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ABSTRACT 

In the present article Williamson nano fluid flow over a continuously moving surface is discussed when the 

surface is heated due to the presence of hot fluid under it. Governing equations have been developed and 

simplified using the suitable transformations. Mathematical analysis of various physical parameters is pre-

sented and the percentage heat transfer enhancement is discussed due to variation of these parameters. We 

employed Optimal homotopy analysis method to obtain the solution. It is presented that initial guess 

optimization will provide us one more degree of freedom to obtain the convergent and better solutions. 

 

Keywords: Nano fluid; Convective heat transfer; Optimal homotopy analysis method (OHAM); 

Non-linearly moving surface. 

NOMENCLATURE 

a stretching parameter 

B magnetic field ( N/(mA)) 

b body force (N) 

Bi Biot number 

C nanoparticles volumetric fraction 

c specific heat (J/kg K) 

DB brownian diffusion coefficient (m²/s) 

DT thermophoretic diffusion coefficient (m²/s) 

E electric field (N/C) 

h convective heat transfer coefficient (W/m² K) 

I identity tensor 

J current density (A/m²) 

i,j indexing variable 

k nano fluid thermal conductivity (W/m K) 

M magnetic parameter 

n stretching index 

Nu local Nusselt number 

p pressure (N/m²) 

Pr Prandtl number 

Re local Reynolds number 

S cauchy stress tensor (N/m²) 

Sc Schmidt number 

 
 

Sh local Sherwood number 

T temperature of fluid (K) 

t time (s) 

u horizontal component of velocity (m/s) 

V velocity vector (m/s) 

v vertical component of velocity (m/s) 

x distance along the plate 

 
σ electrical conductivity (S/m) 

ν kinematic viscosity (m²/s) 

α thermal diffusivity (m²/s) 

ρ density (kg/m³) 

η similarity variable 

λ non Newtonian Williamson parameter 
 

subscripts 

B brownian motion 

T thermophoresis 

∞ infinity 

p nano particles 

w wall 

m iteration number 

1. INTRODUCTION 

Nano fluid is the combination of simple fluid 

and nano sized particles uniformly suspended 

in the fluid. These nano sized particles can 

be metallic (Cu, Al, Hg, Ti, etc.) or non-

metallic (ZnO, Al203, TiO2 and several other 

metallic oxides). Nano particles have 

advantage over micro size particles due to 

negligible effects of gravitational settling and 

cluster formation during flow. Fluids are 

widely used in heat transfer phenomenon due 

to their strong convection properties. Nano 

fluids got the attention of researchers and indus-

trialists due to their better performance in 

heat transfer phenomenon. Several researchers 
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(Bang and Chang 2005; Suganthi and Rajan 

2012; Kuznetsov 2011) have discussed the Nano 

fluid flow for various physical phenomenon by 

considering water as base fluid. But suspension 

of solid particles in water up to large percent-

age of its volume will change it from the 

Newtonian to non-Newtonian fluid. Also we 

know that several non-Newtonian fluids have 

better heat transfer properties as compared 

with water for e.g. liquid metals. So it’s 

important to discuss the flow of non-

Newtonian nano fluids due to their wide range 

use in industrial and chemical processes. 

Choi (1995) was the first one to use the term 

nano fluid due to nano sized particle suspen-

sion in fluid. He discussed that nano particles 

(due to their small size) are much better as 

compared to micro sized particles and their 

incorporation can reduce the cooling cost 

several times. Masuda et al. (1993) discussed 

the thermal conductivity enhancement due to 

addition of ultrafine particles in fluid. 

Buongiorno (2006) discussed the already 

presented mathematical models for nano fluid 

flow. He analyzed the possible effect of seven 

slip mechanisms on heat transfer enhancement 

and concluded that only Brownian motion and 

theromophoresis are the important slip 

mechanisms. He modeled the governing 

equations for the nano fluid flow. Nield and 

Kuzentsov (2009) discussed the thermal 

instability in a porous medium layer saturated 

by a nano fluid using the Buongiorno model. 

In another paper (2011), they discussed the 

double diffusive convection in a nano fluid 

flow. Nadeem and Lee (2012) obtained the 

analytical solutions for the boundary layer 

flow of a nano fluid over an exponentially 

moving surface. Khan and Pop (2010), 

numerically investigated the boundary layer 

flow of nano fluid past a stretching sheet. 

Recently Malvandi and Ganji (2014 a,b,c) 

discussed in detail the effect of Brownian 

motion and thermophoresis on the nano fluid 

flow in a microchannel.  

