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ABSTRACT 

In this contribution a numerical study is carried out to analyze the effect of slip at the boundary of unsteady 

two-dimensional MHD flow of a non-Newtonian fluid over a stretching surface having a prescribed surface 

temperature in the presence of suction or blowing at the surface. Casson fluid model is used to characterize 

the non-Newtonian fluid behavior. With the help of similarity transformations, the governing partial 

differential equations corresponding to the momentum and heat transfer are reduced to a set of non-linear 

ordinary differential equations, which are then solved for local similar solutions using the very robust 

computer algebra software MATLAB. The flow features and heat transfer characteristics for different values 

of the governing parameters are graphically presented and discussed in detail. Comparison with available 

results for certain cases is excellent. The effect of increasing values of the Casson parameter is seen to 

suppress the velocity field. But the temperature is enhanced with increasing Casson parameter. For increasing 

slip parameter, velocity increases and thermal boundary layer becomes thinner in the case of suction or 

blowing.  
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1. INTRODUCTION 

Non-Newtonian fluid flows generated by a 

stretching sheet have been widely analyzed for the 

importance in several manufacturing processes such 

as extrusion of molten polymers through a slit die 

for the production of plastic sheets, processing of 

food stuffs, paper production, and wire and fiber 

coating. On the other hand, convective heat transfer 

plays a vital role during the handling and processing 

of non-Newtonian fluid flows.  

Mechanics of non-Newtonian fluid flows present a 

special challenge to engineers, physicists, and 

mathematicians. Because of the complexity of these 

fluids, there is not a single constitutive equation 

which exhibits all properties of such non-

Newtonian fluids. In the process, a number of non-

Newtonian fluid models have been proposed. The 

vast majority of non-Newtonian fluid are concerned 

of the types, e.g., like the power-law and grade two 

or three (Serdar and Salih Dokuz (2006), Andersson 

and Dandapat (1992), Sadeghy and Sharifi (2004), 

Hassanien (1996), Sajid et al. (2007, 2009), 

Keimanesha et al. (2011), Rashidi et al. (2012)). 

These simple fluid models have the shortcomings 

that render results that are not in accordance with 

the fluid flows in reality. Power-law fluids are by 

far the most widely used model to express non-

Newtonian behavior in fluids. The model predicts 

shear thinning and shear thickening behavior. 

However, it is inadequate in expressing normal 

stress behavior as observed in die swelling and rod 

climbing behavior in some non-Newtonian fluids. 

In order to obtain a thorough cognition of non-

Newtonian fluids and their various applications, it is 

necessary to study their flow behaviors. Due to their 

application in industry and technology, few 

problems in fluid mechanics have enjoyed the 

attention that has been accorded to the flow which 

involves non-Newtonian fluids. The non-linearity 

can manifest itself in a variety of ways in many 

fields, such as food, drilling operations and bio-

engineering. The Navier–Stokes theory is 

inadequate for such fluids, and no single 

constitutive equation is available in the literature 

which exhibits the properties of all fluids. Because 

of the complexity of these fluids, there is not a 

single constitutive equation which exhibits all 

properties of such non-Newtonian fluids. Thus, a 

number of non-Newtonian fluid models have been 

proposed. The Casson model is a well-known 

rheological model for describing the non-

Newtonian flow behavior of fluids with a yield 
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stress as Casson (1959). The model was developed 

for viscous suspensions of cylindrical particles by 

Reher et al. (1969). Regardless of the form or type 

of suspension, some fluids are particularly well 

described by this model because of their nonlinear 

yield-stress-pseudoplastic nature. Examples are 

blood as Cokelet et al. (1963), chocolate by 

Chevalley (1991), xanthan gum solutions by 

Garcia-Ochoa and Casas (1994). The Casson model 

fits the flow data better than the more general 

Herschel–Bulkley model by Joye (1998) and 

Kirsanov, and Remizo (1999), which is a power-law 

formulation with yield stress as Bird et al. (1960). 

For chocolate and blood, the Casson model is the 

preferred rheological model. It seems increasingly 

that the Casson model fits the nonlinear behavior of 

yield-stress-pseudoplastic fluids rather well and it 

has therefore gained in popularity since its 

introduction in 1959. It is relatively simple to use, 

and it is closely related to the Bingham model Bird 

et al. (1960), which is very widely used to describe 

the flow of slurries, suspensions, sludge, and other 

rheologically complex fluids as Churchill (1988). 

