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ABSTRACT 

The laminar boundary layer flow and heat transfer of Casson non-Newtonian fluid from an inclined (solar 

collector) plate in the presence of thermal and hydrodynamic slip conditions is analysed. The inclined plate 

surface is maintained at a constant temperature. The boundary layer conservation equations, which are 

parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, 

efficient, implicit, stable Keller-box finite-difference scheme. Increasing velocity slip induces acceleration in 

the flow near the inclined plate surface. Increasing velocity slip consistently enhances temperatures 

throughout the boundary layer regime. An increase in thermal slip parameter strongly decelerates the flow 

and also reduces temperatures in the boundary layer regime. An increase in Casson rheological parameter acts 

to elevate considerably the velocity and this effect is pronounced at higher values of tangential coordinate. 

Temperatures are however very slightly decreased with increasing values of Casson rheological parameter.  

Keywords: Non-Newtonian fluid mechanics; Inclined plate; Solar energy; Yield stress; Slip condition, 

Keller-box numerical method; Heat transfer; Skin friction; Nusselt number; Boundary layers.  

NOMENCLATURE 

Cf skin friction coefficient 

Sf non-dimensional velocity slip parameter 

ST non-dimensional thermal slip parameter  

f non-dimensional steam function 

g acceleration due to gravity 

Gr Grashof number 

N0 velocity slip factor 

K0 thermal slip factor 

Nu Local Nusselt number 

Pr Prandtl number 

T temperature 

u, v non-dimensional velocity components 

along the x- and y directions, respectively 

x, y non-dimensional Cartesian coordinates 

along and transverse to plate surface 

 
 

 

 

 

 

  thermal diffusivity 

  non-Newtonian (rheological) Casson 

parameter 

  dimensionless radial coordinate  

  dynamic viscosity 

  kinematic viscosity 

  non-dimensional temperature 

  density of fluid 

  dimensionless tangential coordinate 

  dimensionless stream function 

 

Subscripts 

w conditions on the wall 

  free stream conditions 

 

1. INTRODUCTION 

The heat transfer from inclined surfaces finds 

numerous applications in solar energy systems, 

geophysics, materials processing etc. Many studies 

have appeared concerning natural and also mixed 
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convection flows. Kierkus (1968) studied 

isothermal inclined plate natural convection 

boundary layer flow using a perturbation method 

for a Prandtl number of 0.7. Fujii and Imura (1972) 

studied experimentally free convection from an 

inclined plate. Chen et al. (1980) analyzed 

combined heat and mass transfer in mixed 

convection along vertical inclined plates. Uniform 

surface flux effects on inclined plate thermal 

convection were reported by Armaly et al. (1987). 

The combined buoyancy and wall transpiration 

effects on mixed convection along an inclined plate 

were studied by Lee and Hsu (1989). Wickern 

(1991) examined the laminar boundary layer flow 

over an arbitrarily sloping plate showing that for 

opposing buoyancy forces singular as well as 

regular behaviour may prevail. Further studies have 

been communicated by Yan and Soong (1995) in 

the context of evaporating inclined boundary layer 

convection and by Sheu and Lin (1996) in 

combusting inclined flat plate flows. 

Non-Newtonian transport phenomena arise in many 

branches of process mechanical, chemical and 

materials engineering. Such fluids exhibit shear-

stress-strain relationships which diverge 

significantly from the classical Newtonian (Navier-

Stokes) model. Most non-Newtonian models 

involve some form of modification to the 

momentum conservation equations. These include 

power-law fluids (O. Anwar Bég, 2012), 

viscoelastic fluids including Maxwell upper-

convected models (O. Anwar Bég, 2011a), 

Oldroyd-B models (Tripathi, 2012), differential 

Reiner-Rivlin models (M.M. Rashidi et.al, 2012) 

and Bingham plastics (R.P. Chhabra, 2014).  The 

flow of non-Newtonian fluids in the presence of 

heat transfer is an important research area due to its 

relevance to the foodstuffs (Steffe, 2001). Of the 

various rheological models developed in 

biotechnology and food engineering, the Casson 

model has proved very successful. This simple, yet 

elegant rheological model was introduced originally 

(Casson, 1959) to simulate industrial inks. This 

model (Bird, 1983) constitutes a plastic fluid model 

which exhibits shear thinning characteristics, yield 

stress and high shear viscosity. The Casson fluid 

model is reduced to a Newtonian fluid at a very 

high wall shear stress i.e. when the wall stress is 

much greater than yield stress. This fluid model also 

approximates reasonably well the rheological 

behaviour of other liquids including physiological 

suspensions, foams, cosmetics, syrups etc.  