The study of flow over a continuous moving 

surface is a popular area of research due to its 

enormous application in industrial 

manufacturing processes. Flows over 

continuously moving surface are widely 

discussed by researchers after the pioneering 

work of Sakiadis (1961). He first time 

modelled the boundary layer equations for the 

flow over a continuous moving surface which 

has been widely discussed afterwards 

(Ziabakhsh et al. 2010; Nadeem et al. 2012, 

2013; Saleh et al. 2010). But many physical 

phenomenons involve the non-linear 

stretching for e.g. extrusion of plastic sheet, 

glass manufacturing etc. Cortell (2007) 

initiated the study of flows over non-linearly 

stretching surface. He numerically 

investigated the flow of viscous fluid over a 

non-linearly stretching surface. Raptis and 

Perdikis (2006) discussed the flow of viscous 

fluid over a non-linearly stretching surface in 

the presence of magnetic field. Abbasbandy 

and Ghehsareh (2012) presented the solutions 

for magnetohydrodynamic fluid over a non-

linear stretching sheet with the help of 

Hankel-Pade method. Some studies of viscous 

nano fluid over non-linear stretching surface 

have been reported in literature (Rahman and 

Eltayeb 2013; Rana and Bhargava 2012; Hady 

et al. 2012), but very little attention has been 

given to the flow of non-Newtonian nano 

fluid. Therefore the present article discusses 

the flow of non-Newtonian nano fluid with 

convective boundary conditions. Convective 

boundary conditions are generalized as 

compared to constant surface temperature 

condition and have application in cooling 

systems and heat exchangers. Recently, 

Mansur and Ishak (2013) discussed the blasius 

flow for a copper water nano fluid with 

convective boundary conditions. They 

extended the work of Aziz (2009), who 

discussed the laminar flow of viscous fluid 

with convective boundary conditions. 

Makinde and Aziz (2011) investigated the 

boundary layer flow of nano fluid with 

convective boundary conditions. All of the 

aforementioned studies consider the viscous 

fluid with convective boundary condition. 

Williamson fluid model describes the flow of 

shear thinning non-Newtonian fluids. This 

model was proposed by Williamson (1929) 

and later on used by several authors (Dapra 

and Scarpi 2007; Vasudev et al. 2012; 

Nadeem and Akbar 2010) to investigate fluid 

flow. We used Optimal Homotopy Analysis 

Method (OHAM) to solve the governing 

system of equation for Williamson nano fluid 

flow. OHAM is the refined version of Ho-

motopy Analysis Method (HAM) Liao 

(2012). HAM has been widely used to solve 

the nonlinear differential equations (Malvandi 

et al. 2014 a,b; Abbasbandy 2007; Hayat and 

Qasim 2010; Shehzad et al. 2012). Recently 

Liao (2010) has suggested that it is better to 

use OHAM instead of HAM for better rate of 

convergence. He discussed different types of 

OHAM and suggested that it’s better to use 

basic OHAM due to its computational 

efficiency. In OHAM discrete squared 

residual errors are optimized against the 

convergence control parameters. Fan and You 

(2013) discussed the global and step by step 

approaches to optimize the convergence 

control parameters. Nadjafi and Jafari (2011) 

compared Liao's optimal homotopy analysis 

method with the Niu's one-step optimal 

homotopy analysis method. They employed 

both techniques to obtain solution of linear 

Volterra integro-differential equations and 

integro-differential equation and concluded 

that Liao's optimal HAM has more accuracy 

to determine the convergence-control 

parameter than the one-step optimal HAM 

suggested by Niu and Wang (2010). 

In the present article boundary layer equations for the 
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flow of MHD non-Newtonian Williamson nano fluid 

with convective boundary condition have been 

developed. Suitable transformations have been intro-

duced to convert system of partial differential equa-

tions to the system of ordinary differential equations. 

The governing nonlinear coupled system of ordinary 

differential equations has been solved with the help 

of OHAM. In order to examine the validity of results 

they are compared with the numerical results. Effects 

of important physical parameters have been discussed 

through graphs and tables. To the best of author’s 

knowledge no study has been reported for 

Williamson nano fluid over a non-linearly stretching 

surface with convective boundary condition. 

2. MATHEMATICAL FORMULATION 

We consider a steady two dimensional flow of an 

incompressible MHD Williamson nano fluid over a 

horizontal heated surface. Where x and y-axis are 

taken along horizontal and vertical direction 

respectively. So that nano fluid is confined to y > 0. 

The plate is stretched along x-axis with the velocity 

axn, where a > 0 is stretching parameter and n is the 

stretching index. It is assumed that the surface is 

heated due to convection of hot fluid below the 

surface. A space varying magnetic field B(0, B(x), 

0) is applied along the transverse direction of flow 

see Fig.l. The fluid is assumed to be slightly 

conducting, so that the magnetic Reynolds number 

is much less than unity and hence the induced 

magnetic field is negligible in comparison to the 

applied magnetic field. The general transport 

equations for nano fluid are (Boungiorono 2006) 

div 0,V               (1) 

div ,
V

S b
d

dt
               (2) 

( )

( ),p p B T

T
c T

t
T T

k T c D T D
T



 



 




   

V  

 
   

 

( ),B T

C T
C D C D

t T


   


V


  

         

(4) 

