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ABSTRACT 

The shear velocity is an important parameter in characterizing the shear at the boundary in open channels and 

there exist methods to estimate the shear velocity in steady flows, but the application and comparison of these 

methods to non-uniform unsteady flows is limited. In this study, three artificial triangular-shaped hydrographs 

were generated where the base flow is non-uniform with fine sand bed and the shear velocity was obtained by 

the methods, u*SV by using the Saint-Venant equations, u*L by using the procedure given by Clauser Method, 

u*P by using the parabolic law, u*UN by using the momentum equation assuming the slope of energy grade line 

is equal to bed slope and u*avg by using the average velocity equation are used in this study. The stream-wise 

components of velocity time series and the velocity profiles were obtained by means of an acoustic Doppler 

velocity meter. The variation of the shear velocity and the constant for the parabolic law with time is 

discussed. It is concluded that the shear velocities found by the parabolic law and the average velocity 

equation can be used interchangeably. Furthermore a hysteresis intensity parameter is proposed in order to 

examine the depth variation of hysteretic behavior of depth variation both with point velocity and average 

velocity. It is revealed that the more the unsteady the hydrograph the more the hysteresis both in terms of 

point velocity and cross-sectional mean velocity. 

 

Keywords: Unsteady flow; Shear velocity; Hysteresis; Velocity time series; Parabolic law; Clauser method; 

Saint-Venant Equations. 

NOMENCLATURE 

A  cross sectional area 

B  channel width 

Br integral constant for rough boundaries  

Bs integral constant for smooth boundaries  

Cu  uniformity coefficient  

d10  particle size at which 10% is finer 

d50  median diameter of the sediment  

d65  particle size at which 65% is finer 

d84  particle size at which 84% is finer  

dg  geometric mean diameter was  

F base Froude number at base flow conditions 

F peak Froude number at peak flow conditions 

g  gravitational acceleration  

h flow depth  

hbase  base flow depth  

hpeak,  peak flow depth  

HPSCU  speed of pump in % of 1450 rpm  

ks equivalent sand roughness  

qbase unit discharge at base flow conditions 

qpeak unit discharge at peak flow conditions 

Q flow rate  

Qbase  discharge at base flow conditions 

QFM peak  peak discharge from flow meter 

QFM discharge from flow meter  

Qpeak,  discharge at peak flow conditions  

QVM discharge from velocity measurements 

QVM peak  peak discharge from velocity  

uavg smt  smoothed average  

uavg.  velocity by averaging the repetitions  

um  maximum velocity,  

u* shear (friction) velocity  

u*avg u* obtained by Eq. (14)  

u*L  u* estimated by Clauser Method  

u*P  u* estimated by the Parabolic Law  

u*SV  u* estimated by Saint-Venant equation  

u*UN u* obtained by Eq. (3)  

uz mean point velocity at z  

um maximum velocity  

V average flow velocity  

Vbase  base flow velocity 

Vc  (Vbase+Vpeak)/2  

Vpeak,  peak flow velocity  

w instantaneous point velocity in z dir. 

w’  fluctuating components in z dir. 

w   time varying mean point velocity in z dir. 

x axis for stream-wise direction  

z axis for vertical direction  

z0  reference level 

 
  dimensionless unsteadiness parameter  

 limit between inner and outer layers  

g geometric standard deviation 

 kinematic viscosity  
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R2   correlation coefficients. 

Rh  hydraulic radius 

S0  channel slope  

Se slope of the energy grade line  

Tf falling duration based on the flow depth  

TfQ  falling duration based on the flow rate 

Tr rising duration based on the flow depth  

TrQ  rising duration based on the flow rate  

Tr QFM  rising duration based on QFM 

Tr QVM  rising duration based on QVM 

TrV rising duration based on the velocity  

u instantaneous point velocity in x dir. 

u’  fluctuating components in x dir. 