A number of theoretical, numerical and 

experimental studies of transport phenomena in 

Casson fluids have been presented in a variety of 

areas including biomedical engineering (R. K. 

Dash,2000) and manufacturing technology 

(Batra,1992). Neofytou (2006) studied 

computationally the flow characteristics of both 

power-law and Casson fluids in symmetric sudden 

expansions, showing that the critical generalized 

Reynolds number of transition from symmetry to 

asymmetry and subsequently the inverse 

dimensionless wall shear stress are linearly related 

to the dimensionless wall shear rate.   

Hemodynamic simulations of Casson blood flow in 

complex arterial geometries were studied by Gorla 

et al. (2009) and Murthy and Pradhan (2010). Attia 

and Sayed-Ahmed (2010) studied the unsteady 

hydromagnetic Couette flow and heat transfer in a 

Casson fluid using the Crank-Nicolson implicit 

method, showing that Casson number 

(dimensionless yield stress parameter) controls 

strongly the velocity overshoot and has a significant 

effect on the time at which the overshoot arises.  

Hayat et al. (2012) obtained homotopic solutions 

for stagnation-point flow and heat transfer of a 

Casson fluid along a stretching surface, also 

considering viscous heating effects.  

The above studies invariably assumed the “no-slip” 

condition at the boundary. Slip effects have 

however shown to be significant in certain 

industrial thermal problems and manufacturing fluid 

dynamics systems. Sparrow et al. (1962) presented 

the first significant investigation of laminar slip-

flow heat transfer for tubes with uniform heat flux. 

Inman (1964) further described the thermal 

convective slip flow in a parallel plate channel or a 

circular tube with uniform wall temperature. These 

studies generally indicated that velocity slip acts to 

enhance heat transfer whereas thermal slip 

depresses heat transfer. 

Many studies have appeared in recent years 

considering both hydrodynamic and thermal slip 

effects. Interesting articles of relevance to process 

mechanical engineering include Larrode et al. 

(2000) who studied thermal/velocity slip effects in 

conduit thermal convection. Studies of slip flows 

from curved bodies include Bég et al. (2011b) who 

examined using network numerical simulation the 

magneto-convective slip flow from a rotating disk, 

Wang and Ng (2011) who studied using asymptotic 

analysis the slip hydrodynamics from a stretching 

inclined plate. Wang (2007) has also examined 

stagnation slip flow and heat transfer from an 

axially moving inclined plate showing that heat 

transfer increases with slip, Prandtl number and 

Reynolds number, and that in the case of large slip, 

the flow field decays exponentially into potential 

flow.   

The objective of the present work is to investigate 

the influence of the inclination of the plate on the 

mixed convection heat transfer of a Casson 

rheological fluid past an inclined plate (solar energy 

collector) system using boundary layer theory. The 

effects of governing thermo physical parameters on 

heat transfer characteristics are analysed in detail. 

Mathematical modelling through equations of 

continuity and motion leads to dimensionless 

nonlinear coupled differential boundary layer 

equations. The velocity and thermal slip conditions 

along with conservation law of mass, momentum 

and energy completes the problems formulation for 

velocity components and temperature.  A finite 

difference numerical solution is presented for the 

transformed boundary layer equations and a 

parametric study is conducted the Prandtl number, 

Casson rheological parameter, wall 

suction/injection and velocity/thermal slip effects 

on the momentum and heat transfer characteristics 
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conducted. The present problem has to the authors’ 

knowledge not appeared thus far in the scientific 

literature. 

2. MATHEMATICAL FLOW 

MODEL  

Consider the combined thermal convection and 

diffusion mass transfer in laminar boundary layer 

flow parallel to a flat plate which is inclined to the 

vertical with angle,  , with free stream velocity, 

u , as depicted in Figure 1. The temperature of the 

ambient medium is T  and wall temperature is wT . 

The flow along the plate contains a species, A, 

slightly soluble in the fluid. The stream wise 

coordinate, x, is measured from the leading edge of 

the plate, parallel to the plate and the transverse 

coordinate, y, normal to the plate in the outward 

direction, for flow regimes both above and beneath 

the plate.  