Fig.1 Geometry of the problem
 

where in steady state the velocity vector is given 

by V(u(x, y), v(x, y), 0), ρ is nano fluid density 

and pp is nano particles density,S is Cauchy 

stress tensor, b is body force vector, c and cp 

are heat capacities of nano fluid and nano par-

ticles respectively, T is temperature, k is nano 

fluid thermal conductivity, DBis Brownian 

diffusion coefficient, C is nano particles 

volumetric fraction, DTis thermophoretic 

diffusion coefficient and T∞ is the ambient fluid 

temperature. For Williamson fluid model 

Cauchy stress tensor S is defined as 

,p  S I                (5) 

0
1

( )
[  ] ,

1

 










 
A               (6) 

in above equations  is extra stress tensor,
0  is 

limiting viscosity at zero shear rate and 
is 

limiting viscosity at infinite shear rate, 0   is a 

time constant,
1A is the first Rivlin-Erickson tensor 

and is defined as follows [28-30] 

2

1

1
 ,

2
( ).trace

 





A

              (7) 

Here, we considered the case for which 0  and 

1.  Thus  .(6)Eq   can be written as 

0
1[  ] ,

1



 
A               (8) 

or by using binomial expansion we get 

0 1[1 ] .   A                   (9) 

The interaction of magnetic field and velocity will 

give rise to the Lorentz force J ×B  defined in 

Eq.(10), in which J is the current density and     is 

the electrical conductivity. In the absence of electric 

field E 0  . 

J = σ(E + V× B)             (10) 

Since we have considered the steady state velocity 

so all the derivatives w.r.t are zero. Making use of  

   . 5 , 9Eqs  and (10)  in  . 1 4Eqs  the two dimensional 

boundary layer equations governing the flow are 

given by 

0,
u v

x y

 
 

 
                (11) 

2 2 2

2 2

( ).
2

u u u u u B x u
u v

x y y y y


 



    
    

      
(12) 

2
2

2
( ( ) ),

p p T
B

cT T T C T D T
u v D

x y y c y y T y




 

     
   

     

13()                         

2 2

2 2
,T

B

C C C D T
u v D

x y y T y

   
  

   
              (14) 

where ( , )u x y  and ( , )v x y  are horizontal and 

(3) 

Fig. 1. Geometry of the problem. 



S. Nadeem and S. T. Hussain /JAFM, Vol. 9, No. 2, pp. 729-739, 2016.  

 

732 

vertical components of velocity,   is kinematic 

viscosity and  is nano fluid thermal diffusivity. 

The magnetic field is chosen as 1( ) nB x B x   . 

The corresponding boundary conditions to the flow 

problem are 

;  0 ;  ( ),  at  0,

0 ;  ,  as  .

n

w f w

T
u U ax v k h T T C C y

y
u T T C C y 


       


   

15() 

In boundary conditions k is thermal conductivity, 

fT is the temperature of the hot fluid and h  is the 

convective heat transfer coefficient. Introducing the 

following transformations in above equations 

     
1

1

( 1) 1
, ,

2 1

( 1)
, , .

2

n
n

n

w w

a n x n
u ax f v f f

n

a n x T T C C
y

T T C C


   

  






 

 

  
      

  
  

 

16() 

With the help of above transformations, .(11)Eq  is 

identically satisfied and .(12)Eqs to (14)  along 

with boundary conditions (15)  take the following 

form 

22
0,

1

n
f f ff f f Mf

n
         

      

(17) 

2

Pr 0,
Nc Nc

f
Le LeNbt

           
        

(18) 

1
0,Scf

Nbt
       (19) 

The corresponding boundary conditions and the 

non-dimensional parameter are 

0,   1,   (1 ), 1 at 0,
0, 0, 0 as .

f f Bi
f

   
  
       

    

20() 

Mathematically, Sc can be written as 

Pr.
B B

Sc Le
D D

  


   (21) 

With the help of  .(21)Eq  , .(19)Eq  can be written 

as 

1
Pr 0.Le f

Nbt
                     (22) 

3 3 1( 1)
 

na n x





  (non Newtonian Williamson 

parameter), 

Pr 


 (momentum diffusivity/nano fluid thermal 

diffusivity), 

BD
Le   (nano fluid thermal diffusivity/Brownian 

diffusivity), 

BD
Sc  (momentum diffusivity/Brownian 

diffusivity). 

22

( 1)

B

a n
M



 
 (Magnetic parameter) 

2
1Rex

Bi hx
k n

 (Surface convection parameter or 

reduced Biot number) 

( )
p pc

wc
Nc C C



   (nano particles heat 

capacity/nano fluid heat capacity), 

( )

( )
B w

T w

D T C C

D T T
Nbt  






 (Brownian diffusivity/ 

thermophoretic diffusivity). 

Since we are interested in the study of heat transfer 

enhancement, so it is better to introduce the effects 

of thermal diffusivity in nano particles equation 

with the help of Le and Pr  . Also it will enhance 

the coupling effects of heat and nano particles 

equation. Finally, Eqs. (17),(18) and (22)  form 

the non-dimensional system of equation with 

corresponding boundary conditions given in  (20)  . 

