in coated 

microchannel. The experimental detail can be found 

on technical report (Nouri et al. 2012) 

(unpublished). 

Consequently, the validation and suitable accuracy 

of this model in laminar flow help us investigate 

ability of the method in predicting drag reduction 

and also the slip length in turbulent flow. 
 

 
Fig. 1. Laminar channel flow with force model in 

slip condition. 

 

4.2 Turbulent Channel Flow 

As the first step, the flow has been once solved with 

no slip condition using force model for two 

purposes, firstly to validate the numerical code 

again but this time in turbulent flow and secondly as 

the initial condition for solving the channel flow 

problem with the slip condition. So, the 

experimental data of the non-coated channel was 

used as input data for this part. Figure 2(a) 

illustrates a good agreement between mean 

velocities from DNS results (Min and Kim 2004), 

LES results (Nouri et al. 2012) and the current 

work. In Figs. 2(b), 2(c) and 2(d) root mean square 

of velocity fluctuations in the streamwise, wall-

normal and spanwise directions are compared with 

those of DNS results for Re 180  . The results 

show acceptable accuracy in comparison with the 

DNS solution. 

Reynolds stress is plotted in fig. 2(e). Reynolds 

stress is the magnitudes of the resolved shear and 

normal forces in the fluid and is assumed as the 

second-order turbulence characteristic. As expected, 

these results show acceptable accuracy in 

comparison with the DNS solution. These data are 

the valuable validation for the force model and the 
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numerical code. So, the converged results of 

channel flow in this section were used as initial 

condition for solving the channel flow problem with 

the slip condition. 

 

 
(a) 
 

 
(b) 
 

 
(c) 
 

 
(d) 

 
(e) 

Fig. 2. Comparison of the current work, DNS 

(Min and Kim 2004) and LES (Nouri et al. 2012) 

(a) velocity profiles Root mean squares of (b) 

streamwise (c) wall normal (d) spanwise velocity 

fluctuations, (e) Reynolds stresses. 

 

As mentioned earlier, to consider the effects of the 

force model in turbulent channel flow two force 

functions with different standard deviations are 

used. The results of the force function, which is 

presented by Eq. (15), have been shown in Fig. 3. 

Figure 3(a) illustrates the mean velocity profile for 

 =
31.7 10  and different 0F  values, leading to 

various drag reductions. The root mean square of 

the velocity fluctuations in the streamwise, wall-

normal, and spanwise directions are shown in Figs. 

3(b), 3(c) and 3(d). Turbulence fluctuations are 

considered as part of the first-order turbulence 

nature and indicate the degree of turbulence 

intensity. As it shown in these figures, the 

turbulence fluctuations are severely reduced and 

increasing drag reduction weakens the near-wall 

turbulence structures. Reynolds stress is plotted in 

Fig. 3(e). This figure clearly depicts that the 

turbulence structures are affected by drag reduction 

and the Reynolds stress down-shifts even further by 

increasing the percentage of drag reduction. In these 

cases, the drag reduction can be calculated from the 

pressure loss in channel 

0

0

|

100

|

dp dp

dx dx
DR

dp

dx

   
     
    



               (27) 

It should be mentioned that for a constant   

different drag reductions are obtained by changing 

the initial value of 0F , which can be calculated 

from different pressure drop values in experimental 

results. 

To compare results of the present method with 

Navier’s theory in slip condition, two different 

pressure-drop values and a specified mass flow rate, 

which lead to drag reductions of 9.22% and 28.26 

are used as initial data. These magnitudes of drag 

reduction related in technical report of Nouri et al. 

(2012) (unpublished) and their corresponding 

pressure drop values can be calculated by Eq. (27). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 3. (a) Mean velocity profile, Root mean 

squares of (b) stream-wise (c) wall normal (d) 

span-wise velocity fluctuations, (e) Reynolds 

stresses for force model with Eq. (15) and 

1.7 3e   in different drag reductions. 