The forced flow, following Beg et al. (2011c) exists 

the plate for  > 0 in the clockwise direction and 

beneath the plate for   < 0 (in the anti-clockwise 

direction). The fluid properties are assumed to be 

constant except the density variation in the 

buoyancy force term.  

 
Fig. 1. Physical Model and Coordinate System. 

The rheological equation of state for an isotropic 

flow of Casson fluid, following Steffe (2001) in 

tensorial notation may be stated as: 

2 ,
2

2 ,
2

y
B ij c

ij
y

B ij c
c

p
e

p
e
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



  


  
    

  
 

 
    

  

                         

(1) 

in which ij ije e   and ije  is the (i,j)th component 

of deformation rate,   denotes the product of the 

component of deformation rate with itself, 

c shows a critical value of this product based on 

the non-Newtonian model, B the plastic dynamic 

viscosity of non-Newtonian fluid and yp is the 

yield stress of fluid. Introducing the boundary layer 

approximations, the governing conservation 

equations can be written as follows: 

0
u v

x y

 
 

                                                  

(2)

 

2

2
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1
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y
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u
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y


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






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  

  
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 
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(3) 

2

2

T T T
u v

x y y


  
 

                                   

(4) 

The first term on the RHS of Equation (3) 

correspond to the stream wise pressure gradients 

induced by the combined buoyancy forces, with the 

plus and the minus signs representing, respectively, 

flows above and below the plate. The second term 

corresponds to the buoyancy forces generated by 

thermal and mass diffusion, with the plus and minus 

signs referring, respectively, to upward and 

downward forced flows. The final term in (3) on the 

right hand side is the viscous diffusion term. The 

initial and boundary conditions at the plate and in 

the free stream are: 

0

0

, 0

1
1 ,

0

,

,

w w

u u T T at x

u
u u N

y
at y

T
v V T T K

y

u u T T as y



 



 

  

   
    

    
    

  

  

                (5) 

In which N0 is the velocity slip factor and K0 is the 

thermal slip factor. For N0=0=K0, one can recover 

the classical no-slip case. where u and v denote the 

velocity components in the x- and y-directions 

respectively,   is the kinematic viscosity,   is the 

coefficients of thermal expansion , respectively, T is 

the temperature ,respectively,   is the density, pC  

is the specific heat capacity,  is the thermal 

diffusivity, mT  is the mean fluid temperature. Also, 

as indicated by Beg et al. (2011c), Equation (3) 

indicates the existence of both buoyancy induced 

stream wise pressure gradient terms and the 

buoyancy force terms for an inclined surface. The 

relative magnitude of these terms, however is 

controlled by the angle of inclination of the plate to 

the vertical,  . Chen et al. (1980) have shown 

using an order- of-magnitude analysis that the 

buoyancy-induced stream wise pressure gradient 

terms can be neglected in comparison with the 

buoyancy force terms provided:  

1Tan
x


                                                            (6) 
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Chen et al. (1980) have further shown that in terms 

of dimensionless boundary layer thickness   (the 

  value for which y  ), the condition (6) is also 

equivalent to the following condition:  

1/2RexTan





                                                      (7) 

Where Re /x u x   denotes the local Reynolds 

number. Effectively the condition (6) or (7) is valid 

for Tan <<3 ~ 30 i.e. angles of inclination,  << 

72 ~ 88 degrees. In this situation, the buoyancy-

induced stream wise pressure gradient terms are 

omitted in Equation (3) which reduces to the much 

simpler form: 

2

2

( )

1
1

u u
u v g T T Cos

x y

u

y








 
    

 

  
  

 

                       (8) 

The governing boundary layer equations then 

comprise Equations (2)-(4) and (8), with boundary 

conditions (5) subject to the condition given by (6) 

and (7). The special case of a vertical plate is 

retrieved from (8) for
00   i.e. cos 1  . 

Proceeding with the analysis we introduce the 

following dimensionless variables:  

1/2
u

y
x



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  

 
,  

( )x  , 
1/2
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( , )

( )

x y
f

u x


 

 

  ,       

3

2

( )
,wg T T x

Gr


 
   

2
, ( , )

c
B

y w

T T

p T T


     




 


                   (9) 

Where   the pseudo-similarity is variable,   is 

transformed x-coordinate which represents the 

thermal buoyancy effects,
   - is the non-

Newtonian Casson parameter, f  is a reduced 

stream function,   is dimensionless temperature.  