u   time varying mean point velocity in x dir 

  

  von Karman constant  

 constant in parabolic law  

 hysteresis intensity parameter 

 shear stress  

0  boundary shear stress  

ρ density of the water  

 wake strength parameter 

h hpeak - hbase 

QFM  QFM peak - QFM base, 

QVM  QVM peak - QVM base, 

T Tr  + Tf   

V Vpeak - Vbase 

FM  total volume of water considering QFM   

VM  total volume of water considering QVM  

   wake function 
 

 

1. INTRODUCTION 

Velocity distribution and flow parameters such as 

turbulence and boundary shear stress in steady flow 

conditions were studied widely both experimentally 

in laboratory and in the field (Nezu and Rodi 1986, 

Cardoso et al. 1989, Kırkgöz 1989, Kırkgöz and 

Ardıçlıoğlu 1997, Kabiri-Samani et al. 2013, Genç 

et al. (2015)) and numerically (Song et al. 2012, 

Debnath et al. 2015, Shah et al. 2015). However, in 

nature, unsteady flows are the most common type of 

open channel flows and attracted a great amount of 

interest for research in the field of hydraulics (Bose 

and Dey 2012) particularly in the furrow irrigation 

and in irrigation management systems (Walker and 

Humpherys 1983, Meselhe and Holly 1993, Kumar 

et al. 2002, Zhang et al. 2012).  

The experiments in open channels were conducted 

on hydraulically rough surfaces by Tu (1991), Song 

and Graf (1996), Qu (2002) and Bares et al. (2008) 

and on smooth surfaces by Nezu et al. (1997). Tu 

(1991) and Qu (2002) used micro-mouline; Nezu et 

al. (1997) used Laser Doppler Anemometer (LDA) 

for point velocity measurement at various 

elevations on the flow depth by repeating the 

experiment at various times to obtain the velocity 

profile. Song and Graf (1996) and later 

Bagherimiyab (2012) used Acoustic Doppler 

Velocity Profiler (ADVP) (Lhermitte and Lemmin 

1994) which uses ultrasonic method to obtain the 

velocity profile once in each sampling time. Qu 

(2002) worked on both fixed and mobile beds. 

During the rising and falling limbs of the 

hydrograph, the validity of logarithmic law 

distribution has been investigated (Nezu and Sanjou 

2006). The flow features like average velocity, 

turbulence intensity, Reynolds stress and shear 

velocity (Nezu et al. 1997, Song 1994, Tu 1991, 

Bares et al. 2008) are the issues investigated in 

unsteady flow conditions which were carried out in 

the laboratory studies. 

In order to represent the intensity of the hydrograph 

which can be defined as the change of flow depth or 

flow rate within a specified time interval, the 

unsteadiness parameter is used (Nezu et al. 1997). 

There exist many parameters defining unsteadiness 

proposed by many researchers (Nezu et al. 1997; 

Rowinski et al. 2000, Bombar et al. 2011, Bombar 

2014) such as  ; 

)//()/1( rQc ThV                                       (1)    

where h=hpeak-hbase, hbase and hpeak, are the base 

flow depth and peak flow depths, 

Vc=(Vbase+Vpeak)/2, Vbase and Vpeak, are the base flow 

and peak flow average velocities, TrQ is the rising 

duration of the hydrograph based on the flow rate as 

depicted in Fig. 1. Here t is time, Q is the flow rate, 

Qbase and Qpeak, are the base discharge and peak 

discharge, TfQ is the falling duration of the 

hydrograph based on the flow rate, Q=Qpeak-Qbase, 

h is the flow depth Tr and Tf are the rising and 

falling durations of the hydrograph based on the 

flow depth and , T= Tr + Tf .  
 

 

 
Fig. 1. Representation of the terms of a 

hydrograph in terms of time variation of flow 

rate and flow depth. 
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In unsteady flows it is a well-known fact that there 

exists a hysteresis between flow depth and mean 

cross sectional velocity where the velocity reaches 

its maximum value before the flow depth (Graf and 

Altınakar 1998, Nezu and Sanjou 2006). The mean 

velocity attains its maximum value before flow 

depth does (Nezu and Nakagawa 1991, Qu 2002). 

Song and Graf (1996), Bares et al. (2008), find out 

that the shear velocity attains its maximum value 

first and then in the order of V, Q and finally h. Qu 

(2002) observed that the limbs of the curve 

becomes farther as the unsteadiness increases. 