For 0  , problem reduces to the one for 

Newtonian nano fluid and for 0B TD D  in  

.(12),Eq heat equation reduces to the classical 

boundary layer heat equation in the absence of 

viscous dissipation. Physical quantities of interest 

for present study are local Nusselt number  Nu   

and local Sherwood number  Sh  . 

0 0

, ,
w wy y

x T x C
Nu Sh

T T y C C y  

   
 

   
 
23() 

or by introducing the transformations  16  , we 

get 

1 1
(0), (0),

2 2Re Rex x

Nu n Sh n
 

 
       

24() 

where Rex=
wU x


is local Reynolds number. Physical 

parameters will be discussed later in the results 

section. 

3. HOMOTOPY BASED SOLUTION 

TECHNIQUE 

HAM is a strong analytic technique to solve linear 

and non-linear, ordinary and partial differential 

equations. HAM was developed by Liao (2003), 

This technique is better than the perturbation 

techniques as it can be equally applied to weak and 

strong nonlinear problems. It is also independent of 

small and large physical parameter restriction. The 

advantage of HAM lies in the choice of 

convergence control parameter according to the 

given set values of input parameters. It provides a 
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way to check and adjust the convergence of 

obtained solution with the help of auxiliary 

parameters and base functions. To obtain the 

homotopy based solutions, we choose two sets of 

initial guess defined by  (23)  , is a simple 

constant its value will be determined in the 

optimization section. This initial guess reduces to 

the most commonly used initial guess  

0( ) 1 exp( )f      , when 1.  In the result 

section we will show that 1  is not the best 

value, but it is better to optimize   for the best 

possible value.  

0

0

0

( ) (1 2 )exp( ) (1 )exp( 2 ),

( ) exp( ),
1

( ) exp( ),

f
Bi

Bi

     

  

  

      

 


 

25() 
3

f 3

2

θ 2

2

φ 2

d f df
(f) = - ,

dηdη

d θ dθ
(θ) = + ,

dηdη

d φ dφ
(φ) = + ,

dηdη

L

L

L

               (26) 

Due to space constraint the detailed HAM 

procedure is not discussed here. The detailed HAM 

procedure can be followed from [32]. We can 

calculate any order approximation for  

1,2,3...m    with the help of Mathematica. 

3.1 Optimal Convergence Control 

Parameters 

It is noteworthy that our solutions  ( ), ( )f      and  

( )    will contain unknown convergence control 

(auxiliary) parameters ( , ,fh h h 
). To find out the 

optimal values of convergence control parameters 

we define the exact squared residuals at the mth 

order approximation as follows 

2

00

[ ( )] ,
m

f

m f i

i

N f d 




 
  

 
             (27)

2

0 0 00

[ ( ), ( ), ( )] ,
m m m

m i i i

i i i

N f d

      


  

 
  

 
  

    

(28) 

2

0 0 00

[ ( ), ( ), ( )] ,
m m m

m i i i

i i i

N f d

      


  

 
  

 
  

     

(29) 

and 

,t f

m m m m

       (30) 

where t
m  is the total squared residual error and  

f
m ,m m

     are the corresponding individual errors 

at mth iteration. In above equations 
f

N , N  , N
  

denotes the left hand side of the equations  

(17),(18)   and  (19)   at the mth order deformation 

respectively. It is obvious that quickly t
m

approaches to zero, faster the corresponding 

solution converges. Thus at mth iteration the optimal 

values of convergence control parameters are given 

by the minimum of t
m  , corresponding to the set of 

these equations 

0.
t t t t

m m m m

fh h h  

      
   

   
(31) 

The total squared residual error defined by  

.(30)Eq   takes too much CPU time to calculate 

the error even if the order of approximation is not 

very high. Thus to increase the computational 

efficiency we define the discrete squared residual 

error (as defined by Liao  [38] ) at the mth iteration 

by  

2

0 0

1
[ ( )] ,

1

N m
f

m f i j

j i

E N f
N


 

 
  

  
                (32) 

2

0 0 0 0

1
[ ( ), ( ), ( )] ,

1

N m m m

m i j i j i j

j i i i

E N f
N



     
   

 
  

  
   

 
33() 

2

0 0 0 0

1
[ ( ), ( ), ( )] ,

1

N m m m

m i j i j i j

j i i i

E N f
N



     
   

 
  

  
     

34() 

where  ,j j   0.5  and 20N   in above 

equations. The total discrete squared residual error 

is defined as 

.

0.

t f

m m m m
t t t t

m m m m

f

E E E E

E E E E

h h h

 

  

  

   
   

   

              (35) 

In present paper total discrete squared residual error 

approach is used to obtain optimal convergence 

control parameters. In order to obtain the local 

optimal convergence control parameters, we 

directly employ the minimize command in 

computational software Mathematica. 

4. RESULTS AND DISCUSSION 

In homotopy analysis method, the convergence 

control parameters are chosen from the range 

of values, obtained through h-curves. After 

plotting the h-curves we randomly choose the 

values of convergence control parameter from 

the convergence region. But with the help of 

Optimal Homotopy, we precisely choose the 

best possible values of the convergence control 

parameters. 