Where T
- the free stream temperature, 

wV  - the 

uniform blowing/suction velocity. The stream 

function ( , )x y satisfies the mass conservation 

equation (3) with    

u
y





 ,      v
x


 

  

In view of Equation (6), Equations (2) - (4) reduce 

to the following coupled, nonlinear, dimensionless 

partial differential equations for momentum and 

energy for the regime: 

1 1
1 cos

2

f f
f ff f f  

  

    
          

    
 

(10) 

1

Pr 2

f
f f

 
  

 

   
     

  
              (11) 

The transformed dimensionless boundary 

conditions are: 

At 1
0, , 1 (0), 1 (0)f Tf S f S f S  



 
        

 

  

As     1, 0f                    (12) 

In the above equations, the primes denote the 

differentiation with respect to , Pr is the Prandtl 

number, the thermal buoyancy force parameter, 

2Re

x

x

Gr
   (which is a measure of thermal buoyancy 

force effect on forced convection),  
1/2

0 Rex
f

N
S

x
   

and  
1/2

0 Rex
T

K
S

x
  are the non-dimensional 

velocity slip and thermal slip parameters 

respectively and wf  is the blowing/suction 

parameter. 0wf 
 

for 0wV  (the case of 

blowing), and 0wf   for 0wV  (the case of 

suction).  Of course the special case of a solid 

inclined plate surface corresponds to fW = 0. Here 

we assumed the typical values K0 = 0.5, N0 = 0.25 

for finding the non-dimensional velocity and 

thermal slip parameters.   

The engineering design quantities of physical 

interest include the skin-friction coefficient and 

Nusselt number, which are given by: 

1/21 1
Re 1 ( ,0)

2
f xC f 



 
  

 
              (13) 

1/2Re ( ,0)u xN                     (14) 

3. NUMERICAL SOLUTION 

In this study, the efficient Keller-Box implicit 

difference method has been employed to solve the 

general flow model defined by equations (10) – (11) 

with boundary conditions (12). This method was 

originally developed for low speed aerodynamic 

boundary layers by Keller (1970), and has been 

employed in a diverse range of industrial multi-

physical fluid dynamics problems. These include 

cross-diffusion boundary layer flows (Prasad et.al, 

2011b). The fundamental phases intrinsic to the 

Keller Box Scheme are:  

a. Reduction of the Nth order partial differential 

equation system to N first order equations 

b. Finite Difference Discretization 

c. Quasilinearization of Non-Linear Keller 

Algebraic Equations 

d. Block-tridiagonal Elimination of Linear 

Keller Algebraic Equations 

Phase a: Reduction of the Nth order partial 
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differential equation system to N first order 

equations 

Equations (10) – (11) subject to the boundary 

conditions (12) are first written as a system of first-

order equations.  

 
Fig. 2. Grid Meshing and a Keller Box 

Computational Cell. 

For this purpose, we reset Eqns. (10) – (11) as a set 

of simultaneous equations by introducing the new 

variables u, v and t: 
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In terms of the dependent variables, the boundary 

conditions become: 

 
1
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Phase b: Finite Difference Discretization 
 

A two dimensional computational grid is imposed 

on the -η plane as sketched in Fig. 2. The stepping 

process is defined by:  

0 10, , 1,2,..., ,j j j Jh j J         
               

(21) 
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nk n N                    (22) 

where kn and hj denote the step distances in the ξ 

and η directions respectively. 

If n

jg denotes the value of any variable at  , n
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then the variables and derivatives of Equations. (15) 
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We now state the finite-difference approximation of 

equations. (15) – (19) for the mid-

point  1/2 , n

j 
, below 

 1

1 1/ 2 ,n n n

j j j jh f f u

                                    (26) 

 1

1 1/ 2 ,n n n

j j j jh u u v

                                 (27) 

 

 
  

   

 

 

1

1 1

2

1 1

1
1/2 1

11
1/2 1 1 1/2

1
1

1 2

8

1
cos

4 2

2

2

j j

j
j j j j

j
j j j j j

j n
j j j

nj n
j j j j

v v

h
f f v v

h
u u h s s

h
v f f

h
f v v R






 







 

 


 


  

 
  

 


   
 

   

 

     

  

    (28) 

 1

1 1/2

n n n

j j j jh t 

  
                              (29) 

 
 

  

  

 

   

 

1 1 1

1 1

1
1/2 1

1 1
1/2 1 1/2 1

11
1/2 1 2 1/2

1 21

Pr 8

4

2

2 2

2

j
j j j j j j

j
j j j j

j n
j j j

j jn n
j j j j j j

nj n
j j j j

h
t t f f t t

h
u u s s

h
s u u

h h
u s s f t t

h
t f f R







 