To analyze the effect of the standard deviation on 

results, we choose σ = 41.7 10  in the same force 

function. It is obvious that to get the same 

percentage of drag reduction, the initial value of 0F  

must be changed and it would be greater than 

before. In other words, to achieve the same drag 

reduction or pressure drop, the volumetric integral 

of both force distributions must be the same. The 

mean velocity profile and velocity fluctuations are 

plotted in Figs. 4 (a-d).  Reynolds stress is also 

shows in Fig. 4(e). These results are compared by 

previous results. As predicted previously, no 

remarkable change is observed by changing 

standard deviation. 

 

 
(a) 

 

 
(b) 

 

 
(c) 
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(d) 

 
(e) 

Fig. 4. Comparison of (a) mean velocity profiles, 

Root mean squares of (b) stream-wise (c) wall 

normal (d) span-wise velocity fluctuations, (e) 

Reynolds stresses for two different σ in 

DR=28.26%. 

 

One of the most important issues in this research is 

to investigate the force function effect. Hence, the 

force function, indicated by Eq. (26), is considered. 

Figure 5 shows the results for two force functions at 

the same drag reduction. The standard deviations in 

these cases are the same. As indicated by these 

figures, the results remain close, which declares the 

insignificant effect of the force function on them. 

This conclusion is examined in other drag reduction 

values, as plotted in Fig. 6. 

Table (1) shows the results from all cases and the 

comparison of Navier’s theory at the same drag 

reduction. The results of Navier’s theory are 

achieved by direct usage of Navier’s hypothesis in 

LES method (Nouri et al. 2012).  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 5. Comparison of (a) mean velocity profiles, 

Root mean squares of (b) stream-wise (c) wall 

normal (d) span-wise velocity fluctuations, (e) 

Reynolds stresses for two force function in 

DR=9.22%. 
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These results confirm that balancing boundary 

condition and force model are independent of force 

function and this model is capable of predicting the 

drag reduction and slip length without direct use of 

Navier’s hypotheses in the simulation process. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 6. Comparison of (a) mean velocity profiles, 

Root mean squares of (b) stream-wise (c) wall 

normal (d) span-wise velocity fluctuations, (e) 

Reynolds stresses for two force function in 

DR=28.26%. 

5. CONCLUSION 

Measuring the slip length of superhydrophobic 

surfaces is the most challenging part of estimating 

drag reduction. As researchers indicate, unrealistic 

slip length leads to different experimental and 

computational results. 

This paper introduces a new method for predicting 

slip length on superhydrophobic surfaces. In this 

method, we only need pressure drop and mass flow 

rate, which is obtained from experiments and can be 

measured easily. These experimental data are set in 

the numerical solution in order to acquire slip 

velocity and velocity gradient on the wall. Finally, 

the slip length can be calculated from Naiver’s 

equation.  

In this method, a body force is added to momentum 

equations and a new boundary condition, which is 

called balancing form update the velocity on the 

wall. This force is coupled to velocity boundary 

condition, and therefore, they modify each 

othernth tw h e tinihtiw. LES method is used for 

numerical simulation and two different force 

functions are applied in laminar and turbulent 

channel flows. The results are consistent with 

earlier researches, which are confirming that this 

method is capable of predicting the slip length. 

According to Table (1), 9.22% and 28.26% drag 

reductions are considered and the slip lengths with 

two force functions are obtained. Although the 

results of Gaussian distribution of force are closer 

to Navier’s theory results, both cases show 

acceptable accuracy with this method. Furthermore, 

in all cases increasing the slip lengths leads to 

decreasing the shear stress and velocity fluctuations 

in the near-wall region. According to the previous 

DNS and LES researches on superhydrophobic 

surfaces, presented results confirm the ability of this 

new method in predicting flow behavior. 

Consequently, using this method, slip length, which 

is one of the most important parameters in 

hydrophobic surfaces, can be achieved without 

using complicated and uncertain methods such as 

AFM and µPIV. 
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Table 1 Slip length and drag reduction associated to force model in comparison with (Nouri et al. 2012) 

Navier 

’s slip length (m) 410  
4( ) 10sL m   %DR  su  Forcedistribution

 
 

0.5 0.584 -9.32 1.06 

0 exp( )
2

y
F




 

1 

2 1.8 -28.1 2.29 2 

2 1.74 -27.9 2.21 3 

0.5 0.547 -9.24 1.09 
2

0 2
exp( )

2

y
F




 

4 

2 1.89 -28.34 2.31 5 
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