4.1 Optimal Values of Convergence 

Parameters 

In this section the Optimal values of convergence 

control parameters are shown when 
5, Pr 2, 0.5, 2, 2, 0.2, 0.5, 0.8Bi Nc Nbt Le n M       

Table.1 shows the total discrete squared residual  
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Table 1 Average squared residual errors at different order of approximation 

m hf hθ hφ ε 𝐸𝑚
𝑓

 𝐸𝑚
θ  𝐸𝑚

φ
 𝐸𝑚

t  

1 -1.25 -0.74 -3.79 0.74 5.98×10⁻⁴ 9.69×10⁻⁴ 6.97×10⁻³ 8.54×10⁻³ 

5 -0.81 -0.55 -0.99 0.73 1.51×10⁻⁶ 9.47×10⁻⁶ 7.18×10⁻⁵ 8.28×10⁻⁵ 

7 -0.69 -0.59 1.17 0.70 6.05×10⁻⁷ 1.98×10⁻⁷ 6.97×10⁻⁶ 7.78×10⁻⁶ 

9 -0.66 -0.60 -1.27 0.72 4.30×10⁻⁸ 2.67×10⁻⁹ 3.35×10⁻⁷ 3.80×10⁻⁷ 

 
 

error at different order of approximation. We split 

table.1 into two sections one for the case 1 
(most commonly used case) and other when   is 

optimized instead of setting its particular value. 

 

Table 2 Local Optimal convergence control 

parameters at different order of approximation 

m hf hθ hφ 𝐸𝑚
𝑡 (ε=1) 

1 -1.23 -0.80 0.07 2.61×10⁻² 

5 -0.69 -0.35 0.93 4.71×10⁻⁴ 

7 -0.67 -0.35 -3.05 1.12×10⁻⁴ 

9 -0.63 -0.35 1.80 3.49×10⁻⁵ 

3

5

6

7

1 1.25 0.74 3.79 0.74 8.54 10

5 0.81 0.55 0.99 0.73 8.12 10

7 0.69 0.59 1.17 0.70 7.56 10

9 0.66 0.60 1.27 0.72 3.75 10

t

f m
m h h h E

 










   

   

  

   

 

For the present study we found that total squared 

residual error can be reduced significantly if we 

optimize initial guess by introducing arbitrary 

parameter. So we will use the optimized value of     

instead of choosing 1  . Table.1 also gives the 

optimal values of convergence parameters at 

different order of approximations. These optimal 

values are used to obtain the discrete squared 

residual errors at different order of approximation 

see Table.2. It is observed that the average squared 

residual error and total squared residual error 

decrease as the number of iterations increased. This 

assures that better solutions are obtained at higher 

order approximations. We choose, 9th iteration set 

of optimal values to plot figures and draw tables in 

the coming sections. Results will be similar if we 

choose optimal convergence parameters value from 

9th or any higher order approximation. 

4.2 Plots and Tables 

Fig.2 is drawn to examine the effect of magnetic 

field on the nano fluid velocity. We observe that 

velocity profile decrease with increase in M. Eq. 

(10) involves the cross product of velocity vector 

and magnetic field vector, it will give rise to 

Lorentz force which is perpendicular to the velocity 

vector and magnetic field vector. This force will act 

as a resistive force to the fluid flow which will 

ultimately slow down the fluid motion. It is also 

clear that the momentum boundary layer thickness 

decreases with the increase in magnetic parameter 

M. Fig.3 shows that temperature increases due to 

the increase in M. Nano fluid contains the nano size 

particles whose motion is affected by the applied 

magnetic field. These particles act as the energy 

carrier to the fluid causing the increase in nano fluid 

temperature. M is zero, when no external magnetic 

field is applied. We can also see that thermal 

boundary layer is increasing with the increase in M. 

M 0.0, 0.5, 1.0, 2.0

f ' ( )

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

Le 2, Bi 5, Nc 0.5, Nbt 2, Pr 2, 0.2, n 0.5

Fig.2 Velocity profile against M

M= 0.0, 0.5, 1.0, 2.0

 ( )

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

Bi 5,Pr 2,Nc 0.5,Nbt 2,Le 2, 0.2,n 0.5

Fig.3 Temperature profile against M

Fig.4 shows that the temperature profile against   

for different values of Biot number Bi. We can see 

that the temperature at wall is varying with Bi 

because of convective boundary conditions. When 

Bi approaches to infinity the temperature boundary 

condition at wall reduces to the case of constant 

wall temperature. Thus convective boundary 

conditions are more generalized as compare to the 

constant wall temperature condition. The graph also 

depicts that as the Bi approaches to 100,     attain 

the constant wall temperature condition  (0) 1   .  

Biot number is the ratio of the convection at the 

surface to the conduction within the surface. Thus 

large Biot number implies stronger convection at 

the surface and small Biot number implies stronger 

conduction within the surface. Temperature graph 

against Bi also predicts this behavior, the fluid 

temperature increases with the increase in Bi. Also 

thermal boundary layer increases with the increase 

in Bi. 

