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ABSTRACT 

Present study reports the effects of operating conditions on the mixing of two co-axial streams. Produced 

mixing layers between the co-axial streams are investigated numerically in the developing regions. Closed 

form governing equations of the mixing layer flow are solved using Fully Implicit Numerical Scheme (FINS) 

and Tridiagonal Matrix Algorithm (TDMA). Calculations are made for the mean and turbulence properties, 

and spatial mixing deficiency (SMD). Obtained results show that increase in flow width does not correspond 

to increase in spatial mixing while increased level of centerline velocity, centerline concentration, mean 

vorticity, turbulent shear stress and turbulent kinetic energy (TKE) corresponds to increase in spatial mixing. 

 

Keywords: Co-axial stream; Operating condition; Spatial mixing; Numerical simulation. 

NOMENCLATURE 

c  mean species concentration 

cc mean centerline concentration 

d jet exit diameter  

 dissipation rate of k 

k turbulent kinetic energy 

N transport coefficient 

nj number of grid points over ro 

t
ν  eddy viscosity 

  azimuthal mean vorticity 

  general flow variable 

r velocity ratio (u2/u1) 

r,,x radial, azimuthal and axial directions 

Re Reynolds number (us d/ ν ) 

S source term 

vu  turbulent shear stress 

uc mean centerline velocity 

uo free jet exit velocity 

us mean velocity scale (u1-u2) 

u1,u2 inner and outer stream velocities 

u,v  radial and axial mean velocities 

( )max maximum value at specified x location 

 

1. INTRODUCTION 

Mixing phenomenon has been of interests since the 

early twentieth century because of its occurrence in 

many engineering applications, e.g. in boilers, gas 

turbines and internal combustion engines for air-

fuel mixing, in process industries and chemical 

lasers for mixing of chemicals, and in flow reactors 

for mixing enhancement. Detail knowledge of the 

flow characteristics of mixing phenomena is 

essential to the understanding of mixing mechanism 

because mean and turbulent properties of the flow 

are known to govern the mechanism of mixing. 

There are many factors that affect the flow 

properties consequently the mixing efficiency, e.g. 

difference in flow geometry greatly affects the 

mixing efficiency (Aguirre et al. 2006) and swirl in 

jets provide higher degree of spatial mixing (Denev 

et al. 2009). 

 

Mixing is often assessed in an indirect way by 

evaluating the growth or entrainment of the flow 

(Naughton et al. 1997; Agrawal and Prasad 2003). 

Qualitative flow visualization and planar laser-

induced fluorescence (Pust et al. 2006) are among 

the other techniques used to determine mixing 

efficiency. Since the pioneering work of 

Danckwerts (1952) many different indices to assess 

the mixing efficiency have been introduced where 

each of the indices senses a different aspect of 

mixing. However, mixing quantification based on 

statistical analysis of a species concentration is used 

in this paper for evaluating the mixedness of two 

co-axial streams. 
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Mixing layer becomes almost two-dimensional (2D) 

after five or six spanwise roll-up from its initiation 

(Brown and Roshko 1974; Lasheras et al. 1986; 

Dimotakis 2000; Milanovic and Hammad 2010) 

that is the mixing layer has spread in the radial (r) 

direction, zero entrainment in the azimuthal () 

direction and predominant mean motion in the axial 

(x) direction (co-ordinates are shown in Fig.1). In 

this work, different transport equations obtained in 

closed form by the standard k  turbulence 

model are solved for co-axial mixing layers (also 

known as axisymmetric mixing layers) at different 

operating conditions namely velocity ratio and 

Reynolds number. The importance of mixing in 

various applications and the practical relevance of 

the effects of operating conditions on the mixedness 

of two fluid streams has motivated the present 

research. 

 

 
Fig. 1. Sketch of a co-axial stream mixing layer. 