  

 


 

 
   


  


    
 

   
 

 

   

     

  

(30) 

where we have used the abbreviations 

1/2n

nk






                                (31) 

 

   

1
1/2 1/2

1
1 1/2

2

1/2 1/2

1 1 2
1

2

cos

j j
j j

n j
jj

j j

v v
f v

h
R h

u s





  


 





 

                       
 

  
 

   

(32) 
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 

 

1
1/2 1/21

2 1/2

1/2 1/2

1 1 2

Pr 2

j j
j jn

j
jj

j j

t t
f t

hR h

u s






 



 

                    
 

  

 

                                               (33) 

The boundary conditions are 

0 0 00, 1, 1, 0n n n n n
J Jf u u     

                     
(34)   

Phase c: Quasilinearization of Non-Linear Keller 

Algebraic Equations 

If we assume 
1 1 1 1 1, , , ,n n n n n

j j j j jf u v s t    
to be 

known for 0 j J  , Equations (26) – (30) are a 

system of 5J+5 equations for the solution of 5J+5 

unknowns , , , ,n n n n n

j j j j jf u v s t , j = 0, 1, 2 …, J. This 

non-linear system of algebraic equations is 

linearized by means of Newton’s method as 

explained in (Keller, 1970; Prasad et.al, 2012, 

Prasad et.al, 2013). 

Phase d: Block-tridiagonal Elimination of Linear 

Keller Algebraic Equations 

The linear system (26) – (30) can now be solved by 

the block-elimination method, since they possess a 

block-tridiagonal structure. Commonly, the block-

tridiagonal structure consists of variables or 

constants, but here, an interesting feature can be 

observed, namely that it consists of block matrices. 

The complete linearized system is formulated as a 

block matrix system, where each element in the 

coefficient matrix is a matrix itself. Then, this 

system is solved using the efficient Keller-box 

method. The numerical results are affected by the 

number of mesh points in both directions. After 

some trials in the η-direction (radial coordinate) a 

larger number of mesh points are selected whereas 

in the ξ direction (tangential coordinate) 

significantly less mesh points are utilized. ηmax has 

been set at 10 and this defines an adequately large 

value at which the prescribed boundary conditions 

are satisfied. ξmax is set at 1.0 for this flow domain. 

Mesh independence is therefore achieved in the 

present computations. The computer program of the 

algorithm is executed in MATLAB running on a 

PC. The method demonstrates excellent stability, 

convergence and consistency, as elaborated by 

Keller (1970). 

 

4. RESULTS AND DISCUSSIONS 

Comprehensive solutions have been obtained and 

are presented in Figs. 3 -20. The numerical problem 

comprises two independent variables (,), two 

dependent fluid dynamic variables  ,f   and 

seven thermo-physical and body force control 

parameters, namely 
f T wPr,  S ,  S , , f ,

 
and  .In the present computations, the following 

default parameters are prescribed (unless otherwise 

stated): Pr = 0.71, Sf = 0.5, ST = 1.0,  = 1.0, fw = 

0.5,  = 1.0 and 60  .  

In Figs. 3 - 4, the influence of velocity slip 

parameter on velocity and temperature distributions 

is illustrated. Dimensionless velocity component 

(Fig. 3) at the wall is strongly increased with an 

increase in slip parameter, Sf. There will be a 

corresponding increase in the momentum (velocity) 

boundary layer thickness.  

 
Fig. 3. Influence of Sf on the Velocity. 

The influence of Sf is evidently more pronounced 

closer to the inclined plate surface ( = 0). Further 

from the surface, there is a transition in velocity slip 

effect, and the flow is found to be accelerated 

markedly. Furthermore the acceleration near the 

wall with increasing velocity slip effect has been 

computed by Crane and McVeigh (2010) using 

asymptotic methods, as has the retardation in flow 

further from the wall. The switch in velocity slip 

effect on velocity evolution has also been observed 

for the case of a power-law rheological fluid by 

Ajadi et al. (2009). Fig.4 indicates that an increase 

in velocity slip parameter significantly enhances 

temperature in the flow field and thereby increases 

thermal boundary layer thickness enhances. This 

will result therefore in the transport of more thermal 

energy from the inclined plate surface to the Casson 

fluid and will therefore accentuate heat transfer to 

the fluid, as noted also by Wang (2007).  