Jensen et al. (1989) investigated this time lag too 

(Nezu and Sanjou 2006). 

According to Nezu (2005) and Nezu and Nakagawa 

(1993), in steady flows the shear velocity can be 

calculated in many ways (Lopez and Garcia 1999, 

Muste and Patel 1997), such as, the use of Reynolds 

stress graph, velocity data at the viscous sub-layer, 

Clauser method, parabolic law, the slope method 

where Saint-Venant equations are used and average 

velocity equation. Under unsteady flow conditions, 

some researchers prefer to estimate the shear stress 

using the depth-slope product rule corresponding to 

normal (steady, uniform) flow especially when the 

purpose of their study is to focus on overall 

parameters rather than local parameters (Hassan et 

al. 2006, Güney et al. 2013) or prefer to neglect the 

contribution of velocity gradient to energy slope 

(Powell et al. 2001). Qu (2002), Song and Graf 

(1996) and Afzalimehr et al. (2007) used some of 

these methods in unsteady flows, but the 

comparison of these methods is limited.  

This study was carried out in the laboratory with 

artificial triangular-shaped hydrographs with high 

unsteadiness at which the base flow is non-uniform. 

Among the methods that have been developed to 

estimate the shear velocity (u*), u*SV the Saint-

Venant equations, u*L the procedure given by 

Clauser Method, u*P the parabolic law and u*UN the 

momentum equation assuming the slope of energy 

grade line is equal to bed slope and the equation for 

average velocity u*avg are used which are explained 

below. Furthermore the hysteresis was investigated 

and a hysteresis intensity parameter is proposed in 

order to find out the depth variation of hysteretic 

behavior at point velocity and average velocity. 

2. THEORETICAL REVIEW 

The related methods are explained as follows. 

1. Reynolds Stress Graph: 

In uniform flows the total shear stress   varies 

linearly with depth as given in Eq. (2) having the 

value of 0 at the boundary and zero at the free 

surface. By linear extrapolation of the Reynolds 

stress profile, the shear velocity can be calculated 

knowing that u* = (0/)0.5. 

 hzuzuwu /1/'' 2
*              (2) 

where  is density, u’ and w’ fluctuating 

components in stream-wise direction  x and vertical 

direction  z,  is the kinematic viscosity, u is the 

stream-wise component of velocity.  

This method requires a high sampling frequency. In 

accelerating non-uniform flows the type of the 

graph is convex and decelerating flows it has a 

concave type. Muste and Patel (1997) used this 

method in calculating the shear velocity (or friction 

velocity)  for flows with suspended sediment. In 

unsteady flow conditions, this method was used by 

Song and Graf (1996). 

2. The slope method, Saint-Venant Equations (u*UN 

& u*SV): 

In steady uniform flows, from momentum balance 

u* is related to gravitational acceleration g, channel 

slope S0 and Rh as 

0* SgRu h                                                    (3)  

As the shear velocity varies around the wetted 

perimeter, this gives an average value of u*. For a 

two-dimensional fully developed flow, or flow in a 

wide channel (the aspect ratio, B/h>6 where B is the 

channel width) h is used in place of the Rh (Muste 

and Patel 1997, Graf and Altınakar 1998). Yang 

(2010) investigated the influence of flow geometry 

on the depth-average shear stress and velocity. 

Muste and Patel (1997) claimed that this method 

were of less accuracy because they incorporate 

errors due to piezometers and flow depth readings. 

The shear velocity estimated by Eq. (3) is 

abbreviated as u*UN: 

In unsteady flows the u* becomes  u* = (ghSe)1/2  

where Se is the slope of energy grade line. Saint-

Venant equations consist of continuity as given in 

Eq. (4) and momentum equations. One can derive 

the latter by equating the momentum on a control 

volume in conservative form or in non-conservative 

form as given in Eq. (5a) and Eq. (5b), respectively. 