2. GOVERNING EQUATIONS 

The transport equation governing the 2D 

axisymmetric turbulent mixing layer flow in generic 

form in (r, , x) co-ordinates for constant property 

fluid is 
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where   is the general transport variable for mass, 

velocity u , turbulence kinetic energy k, kinetic 

energy dissipation rate  and species concentration 

c . The transport coefficient N  and the source 

term S  in their full form are given in Table 1 

where 1  represents continuity equation and 

 2rutνA  . In this 2D flow azimuthal mean 

vorticity component is 

u
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and other vorticity components are zero. 

 

 

 

 

Table 1 Expressions of N  and S  

  N  S  

1 0 0 

u    / νν νt  0 

k 
 / /νν νt k
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/ν u r

t
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   / /νν νt 

 

2/ /
1 2
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2.1 Initial and Boundary Conditions 

The initial conditions for the axisymmetric mixing 

layer are   1,0ou r r u  ,   2o u0,rru  , 

  00r ,v ,   10,rrc o  ,    0,rrc o  

  00,ru v ,  ,0ok r r  
2
su001.0 , 

    00,orr0,orrk   ,    0,orr  

  1
or30k

23 
.

/
 where ro is the jet radius, and u1 

and u2 are the uniform velocities of the inner and 

outer streams at exit, and us=u1-u2 is the mean 

velocity scale. The boundary conditions are as 

follows: at the outer edge of the mixing layer  

attains the ambient conditions, at the outflow 

0x  /  and at the axis of symmetry 0r  /  

except 0v . 

2.2 Turbulence Closure 

In the standard k  model (Launder and Spalding 

1974) eddy viscosity is expressed by Kolmogorov-

Prandtl relation as 

/2
tν C k                   (3) 

where the closure coefficients are C =0.09, k =1, 

 =1.3, C1=1.44 and C2=1.92. In the transport 

equation for c  in Table 1, molecular mass 

diffusivity of methane  ≃ v and 1 . 

3. MIXING QUANTIFICATION 

Many different indices have been used for 

quantification of mixing efficiency where each index 

addresses a different aspect of mixing so that in the 

literature no unique best definition of a mixing index 

has emerged. A commonly used mixing index is 

SMD. This index corresponds to a planar average and 

measures the spatial heterogeneity of the mixture 

where a zero SMD value indicates perfect mixing in 

the plane. However, full characterization of the 

mixedness requires a temporal mixing deficiency to 

be considered as well. According to Priere et al. 

(2004) SMD is defined as 
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where ijc  is the concentration of a species at j over 

plane located at i, pl is for plane, Avg is for average 

and RMS is for  root mean square. 

4. NUMERICAL PROCEDURE 

The governing equations are solved using FINS 

(Anderson et al. 1984) and TDMA (Thomas 1949). 

There second-order upwind interpolation is used for 

the convective coefficients of Eq. (1). This 

numerical scheme is second order accurate and 

found to provide converged solution in 19 iterations 

which is up to six decimal places for the mean axial 

velocity 
o

u/u . The computational domain of the 

present work can be visualized in Fig. 1. Grid 

spacing is variable both in r- and x- directions such 

that rj+1=Krj, xi+1=Kxi, x1=2r1 and 

   1
1 1 1nj

or r K K                    (7) 

where nj is the number of grid points over ro and K 

=1.04. The under-relaxation factors used for u , v , 

k, , c  and N are 0.6, 0.6, 0.8, 0.8, 0.6 and 0.6, 

respectively. 

4.1 Grid Convergence Test 

Grid convergence test is carried out with three 

different grid sizes termed as coarse, medium and 

fine for nj equal to 41, 51 and 61, respectively. 

Figure 2 presents the profiles of TKE of a free air 

jet with Re=3104 at the axial location x/d=1 for the 

three different grid resolutions where uo is the jet 

exit velocity, d=40mm is the jet exit diameter and 

Re=usd/ ν  is the Reynolds number. However, the 

profiles with medium and fine grid resolutions are 

very close to each other and the results presented in 

this paper are obtained by using the fine grid. 