 
Fig. 4. Influence of Sf on the temperature. 
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Temperature profiles consistently decay 

monotonically from a maximum at the inclined 

plate surface to the free stream. All profiles 

converge at large value of radial coordinate, again 

showing that convergence has been achieved in the 

numerical computations. A similar pattern of 

thermal response to that computed in Fig 4. for a 

wide range of velocity slip parameters has been 

noted by Aziz (2010) who has indicated also that 

temperature is enhanced since increasing velocity 

slip parameter decreases shear stresses and this 

permits a more effective transfer of heat from the 

wall to the fluid regime.   

In Figs. 5 - 6, the variation of velocity and 

temperature with the transverse coordinate (), with 

increasing thermal slip parameter ST is depicted. 

The response of velocity is strongly decreased for 

all locations in the radial direction. The peak 

velocity accompanies the case of no thermal slip (ST 

= 0). The maximum deceleration corresponds to the 

case of strongest thermal slip (ST = 3). 

 
Fig. 5. Influence of ST on the velocity. 

Temperatures (Fig. 6) are also strongly depressed 

with increasing thermal slip. The maximum effect is 

observed at the wall.  

 
Fig. 6. Influence of ST on the temperature. 

The numerical computations correlate well with the 

results of Larrode et al. (2000) who also found that 

temperature is strongly lowered with increasing 

thermal slip and that this is attributable to the 

decrease in heat transfer from the wall to the fluid 

regime, although they considered only a Newtonian 

fluid.  

In Figs. 7 - 8, depict the influence Casson fluid 

parameter,  on velocity and temperature profiles. 

An increase in  implies a decrease therefore in 

yield stress of the Casson fluid. This effectively 

facilitates flow of the fluid i.e. accelerates the 

boundary layer flow close to the inclined plate 

surface, as demonstrated by Fig. 7. 

 

 
Fig. 7. Influence of β on the velocity. 

Since the Casson parameter is also present in the 

wall boundary condition, the acceleration effect is 

only confined to the region close to the inclined 

plate surface. Further from this zone, the velocity 

slip factor, Sf will exert a progressively reduced 

effect and an increase in Casson parameter,, will 

manifest with a deceleration in the flow.  

 
Fig. 8. Influence of β on the temperature. 

Overall however the dominant influence of , is 

near the wall and is found to be assistive to 

momentum development (with larger  values the 

fluid is closer in behaviour to a Newtonian fluid and 

further departs from plastic flow) Only a very small 

increase in temperature is observed with an 

enhancement in Casson fluid parameter, as shown 

in Fig. 8. The Casson parameter does not arise in 

the thermal boundary layer equation (11), nor does 

it feature in the thermal boundary conditions. The 

influence on temperature field is therefore 

experienced indirectly via coupling of the thermal 

eqn. (11) with the momentum eqn. (10). Similar 
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behaviour to the computations shown in Figs. 7 and 

8, has been observed by Attia and Sayed-Ahmed 

(2010) who also observed acceleration in Casson 

fluid flow near a curved surface, and additionally by 

Mustafa et al. (2011) who also observed an 

elevation in velocities near the wall and a slight 

reduction in temperatures throughout the boundary 

layer regime.  

 
Fig. 9. Influence of Pr on the velocity. 

Figs. 9 - 10, present the effect of Prandtl number 

(Pr) on the velocity and temperature profiles along 

the radial direction, normal to the inclined plate 

surface. Prandtl number embodies the ratio of 

viscous diffusion to thermal diffusion in the 

boundary layer regime. It also expresses the ratio of 

the product of specific heat capacity and dynamic 

viscosity, to the fluid thermal conductivity. When 

Pr is high, viscous diffusion rate exceeds thermal 

diffusion rate. An increase in Pr from 0.1 through 

1.0, 5.0, 10.0 to 20.0, is found to significantly 

depress velocities (Fig. 9) and this trend is sustained 

throughout the regime i.e. for all values of the radial 

coordinate, . For Pr <1, thermal diffusivity 

exceeds momentum diffusivity i.e. heat will diffuse 

faster than momentum. Therefore for lower Pr 

fluids (e.g. Pr = 0.01 which physically correspond 

to liquid metals), the flow will be accelerates 

whereas for greater Pr fluids (e.g. Pr = 1) it will be 

strongly decelerated, as observed in fig. For Pr 

=1.0, both the viscous and energy diffusion rates 

will be the same as will the thermal and velocity 

boundary layer thicknesses. This case can be 

representative of food stuffs e.g. low-density 

polymorphic forms of chocolate suspensions, as 

noted by Steffe (2001).  