Eldabe and Salwa (1995) have studied the Casson 

fluid for the flow between two rotating cylinders, 

and Boyd et al. (2007) investigated the Casson fluid 

flow for the steady and oscillatory blood flow. 

Boundary layer flow of Casson fluid over different 

geometries is considered by many authors in recent 

years. Nadeem et al. (2012) presented MHD flow of 

a Casson fluid over an exponentially shrinking 

sheet. Kumari et al. (2011) analyzed peristaltic 

pumping of a MHD Casson fluid in an inclined 

channel. Sreenadh et al. (2011) studied the flow of a 

Casson fluid through an inclined tube of non 

uniform cross-section with multiple stenoses. 

Mernone and Mazumdar (2002) discussed the 

peristaltic transport of a Casson fluid. Porwal and 

Badshah (2012) work on steady blood flow with 

Casson fluid along an inclined plane influenced by 

the gravity force. Mukhopadhyay et. al. (2013) 

studied the unsteady two-dimensional flow of a 

non-Newtonian fluid over a stretching surface 

having a prescribed surface temperature, the Casson 

fluid model is used to characterize the non-

Newtonian fluid behavior. Abolbashari et al. (2015) 

have been reported an analytical investigation of the 

fluid flow, heat and mass transfer and entropy 

generation for the steady laminar non-Newtonian 

nano-fluid flow induced by a stretching sheet in the 

presence of velocity slip and convective surface 

boundary conditions using optimal homotopy 

analysis method (HAM). 

Suction or blowing process has also have their 

importance in many engineering activities, for 

example, in the design of thrust bearing and radial 

diffusers, and thermal oil recovery. Suction is 

applied to chemical processes to remove reactants. 

Blowing is used to add reactants, which cool the 

surface, prevent corrosion or scaling and reduce the 

drag. In mass transfer cooling, can significantly 

change the flow field and, as a consequence, affects 

the heat transfer rate from the plate (see Shridan et 

al. (2006), Chamkha et al. (2010), Yih (1998), Tsai 

et al. (2008), Ishak et al. (2009)). In addition, a 

combined free and forced convection flow of an 

electrically conducting fluid in the presence of a 

transverse magnetic field is of special technical 

significance because of its frequent occurrence in 

many industrial applications such as geothermal 

reservoirs, cooling of nuclear reactors, thermal 

insulation, petroleum reservoirs, etc. This type of 

problem also arises in electronic packages, 

microelectronic devices during their operations. In 

recent years, several convection heat transfer and 

fluid flow problems have received new attention 

within the more general context of MHD. The 

purpose of the present investigation is to study the 

unsteady boundary layer slip flow and heat transfer 

characteristics of a non-Newtonian Casson fluid 

along a stretching vertical sheet taking into account 

the effects suction or injection. Similarity 

transformation is employed, and the reduced 

ordinary differential equations are solved 

numerically. The results of this parametric study are 

shown graphically and the physical aspects of the 

problem are highlighted and discussed. 

2. FLOW ANALYSIS 

Consider laminar MHD boundary layer two-

dimensional slip flow and heat transfer of an 

incompressible, conducting non-Newtonian Casson 

fluid over an unsteady stretching sheet with suction 

or blowing effect. A magnetic field of uniform 

strength B  is applied in the y  direction, i.e., 

normal to the flow direction. The external electric 

field is assumed to be zero and the magnetic 

Reynolds number is assumed to be small. Hence, 

the induced magnetic field is small compared with 

the externally applied magnetic field. The unsteady 

fluid and heat flows start at 0t  . The sheet 

emerges out of a slit at origin ( 0, 0)x y  and 

moves with non-uniform velocity 
1U( , ) (1 )x t ax t   , where 0a  ; 0  are 

constants with dimension (time)-1, a is the initial 

stretching rate. The rheological equation of state for 

an isotropic and incompressible flow of a Casson 

fluid as (Eldabe and Salwa , 1995;  Elbashbeshy 

and Bazid ,2004) 

 
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2 / 2 ,

2 / 2 ,
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Here, ij  is the ( , )i j -th component of the stress 

tensor, ij ij ije e   and ije  are the ( , )i j -th 

component of the deformation rate,  is the 

product of the component of deformation rate with 

itself, c  is a critical value of this product based on 

the non-Newtonian model, B  is plastic dynamic 

viscosity of the non-Newtonian fluid, and yP  is the 

yield stress of the fluid. So, if a shear stress less 

than the yield stress is applied to the fluid, it 

behaves like a solid, whereas if a shear stress 

greater than yield stress is applied, it starts to move. 