5. RESULTS AND DISCUSSION 

Numerical simulations are performed for the 

axisymmetric mixing layers with methane inside 

and air outside for the given initial and boundary 

conditions. The operating conditions for the 

investigated mixing layers are given in Table 2 

where r=u2/u1 is the velocity ratio. Figure 3 depicts 

the development of half-width r1/2/d and mean 

centerline velocity uo/uc of the free jet against x/d 

where uc is the mean centerline velocity of jet. 

Experimental data of r1/2/d (Fellouah and Pollard 

2009) and uo/uc (Fellouah et al. 2009) with 

Re=3104 added for comparison show close 

agreement with those from present simulation of 

free jet (Re=3104). Hence the comparison 

demonstrates the effectiveness of the present 

numerical scheme. The mixing thickness, mean 

centerline velocity and concentration, the peaks of 

mean vorticity, Reynolds shear stress and TKE, and 

the SMD are presented in this section for the mixing 

layers in the region x/d10. 

 
Fig. 2. Turbulent kinetic energy at x/d=1. 

 
 

Table 2 Co-axial stream mixing layers 

u1(m/s) u2(m/s) r=u1/u2 Re 

 3 0.2 3.2104 

15 4.5 0.3 2.8104 

 6 0.4 2.4104 

15  0.2 3.2104 

10 3 0.3 1.9104 

7.5  0.4 1.2104 
 

 

 
Fig. 3. Free jet (a) half-width, (b) mean 

centerline velocity. 
 

5.1 Mixing Layer Thickness 

It represents the width of the flow where fluid 

dynamical mixing occurs and defined as =r0.05-

r0.95 where r0.05 and r0.95 are the isovels at u* equals 

0.05 and 0.95, and  /
 

   
  

c2 2
u u u u u . Figure 

4 presents the growth of all the mixing layers 
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against x/d. The growths of mixing layers are seen 

to decrease with increasing r due to reduction in 

both entrainment and vortex growth. 

5.2 Mean Centerline Velocity 

Decays of normalized mean centerline velocity uc/us 

are shown in Fig. 5 with the variation of r. This 

centerline velocity reduces in the downstream due 

to transfer of momentum to the ambient fluids. 

Decay of uc/us decreases with increasing r as a 

result of reduced momentum transfer to the ambient 

fluids. Initial regions of all these mixing layers 

appear to be at 5.6≤ x/d ≤6.3. 

 
Fig. 4. Mixing layer thickness (a) u1=15m/s, (b) 

u2=3m/s (ordinate is shifted by 0.5 units). 

 

 
Fig. 5. Centerline mean velocity (a) u1=15m/s, (b) 

u2=3m/s (ordinate is shifted by 0.1 units). 

5.3 Mean Centerline Concentration 

Mean concentration c  of the jet fluid is maximum 

on its centerline that reduces in the downstream 

being influenced by the velocity field and reduces 

radially outward due to entrainment of ambient 

fluids. Figure 6 exhibits the decay of normalized 

mean centerline concentration cc/c1 that decreases 

with increasing r where c1=1 and c2=0 are the 

concentrations of the jet fluids in the inner and outer 

streams at exit plane. 

5.4 Mean Vorticity Maxima 

Axial decay of mean vorticity maxima 

smax u/d  on the radial plane are presented in 

Fig. 7 for all the mixing layers where   is 

calculated from Eq. (2). Vortical structures grow 

larger in the downstream of the mixing layer by the 

entrainment of non-turbulent fluids that causes 

reduction in vorticity. Further, reduced entrainment 

with increasing r causes vorticity augmentation. As 

in the figure, increase in the level of max  is 

higher in (a) than in (b) for the same velocity ratio. 

This is because of higher values of shear velocity 

based Reynolds numbers. 

 
Fig. 6. Centerline concentration (a) u1=15m/s, (b) 

u2=3m/s (ordinate is shifted by 0.1 units). 

 

 
Fig. 7. Mean vorticity maxima (a) u1=15m/s, (b) 

u2=3m/s (ordinate is shifted by 2 units). 