Temperature is found to be strongly reduced with 

increasing Prandtl number. For the case of Pr = 0.1, 

the decay is almost exactly linear. For larger Pr 

values, the decay is found to be increasingly 

monotonic. Therefore for lower thermal 

conductivity fluids, lower temperatures are 

observed throughout the boundary layer regime.  

Figs. 11 - 12, illustrate the influence of wall 

transpiration on the velocity and temperature 

functions with radial distance, . With an increase 

in suction (fw> 0) the velocity is clearly increased 

i.e. the flow is accelerated. Increasing suction 

causes the boundary layer to adhere closer to the 

flow and destroys momentum transfer; it is 

therefore an excellent control mechanism for 

stabilizing the external boundary layer flow on the 

plate. Conversely with increased blowing i.e. 

injection of fluid via the inclined plate surface (fw< 

0), the flow is strongly accelerated i.e. velocities are 

increased. As anticipated the case of a solid inclined 

plate (fw= 0) falls between the weak suction and 

weak blowing cases. Peak velocity is located, as in 

the figures described earlier, at close proximity to 

inclined plate surface. With a decrease in blowing 

and an increase in suction the peaks progressively 

displace closer to the inclined plate surface, a 

distinct  effect described in detail in several studies 

of non-Newtonian boundary layers (O. Anwar 

Bég,2012; Rashidi, 2012;Hayat,2012).  

 
Fig. 10. Influence of Pr on the temperature. 

 

 
Fig. 11. Influence of fw on the velocity. 

Temperature,, is also elevated considerably with 

increased blowing at the inclined plate surface and 

depressed with increased suction. The temperature 

profiles, once again assume a continuous decay 

from the inclined plate surface to the free stream, 

whereas the velocity field initially ascends, peaks 

and then decays in to the free stream. The strong 

influence of wall transpiration (i.e. suction or 

injection) on boundary layer variables is clearly 

highlighted. Such a mechanism is greatly beneficial 

in achieving flow control and regulation of heat and 

mass transfer characteristics in food processing 
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from a cylindrical geometry.  

 
Fig. 12. Influence of fw on the temperature. 

 

Figs. 13 – 14 presents the variation of velocity and 

temperature fields with different transverse 

coordinate,  . In the vicinity of the inclined plate 

surface, velocity  f   is found to be maximized 

closer to the plate and minimized with progressive 

distance away from it i.e. the flow is decelerated 

with increasing  . Temperature () is found to 

noticeably decrease through the boundary layer 

with increasing   values. Evidently the fluid 

regime is cooled most efficiently at the lower 

stagnation point and heated more effectively as we 

progress around the inclined plate periphery 

upwards towards the upper stagnation point. 

 
Fig. 13. Influence of ξ on the velocity. 

These patterns computed for temperature and 

velocity evolution around the inclined plate surface 

are corroborated with many other studies including 

work on Newtonian convection from a cylinder by 

Wang (2007). 

Figs. 15 - 16, the effects of plate inclination on the 

dimensionless velocity, temperature function with 

coordinate transverse to the plate ( ) are 

illustrated.  When   < 0 i.e. negative plate 

inclination, in Figure 15, the velocity (f') is reduced 

at first i.e. flow is initially decelerated nearer the 

plate surface; however further away it is 

accelerated. For the case of the vertical plate (  = 

0 degrees) and for positive inclination, velocities 

are always monotonic distributions and no 

overshoot is present. 

 

 
Fig. 15. Influence of  on the velocity. 

 
Fig. 14. Influence of ξ on the temperature. 

 
Fig. 16. Influence of  on the temperature. 

With   > 0 i.e. 30 degrees and 80 degrees, velocity 

is reduced i.e. flow is decelerated, largely owing to 

gravitational effects. Conversely in Figure 16, with 

negative plate inclination (   < 0) the temperature 
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( ) increases slightly for a vertical plate 

temperatures are greater than for the negatively 

inclined plate; temperatures are further increased 

marginally with positive inclination of the plate. 

Figs. 17 - 18, show the effect of velocity slip 

parameter Sf on inclined plate surface shear stress (f 
//) and local Nusselt number (-/) variation. In 

consistency with the earlier graphs described for 

velocity evolution, with an increase in Sf, wall shear 

stress is consistently reduced i.e. the flow is 

decelerated along the inclined plate surface.  