Fig. 3. Temperature profile against M. 

Fig. 2. Velocity profile against M. 
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Bi= 0.5, 1.0, 2.0, 100

 ( )

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

Le 2,M 0.8,Nc 0.5,Nbt 2,Pr 2, 0.2,n 0.5

Fig.4 Temperature profile against Bi
 

Figs.5 and 6 demonstrate the effects of Lewis 

number Le and diffusivity ratio Nbt, on the 

temperature profile when other parameters are kept 

constant. Temperature profile as well as thermal 

boundary layer thickness decrease with the increase 

in Le. Le and Nbt cannot be chosen equal to zero 

because Le appears in the denominator of the Eq. 

(18) and Nbt appears in the denominator of both Eq. 

(18) and (22). Physically Le cannot equal to zero 

since it is ratio of thermal diffusivity to Brownian 

diffusion. Buongiorno (2006) defined the 

parameter Nbt to discuss the relative effect of 

Brownian diffusion to thermophoretic diffusion, we 

followed the same parameter. It is observed that 

temperature profile and thermal boundary layer 

decrease with increase in Nbt. when Brownian 

diffusivity is very large as compared to 

thermophoretic diffusivity, temperature profile only 

shows very small variation. 

Le= 0.5, 1.0, 2.0, 3.5

  ( )

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

Bi 5,M 0.8,Nc 0.5,Nbt 2,Pr 2, 0.2,n 0.5

Fig.5 Temperature profile against Le

Nbt= 0.5, 1.0, 2.0, 3.0

  ( )

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

Bi 5,M 0.8,Nc 0.5,Le 2,Pr 2, 0.2,n 0.5

Fig.6 Temperature profile against Nbt

 

 

Fig.7 describes the effect of heat capacities ratio Nc 

on the temperature profile. It is observed that 

temperature and thermal boundary layer thickness 

increases with the increase in Nc. If we look at the 

definition of Nc, it is ratio of heat capacity of nano 

particles and nano fluid. Usually the specific heat cp 

of nano particles is less than that of base fluid be-

cause typically specific heat of solid is less than that 

of liquids. So addition of solid particles will 

decrease the specific heat of base fluid, hence 

temperature profile decrease. Fig.8 shows that the 

temperature and thermal boundary layer thickness 

decreases with the increase in Prandtl number Pr. 

As we know Pr controls the relative thickness of 

momentum and thermal boundary layer. Large Pr 

means smaller thermal boundary layer and larger 

momentum boundary layer. 

  ( )

Nc= 0.5, 1.0, 2.0, 3.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

Bi 5,M 0.8,Pr 2,Nbt 2,Le 2, 0.2,n 0.5

Fig.7 Temperature profile against Nc  

  ( )

Pr= 0.8, 1.0, 2.0, 3.0

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

Bi 5,M 0.8,Nc 0.5,Nbt 2,Le 2, 0.2,n 0.5

Fig.8 Temperature profile against Pr  
Figs. 9-13 are drawn to examine the effects of im-

portant parameters on the nano particles volumetric 

fraction. Although some parameters are not directly 

involved in the nano particles volumetric fraction 

equation, but there effects are appearing due to the 

coupling of Eqs.(18) and (22). Eq. (22) is second 

order equation in both θ and φ. So value of Nbt will 

play the dominant rule when effects of parameters 

involved in θ are discussed for φ. Fig.9 shows the 

variation of nano particles volumetric fraction 

against Bi. The nano particles volumetric fraction 

increases with the increase in Bi. Since φ is equal to 

1 at wall so its value remains fixed for different 

values of Bi while θ (0) was varying with Bi values 

(see Fig.4). 

Fig. 4. Temperature profile against Bi. 

Fig. 5. Temperature profile against Le. 

Fig. 6. Temperature profile against Nbt. 

Fig. 7. Temperature profile against Nc. 

Fig. 8. Temperature profile against Pr. 
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Bi= 0.5, 1.0, 2.0, 100

   ( )

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Le 2,M 0.8,Nc 0.5,Nbt 2,Pr 2, 0.2,n 0.5

Fig.9 Nano particles volumetric fraction against Bi

  ( )

Le= 0.5, 1.0, 1.5, 2.0

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Bi 5,M 0.8,Nc 0.5,Nbt 2,Pr 2, 0.2,n 0.5

Fig.10 Nano particles volumetric fraction against Le
 

  ( )

M= 0.0, 0.4, 0.8, 1.2

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Bi 5,Pr 2,Nc 0.5,Nbt 2,Le 2, 0.2,n 0.5

Fig.11 Nano particles volumetric fraction against M

It is noticed that φ decreases with the increase in Le 

and decreases with the increase in M (see Figs.10 

and 11). The concentration boundary layer 

thickness decreases quickly as Le increase from 0.5 

to 1. When the value of Le is less than 1, it implies 

Brownian diffusions have larger value than the 

thermal diffusion. Large Brownian diffusion will 

create larger penetration depth for concentration 

boundary layer which can be seen from Fig.10 for 

Le=0.5. Concentration boundary layer increases 

with the increase in M as seen in Fig. 11. When the 

value of M increases it excites fluid particles 

motion which will diffuses quickly into the 

neighboring fluid layers due to the enhanced 

Brownianmotion.  