The governing equations of such type of flow are, 
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in the usual notations  
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Here, ( , )u v are the velocity components in ( , )x y  

directions, respectively, is the density of the 

fluid, is the electrical conductivity, is the 

kinematic viscosity, and is the thermal diffusivity 

of the fluid, pc is the specific heat at constant 

pressure, 0Q is the heat generation or absorption 

coefficient. T is the temperature of the fluid inside 

the thermal boundary layer. The relevant boundary 

conditions of the governing equations are  

0 : ( , )

, ( , )w
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y u U x t L

y

v V T T x t
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 
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
   is the 

temperature at the sheet and 0T  is a (positive or 

negative) reference temperature (slit temperature at 

0x ). T  is the constant free stream 

temperature, L  is the slip length, The expressions 

for ( , )U x t  and ( , )wT x t  are valid for time 

1t . Now, in order to obtain a similarity 

solution of the problem we introduce the following 

non-dimensional similarity variables: 
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where the stream function  satisfies the 

continuity equation and defines in the usually way 

as / , /u y v x       ,   is the 

dimensionless similarity variable. With the change 

of variables (5), Eq. (1) is identically satisfied and 

Eqs. (2)–(4) are transformed to 

 1 21 f ff f Mnf           

    12 0A f f                                            (6) 

1Pr 2f f  

                12 3 0A                       (7) 

The transformed boundary conditions are turn into 

0 : 1 , , 1f f f S         

: 0, 0f                                      (8) 

Here prime denotes ordinary differentiation with 

respect to the similarity variable . 

In addition, 
1/2) / ((( ))1 tS V a     , 0S   (i.e. 

0V  ) corresponding to mass suction and 0S   

(i.e. 0V  ) corresponding to mass injection, 

1/2( / (1 ))aL t     is the dimensionless 

parameter. Moreover, Pr /  , 

2(1 ) / ( )Mn B t a    , /A a  and 

0(1 ) / ( )pQ t a c     are the Prandtl number, 

magnetic field parameter, dimensionless parameter 

unsteadiness parameter and heat generation or 

absorption parameter.  In addition, the exact 

solution of Eq. (6) subject to the corresponding 

boundary conditions for steady case i.e. for 0A  

and non slip flow with 0Mn S  is given 

111( ) 1 1f e
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Expressions for the local Nusselt number Nu is 

0

,
( )

w
w

w y

xq T
Nu q k

k T T y 
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Thus 
1/2Re (0)Nu     

where Re
Ux


  is the local Reynolds number. 

3. RESULTS AND DISCUSSION 

The obtained similarity system (6) - (8) is non-

linear, coupled, ordinary differential equations, 

which possess no closed-form solution. Therefore, 

the system of equations (6)–(7), along with the 

boundary conditions (8) are solved numerically by 

means the very robust symbolic computer algebra 

software matlab employing the routine bvpc45.  

The relative tolerance was set to10-6. In this 

method, we have chosen a suitable finite value of 

   namely 25  . The guess should satisfy 

the boundary conditions of the problem and reveal 

the behavior of the solution. However, it is difficult 

to come up with a sufficiently good guess for the 

solution of the system of the ordinary differential 

equations (6) and (7) in the case of opposing flow. 

To overcome this difficulty, we start with a set of 

parameter values for which the problem is easy to 

be solved. Then, we use the obtained result as initial 

guess for the solution of the problem with small 

variation of the parameters. This is repeated until 
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the right values of the parameters are reached.  

In addition, to validate the method used in this 

study and to judge the accuracy of the present 

analysis, comparison with available results of 

Chamkha et al. (2010) and Sharidan et al. (2006) 

corresponding to the skin-friction coefficient wf  for 

unsteady flow of viscous incompressible fluid is 

made (Table 1) and found in excellent agreement. 

In order to get a clear insight of the behavior of 

velocity and temperature fields for non-Newtonian 

Casson fluid, a comprehensive numerical 

computation is carried out for various values of the 

parameters that describe the flow characteristics, 

and the results are reported graphically. Figures 1 

and 2 illustrate the behavior of x -component of the 

translational velocity and temperature distributions, 

respectively, for different values of slip parameter. 