5.5 Reynolds Shear Stress Maxima 

Figure 8 illustrates the axial variation of turbulent 

shear stress maxima 
2
smax u/u v  across the stream 

for all the mixing layers at x/d 10. The figure 

shows that increasing r results in increased level of 

shear stress because of increasing radial shear 

interaction. However, increase in the level of 

2
smax u/u v  is higher in (a) than in (b) for the 

same r as observed in case of vorticity maxima. 

5.6 Turbulence Kinetic Energy Maxima 

Normalized turbulence kinetic energy maxima 

2
smax u/k  are plotted in Fig. 9 as a function of x/d. 

The effect of velocity ratio on TKE is found similar 

to that on turbulent shear stress because this stress 

contributes directly to the production of TKE. 
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Increase in the level of 
2
smax u/k  appears higher in 

(a) than in (b) for the same velocity ratio as noticed 

for shear stress maxima. 

 
Fig. 8. Shear stress maxima (a) u1=15m/s, (b) 

u2=3m/s (ordinate is shifted by 0.01 units). 

 

 
Fig. 9. Kinetic energy maxima (a) u1=15m/s, (b) 

u2=3m/s (ordinate is shifted by 0.03 units). 

 

 
Fig. 10. Spatial mixing deficiency (a) u1=15m/s, 

(b) u2=3m/s (ordinate is shifted by 0.2 units). 

5.7 Spatial Mixing Deficiency 

Axial variation of SMD for mixing layers is 

depicted (by 7th degree polynomial fit) in Fig. 10 in 

the region x/d10. This mixing deficiency is 

calculated by using Eq. (4) for 2D mixing layer 

where variation of a species concentration over the 

radial plane reduces to that over the radial line. The 

figure shows that the value of SMD reduces, that is 

the mixedness increases, in the downstream for all 

the mixing layers till x/d≃5 and afterwards remains 

nearly unchanged. The physical mechanism 

operative along the downstream is the breaking of 

structures into finer ones within the large structures 

leading to better mixing as the entrained fluid 

patches reside in the upstream large structures 

without mixing. It appears that this physical 

mechanism corresponds with the effect of 

downstream development of velocity distribution on 

the species concentration. Further, SMD at x/d5 

becomes invariant as the velocity field develops in 

the downstream such that rate of decay of mean 

motion reduces in transverse direction and increases 

in axial direction, resulting in no net influence on 

the distribution of species. 

The figure demonstrates that decrease in the level of 

/d and increase in the levels of uc/us, cc/c1, 

su/d , 
2
su/u v  and 

2
su/k  cause reduction in 

SMD. That is these flow quantities control the 

mechanism of mixing. It implies that mixing 

thickness is inverse of the mixedness of two fluid 

streams because in a thicker mixing layer mean 

strain rate reduces in transverse direction that 

causes slow mixing of the species. As seen in the 

figure, decrease in the level of SMD is less in (a) 

than in (b) for the same velocity ratio. This is 

because of higher values of shear velocity based 

Reynolds numbers that support larger structures in 

the mixing layers rendering higher SMD. 

6. CONCLUSION 

Produced mixing layers from two co-axial streams 

have been investigated numerically for different 

values of r and Re in the region x/d10. Except the 

mixing thickness, increase in the centerline 

velocity, centerline concentration, mean vorticity, 

turbulent shear stress and turbulent kinetic energy is 

observed to correspond directly to the increase in 

spatial mixing. Thus mixing efficiency assessed by 

the growth of the flow width is quite misleading. 

Present results could be used to operate exhaust gas 

recirculation (EGR) jets and fuel jets in combustion 

devices. Usually EGR jet has low speed with 

horizontal flow and fuel jet has high speed 

offsetting the buoyancy, so in both cases effect of 

buoyancy is negligible (Azim 2014). In those jets, 

the operating conditions that provide lower 

mixedness and large flow structures in the oxidizer 

(mixer of exhaust gas and fresh air) may favor EGR 

stratification to control homogeneous charge 

compression ignition combustion (Andre et al. 

2012). 
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