  ( )

Nbt= 0.5, 1.0, 2.0, 3.0

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

Bi 5,M 0.8,Nc 0.5,Le 2,Pr 2, 0.2,n 0.5

Fig.12 Nano particles volumetric fraction against

  ( )

Pr= 0.8, 1.2, 1.6, 2.0

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Bi 5,M 0.8,Nc 0.5,Nbt 2,Le 2, 0.2,n 0.5

Fig.13 Nano particles volumetric fraction against Pr

 

Figs.12 and 13 shows that φ decrease with the in-

crease in Nbt and Pr. Since the Brownian and 

thermophoretic diffusion both cause the dispersion 

of particles across the boundary layer, thus the 

concentration profile decrease with the increase in 

Nbt across the flow field. Its effects on the 

concentration profile are more prominent as 

compared to the temperature profile due to the 

dominance of mass diffusion of nanoparticles.  

Nadeem and Haq (2014) have shown that 

concentration profile decreases with the increase in 

Prandtl number up to certain value of η and de-

crease afterwards. This effect is removed if product 

of Le and Pr is introduced instead of Sc in the nano 

particles equation and graph shows uniformly 

decreasing behavior against Pr throughout the 

boundary layer. 

Tables.3 and 4 are drawn to examine the effects of 

important parameters on the local Nusselt and 

Sherwood numbers respectively. In order to 

compare the analytical results with numerical 

results, we used built in Maple 16 algorithm to 

obtain numerical solution for the boundary value 

problem. It is found that numerical results are in 

good comparison with the analytic results up to 

three decimal places. It is observed that the reduced 

Nusselt number (Nu/√Re) decreases with the 

increase in M, when other parameters are kept fixed 

while it increases with the increase in Pr. As the 

value of Pr increases from 0.8 to 2.0,reduced 

Nusselt number increases by 83%.  

Fig. 10. Temperature profile against Le. 

Fig. 11. Temperature profile against M. 

Fig. 12. Nano particles volumetric fraction 

against Nbt. 

Fig. 13. Nano particles volumetric fraction 

againt Pr. 

Fig. 9. Nano particles volumetric fraction 

against Bi 
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Table 3 Values of n+1

2
- θ (0).  

M Pr Nc Le Nbt Bi OHAM Numerical

0 2.0 0.5 2.0 2.0 5.0 0.5658 0.5659

0.8 0.5185 0.5185

1.0 0.5086 0.5086

0.8 0.8 0.5 2.0 2.0 5.0 0.2833 0.2836

1.6 0.4525 0.4526

2.0 0.5185 0.5185

0.8 2.0 0.5 2.0 2.0 5.0 0.5185 0.5185

1.0 0.4300 0.4301

1.5 0.3530 0.3530

0.8 2.0 0.5 0.8 2.0 5.0 0.4436 0.4436

1.5 0.4972 0.4972

2.0 0.5185 0.5185

0.8 2.0 0.5 2.0 0.8 5.0 0.4912 0.4913

1.5 0.5123 0.5123

2.0 0.5185 0.5185

0.8 0.8 0.5 2.0 2.0 0.1 0.0758 0.0758

0.2 0.1347 0.1347

1.0 0.3533 0.3533

10 0.5502 0.5502

50 0.5783 0.5783

 

It is noticed that increasing the value of Nc 

decreases the wall temperature gradient. When Nc 

value is increased from 0.5 to 1.0, value of reduced 

Nusselt number is decreased by 17.06% and for the 

next 0.5 increase in Nc, it is decreased by 17.9%. 

So reduced Nusselt number decreases more quickly 

for greater than 1 value of Nc in comparison to less 

than 1 values. Le is important parameter due to 

involvement of thermal diffusivity and Brownian 

diffusion coefficient. It is observed that reduced 

Nusselt number shows increasing behavior with the 

increase in Le. When Le=0.5, the value of reduced 

Nusselt number is 0.4004. It can be calculated that 

when the thermal diffusivity is increased from half 

the value of Brownian diffusion coefficient to twice 

the value of Brownian diffusion coefficient, reduced 

Nusselt number shows an enormous increase of 

29%. When the value of Nbt is increased beyond 1, 

Brownian diffusion coefficient becomes dominant 

over the thermophoretic diffusion coefficient. This 

effects is visible in Table.3, reduced Nusselt 

number shows increasing behavior with the 

increasing value of Nbt. Due to convective 

boundary condition Bi is the important parameter 

involved in heat transfer. We computed reduced 

Nusselt number for several values of Bi to examine 

the effect of Bi on heat transfer when values are less 

than and greater than 1. When Bi is increased from 

0.1 to 0.2, reduced Nusselt number is increased by 

77.7%. For the next 0.8 increase in Bi value, 

reduced Nusselt number is increased by 162.2%. As 

Bi is increased from 1.0 to 10, reduced Nusselt 

number is increased by 55.7%. For the large 

increase in Bi from 10-50, reduced Nusselt number 

just shows an increase of 5.1%. After examining the 

effects of Bi on heat transfer, we can conclude that 

over all heat transfer rate increases with the increase 

in Bi. Increase in reduced Nusselt number is 

extremely significant for small values of Bi less 

than 1 (specifically about 0.1) and this increase 

starts reducing as Bi is increased beyond 1 and 

specifically 10. 