The slip parameter   measures the amount of slip 

at the surface. It is observed that, the velocity 

distribution decreases with the increasing values of 

slip parameter. Consequently, with the increase of 

slip parameter the thickness of boundary layer 

increases. It can further be noted that as   , 

the velocity of the fluid at the surface will coincide 

with the free stream velocity of the fluid, because if 

we increase the slip parameter   to a value tending 

to infinity then the boundary layer structure will 

disappear. Moreover, the temperature distribution 

increases with increasing the slip parameter. 

 

Table 1 The values of wf  for various values of  

unsteadiness parameter A  for Newtonian fluid 

A  
Chamkha et al. 

(2010) 

Sharidan et al. 

(2006) 
Present stuy 

0.8 

1.2 

-1.261512 

-1.378052 

-1.261042 

-1.377722 

-1.261012 

-1.377842 
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Fig. 1. Velocity profile for various  . 
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Fig. 2. Temperature profile for various  . 
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Figures 3 and 4, respectively, depict the effects of 

the magnetic field parameter Mn on the fluid 

velocity and temperature distributions, considering 

the cases of wall mass suction and wall mass 

injection. Application of a magnetic field normal to 

an electrically-conducting fluid has the tendency to 

produce a drag-like force called the Lorentz force 

which acts in the direction opposite to that of the 

flow, causing a flow retardation effect. This causes 

the fluid velocity to decrease. However, this 

decrease in flow speed is accompanied by 

corresponding increases in the fluid thermal state 

level. 

These behaviors are clearly depicted in the decrease 

in the fluid velocity and the increase in the fluid 

temperature in figures 3-4. Furthermore, the 

magnetic parameter tends to decrease velocity 

gradient at the wall and increase temperature 

gradient as seen in Figs. 17 and 18. The velocity 

gradient as well as temperature gradient tends to 

decreases or increases rapidly at first, then 

gradually levels off as the non-Newtonian Casson 

parameter is increased. It is clear from these figures 

that both of wf  and w decrease with increasing 

values of the magnetic field parameter.  Influences 

of Casson parameter   on velocity and 

temperature distributions for unsteady motion are 

clearly depicted in Figs. 5 and 6, respectively 

considering wall mass suction and wall mass 

injection effects (i.e. 0.4, 0.4S   ). The same 

type of behavior of velocity with increasing   is 

noted. The effect of increasing values of   is to 

reduce the velocity, and hence, the boundary layer 

thickness decreases. The increasing values of the 

Casson parameter i.e. the decreasing yield stress 

(the fluid behaves as Newtonian fluid as Casson 

parameter becomes large) suppress the velocity 

field. It is observed that ( )f   and the associated 

boundary layer thickness are decreasing function of 

 . The velocity curves in Fig. 5 show that the rate 

of transport is considerably reduced with the 

increase of  . The effect of increasing   leads to 

enhance the temperature field for unsteady motion 

(Fig. 6). This effect is more pronounced for steady 

motion. The thickening of the thermal boundary 

layer occurs due to increase in the elasticity stress 

parameter. It can also be seen from Fig. 5 that the 

momentum boundary layer thickness decreases as 

  increases and hence induces an increase in the 

absolute value of the velocity gradient at the 

surface. 

Figures 7 and 8 exhibit the velocity and temperature 

distributions, respectively for several values of 

unsteadiness parameter A . It is observed that the 

velocity along the sheet decreases initially with the 

increase in unsteadiness parameter A , and this 

implies an accompanying reduction of the thickness 

of the momentum boundary layer near the wall. The 

steady case is obtained when 0A  . 
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Furthermore, it is noticed that the temperature at a 

particular point is found to decrease significantly 

with increasing unsteadiness parameter. The effect 

of effect of heat generation or absorption parameter 

  on the temperature distributions is shown in Fig. 

9. It is clear that as the heat generation or absorption 

parameter increases the temperature of the fluid 

increases as well as the temperature gradient 

increases (Fig. 20). 
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Figure 10 shows the behavior of the temperature 

distributions for the variation of Prandtl number, 

Prandtl number signifies the ratio of momentum 

diffusivity to thermal diffusivity. It is seen that the 

temperature decreases with increasing Pr .  

Moreover, the thermal boundary layer thickness 

decreases by increasing Prandtl numbers. Wall 

temperature gradient is negative for all values of 

Prandtl number as seen from Fig. 19 which means 

that the heat is always transferred from the surface 

to the ambient fluid. An increase in Prandtl number 

reduces the thermal boundary layer thickness. 