 

 
Fig. 17. Effect of Sf on the Skinfriction 

Coefficient results. 

There is also a progressive migration in the peak 

shear stress locations further from the lower 

stagnation point, as wall slip parameter is increased. 

The impact of wall slip is therefore significant on 

the boundary layer characteristics of Casson flow 

from an inclined plate. With an increasing Sf, the 

local Nusselt number is also considerably decreased 

and profiles are generally monotonic decays.  

Figs. 19 - 20, show the effect of thermal slip 

parameter ST and non-Newtonian Casson fluid 

parameter on dimensionless local Nusselt number, 

respectively. Increasing ST is found to decrease the 

local Nusselt number. 

 
Fig. 18. Effect of Sf on the Local Nusselt Number 

results. 

 
Fig. 19. Effect of Sf on the local Nusselt Number 

results. 

For lower values of thermal slip, the plots are 

parabolic nature; however with ST values greater 

than 1, the profiles lose their curvature and become 

increasingly linear in nature. This trend is 

maximized for the highest value of ST (= 3.0) for 

which local Nusselt number is found to be almost 

invariant with transverse coordinate,  Local 

Nusselt number is conversely found to decrease 

slightly as Casson fluid parameter is increased. 

With increasing  values, less heat is transferred 

from the inclined plate surface to the fluid regime, 

resulting in lower temperatures in the regime 

external to the inclined plate and lower local 

Nusselt numbers, as observed in Fig. 20. 

 
Fig. 20. Effect of β on the local Nusselt Number 

results. 

 

Moreover, in order to verify the accuracy of present 

method, the analytical results obtained in the 

present work were compared with those available in 

the literature, obtaining an excellent agreement with 

those given in Wang (2008) and Kameswaran 

(2014) for particular values of suction/injection 

parameter
wf . It can also be noticed that for the 

values of  0wf   heat transfer decreases and 

increases for 0wf   as shown in Table 1. 
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Table 1 Comparison of –θ(0)׳ for different values 

of ƒw when β→, Pr0.71, SfST0 

ƒw –θ(0)׳ 

Wang 

(2008) 

Kameswaran 

(2014) 

Present 

study 

-0.25 0.66857 0.6685728 0.66856 

-0.5 0.50145 0.5014476 0.50145 

-0.75 0.29376 0.2937625 0.29377 

0 0.811301 0.8113013 0.8113 

0.1 0.86345 0.8634517 0.86345 

0.2 0.91330 0.9133028 0.91333 

5. CONCLUSIONS 

Numerical solutions have been presented for the 

transport phenomena i.e. combined heat and flow of 

Casson rheological fluid external to an inclined 

plate, with suction/injection effects and 

velocity/thermal slip. The model has been 

developed to simulate foodstuff transport processes 

in industrial manufacturing operations.  A robust, 

extensively-validated, implicit finite difference 

numerical scheme has been implemented to solve 

the transformed, dimensionless velocity and thermal 

boundary layer equations, subject to physically 

realistic boundary conditions. The computations 

have shown that: 

Increasing the velocity slip parameter, Sf, increases 

the velocity, temperature and skin friction but 

decreases the local Nusselt number. Increasing the 

thermal slip parameter, ST, decreases velocity, 

temperature and the local Nusselt number 

throughout the boundary layer regime. Increasing 

the Casson fluid parameter,, increases the velocity 

near the plate surface but decreases velocity further 

from the plate, and also fractionally increases the 

temperature throughout the boundary layer regime. 

Increasing Prandtl number, Pr, decelerates the flow 

and also strongly depresses temperatures, 

throughout the boundary layer regime. For positive 

inclination angle of the plate ( 60  ), flow is 

accelerated, with thermal buoyancy force parameter 

(  ) whereas temperature ( ) are reduced with 

increasing thermal buoyancy parameter, . For  

negative and positive plate inclinations (  < 0 and 

  > 0), the flow is accelerated and decelerated 

respectively; for these plate orientations however 

the temperature functions are increased 

respectively.              

The current study has been confined to steady-state 

flow i.e. ignored transient effects, thermal radiation 

heat transfer effects (Ahmed, 2012; Crane and A. G. 

McVeigh, 2010, Vasu et.al 2011). These aspects are 

also of relevance to rheological food processing 

simulations and will be considered in future 

investigations.  
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