Table.4 shows the variation in reduced Sherwood 

number (Sh/√Re) against M, Pr, Nc, Le and Nbt. 

Reduced Sherwood number decrease with the in-

crease in M. When value of M is increased from 0 

to 1, values of reduced Nusselt number decrease by 

10.1% while value of reduced Sherwood number 

decrease by 9.2%. So M has more effect on wall 

temperature gradient as compared to wall 

concentration gradient. Reduced Sherwood number 

shows increasing trend with the increase in Pr and 

Nc. From Table.3 and 4, it is noticed that Nc has 

opposite effects on the reduced Nusselt number and 

Sherwood number. Le shows the increasing effect 

on reduced sherwood number. Reduced Sherwood 

number is increased by 108% as Le value is 

increased from 0.8 to 2.0. It can be calculated that 

when Le is equal to 1.3 the value of reduced 

Sherwood number is -0.7183. For the increase of 

0.5 in Le (0.8-1.3), reduced Sherwood number is 

increased by 50.6% and for the same increase of 0.5 

(1.5-2.0), it is increased by 23.6%. This shows that 

reduced Sherwood number is greatly affected by the 

value of Le. It is also observed that reduced 

Sherwood number increases with the increase in 

Nbt.Table.5 is drawn to compare the values of wall 

temperature gradient for different types of fluid 

when n=1/2. It is noticed from the table that wall 

temperature gradient decrease as fluid is changed 

from viscous to Williamson MHD nano fluid when 

some of the parameters have fixed values as 

mentioned in front of them. By Fourier law of heat 

conduction 𝑞 = −𝑘 
𝜕𝑇

𝜕𝑦
, k has inverse relation with 

the temperature gradient for fixed heat flux. 

Therefore, Williamson MHD nano fluid has higher 

thermal conductivity than all other fluids mentioned 

in Table.5. 

Table 4 Values of n+1

2
- φ (0)  

M Pr Nc Le Nbt HAM Numerical

0 2.0 0.5 2.0 2.0 1.0746 1.0744

0.8 0.9920 0.9920

1.0 0.9751 0.9747

0.8 1.2 0.5 2.0 2.0 0.7063 0.7060

1.6 0.8575 0.8574

2.0 0.9920 0.9920

0.8 2.0 0.5 2.0 2.0 0.9920 0.9920

1.0 1.0273 1.0271

1.5 1.0569 1.0567

0.8 2.0 0.5 0.8 2.0 0.4767 0.4767

1.5 0.8025 0.8024

2.0 0.9920 0.9920

0.8 2.0 0.5 2.0 0.8 0.8188 0.8187

1.5 0.9510 0.9510

2.0 0.9920 0.9920
 

5. CONCLUDING REMARKS 

In present article flow of MHD Williamson nano 

fluid over a non-linearly stretching surface with 

convective boundary conditions has been discussed 

in detail. The governing PDE's are transformed to 

coupled system of nonlinear ODE's and OHAM is 

employed to solve the resulting system of ODE's. 

OHAM results have been compared with numerical 
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results. The main findings of the paper are as 

follows 

 Better values of total squared residual errors 

are obtained by optimizing the initial guess. 

 OHAM results are in good comparison with 

the numerical results. 

 Mathematically it is appropriate to introduce 

product of Lewis and Prandtl instead of 

Schmidt number in the nano particles 

volumetric fraction equation. 

 In the neighborhood of 0.1 a small incremental 

increase in reduced Biot number shows 

enormous increase in the reduced Nusselt 

number. 

 Nc has opposite effect on the modified Nusselt 

and modified Sherwood number. 

 Thermal conductivity of MHD Williamson 

nano fluid is higher than that of simple 

Williamson fluid. 

 
Table 5Values of wall temperature gradient for 

different fluids 

Fluid type -θ'(0) 

Viscous fluid (λ=0, M=0, Pr=2) 0.7822 

Williamson fluid (λ=0.3, M=0, Pr=2) 0.7722 

MHD viscous fluid (λ=0, M=0.8, 

Pr=2) 
0.7259 

MHD Williamson fluid (λ=0.3, 

M=0.8, Pr=2) 
0.7056 

Williamson nano fluid (λ=0.3, M=0, 

Pr=2, Nc=0.5, Le=2, Nbt=2) 
0.6501 
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