Fluids with lower Prandtl number will possess 

higher thermal conductivities (and thicker thermal 

boundary layer structures), so that heat can diffuse 

from the sheet faster than for higher Pr fluids 

(thinner boundary layers). Figures 11 and 12 

display the effects of suction/blowing parameter S  

on velocity and temperature fields. With increasing 

S , fluid velocity is found to decrease. That is, the 

effect of S  is to decrease the fluid velocity in the 

boundary-layer and in turn, the wall shear stress 

decreases. The increase in S  causes thinning of the 

boundary layer. However, temperature at a point is 

found to decrease with increasing S . This causes a 

decrease in the rate of heat transfer.  

 

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8



f '

 

 

S = -2.0, -1.5, -1.0, -0.7, -0.3, 0.0, 0.3, 0.7, 1.0, 1.5, 2.0

 = 0.4,  Pr = 6.2, Mn = 0.6

 = 0.7,  = 0.5, A= 0.7 
S < 0

S > 0

.SFig. 11. Velocity distribution for various  

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1





 

 

S = -2.0, -1.5, -1.0, -0.7, -0.3, 0.0, 0.3, 0.7, 1.0, 1.5, 2.0

 = 0.4,  Pr = 6.2, Mn = 0.6

 = 0.7,  = 0.5, A= 0.7 
S < 0

S > 0

.SFig. 12. Temperature distribution for various  

 

0.5 1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7



- 
 ' w

S = -0.4

S =  0.4

A = 2.0

A = 0.4

A = 0.8

A = 2.0

A = 0.4

A = 3.0

A = 3.0

 = 0.4, Pr = 6.2

 = 0.7, Mn = 0.6

A = 0.8

 Fig. 13. Variation of temperature gradient with

.A 

The behavior of rate of heat transfer (from the sheet 

to the fluid) decreases with increasing A  as 

observed from Fig. 13. As the unsteadiness 

parameter A  increases, less heat is transferred 

from the sheet to the fluid; hence, the temperature 

( )  decreases (Fig. 8). Since the fluid flow is 

caused solely by the stretching sheet, and the sheet 

surface temperature is higher than free stream 

temperature, the velocity and temperature 

distributions decrease with increasing . It is 

important to note that the rate of cooling is much 

faster for higher values of unsteadiness parameter, 

whereas it may take longer time for cooling during 

steady flows. Moreover, Fig. 14 displays the 

influences of unsteadiness parameter A  and 

Casson parameter   on velocity gradient at the 

wall wf  . Magnitude of wf   related to skin-friction 

coefficient decreases with increasing unsteadiness 
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parameter A  and also with Casson parameter  , 

but the magnitude of temperature gradient at the 

surface decreases for   and A . A drop in skin-

friction as investigated in this paper has an 

important implication that in free coating operations 

and elastic properties of the coating formulations 

may be beneficial for the whole process. This 

means that less force may be needed to pull a 

moving sheet at a given withdrawal velocity, or 

equivalently higher withdrawal speeds can be 

achieved for a given driving force resulting in, 

increase in the rate of production. Figures 15 and 16 

illustrate the effect of slip parameter on velocity and 

temperature gradient, respectively. As it is 

illustrated, both of velocity and temperature 

gradient increase with the increase of slip flow 

parameter. 
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4. CONCLUSIONS 

In this paper, the mechanical and thermal properties 

of unsteady MHD boundary layer slip flow of a 

non-Newtonian Casson fluid past a vertical 

stretching surface taking into account the wall mass 

suction or injection and heat generation or 

absorption effects have been investigated 

systemically. With the help of appropriate similarity 

transformation, the governing time dependent 

boundary layer equations for momentum and 

thermal energy are reduced to coupled non-linear 

ordinary differential equations which are then 

solved numerically. Results for the velocity and 

temperature distributions as well as velocity 

gradient wf  , temperature gradient w  are 

presented for representative governing parameters. 

As a summary, we can conclude that 

 Fluid velocity decreases initially due to increase 

in unsteadiness parameter; temperature also 

decreases significantly in this case.  

 The effect of increasing values of the Casson 

parameter is to suppress the velocity field, whereas 

the temperature is enhanced with increasing Casson 

parameter. Moreover, Slip parameter and magnetic 

field parameter have the same effects. 

 Both of wf  and w  increase with the increase 

of slip flow parameter, whereas the magnetic field 

and unsteadiness parameters have an opposite 

effect. In addition, wf  decreases while w  

increases with increasing Casson parameter. 

 Prandtl number can be used to increase the rate of 

cooling in conducting flows. 
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