0









t

A

x

Q
                                                 (4) 

  0
11

0

2





























eSSg

x

h
g

A

Q

xAt

Q

A
 

  (5a)  

  00 













eSSg

x

h
g

x

V
V

t

V
        (5b) 

where A is the cross sectional area, V is velocity and 

S0=-z/x. After mathematical manipulations, one 

can get; 
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*                  (6)  

The shear velocity estimated by Eq. (6) is 

abbreviated as u*SV: 

3. Velocity Data at the Viscous Sub Layer: 

The velocity distribution in a cross section of the 

flow in a channel has risen up attention of many 

researchers. For smooth walls, the velocity profile 

in the viscous sublayer is linear and fits to the 
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equation given below (Lopez and Garcia 1999). 

// ** uzuu                                                    (7)  

In unsteady flows, the velocity profile at each time 

instant is examined independently and the u* is 

calculated for each profile, so that a time variation 

of u* is obtained. Onitsuka and Nezu (1999) 

revealed that the linear distribution is valid both in 

rising and falling limbs. The drawback of the 

method is the limited number of data within this 

thin layer (Nezu and Nakagawa 1993). 

4. Clauser Method (u*L): 

Nikuradse (1933) has proposed a logarithmic law to 

describe the vertical distribution of u. The shear 

velocity may be obtained from the slope of the best 

fit line in the inner region where =z/h<0.2 (Graf 

and Altınakar, 1998). When u*ks/ < 5 the flow is 

assumed to be smooth and the Eq. (8) is valid. 

sB
uz

u

u




*

*

ln
1

                                            (8) 

where ks is the Nikuradse’s equivalent sand 

roughness,  is the von Karman constant and equal 

to 0.40, Bs is the integral constant for smooth 

boundaries. The rough regime occurs when u*ks/ 

>70 and the Eq. (9) is valid as, 

r
s

B
k

zz

u

u



 0

*

ln
1


                                          (9) 

where z0 is the reference level, Br is the integral 

constant for rough boundaries. In steady flows, the 

ks is taken as 3.5d84 by (Leopold et al. 1964), 5d50 

by (Griffiths 1981), d65 by (Wiberg and Smith 1987 

and Patel and Ranga Raju 1999), 1 ̴ 10d50 by Liu 

(2001) for flat sand bed, 2d50 by Alabi (2006), 

2.5d50 by Beheshti and Ataie-Ashtiani (2010) where 

d65 and d84 are particle size at which 65% and 84% 

by weight of the sample is finer, respectively, d50 is 

the median diameter of the sediment. In unsteady 

flow experiments Song and Graf (1996) took the 

roughness height as d50. The reference level for a 

completely rough bed was taken as 0.033ks by Jan 

et al. (2006) and -0.25ks by Song and Graf (1996). 

Muste and Patel (1997) claimed that this method 

requires 10-12 mean velocity measurements in the 

near-bed region for a reliable curve fit. 

In the outer region, =z/h>0.2, the velocity profile 

deviates from the log law and could be explained by 

velocity defect law. As given in Eq. (10), Coles 

(1956) has improved the log law by introducing a 

wake function    given in Eq. (11). 
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                                       (11)  

here,  is the wake strength parameter. 

Brereton et al. (1990), Tu and Graf (1992), Tardu et 

al. (1994) and Song and Graf (1996) investigated 

the velocity profile for unsteady flows and 

concluded that the logarithmic law is valid in the 

inner region of open channel flow. 

In natural channels the flow is three dimensional 

due to the presence of secondary currents and the 

measured maximum velocity occurs below the 

surface and this is called the velocity dip 

phenomenon (Guo and Julien 2008 and Guo 2014). 

A Modified Log-Wake Law (MLWL) is proposed 

by Guo and Julien (2003) and Guo et al. (2005) 

which is applicable to velocity data measured in 

both pipe and open channel flow in laboratory and 

field. Based on the analysis of the Reynolds-

averaged Navier–Stokes (RANS) equations and a 

log-wake modified eddy viscosity distribution, Absi 

(2011) proposed an ordinary differential equation 

for velocity distribution to predict the velocity-dip-

phenomenon. Bonakdari et al. (2008) analyzed 

Navier–Stokes equations and suggested a new 

formulation of the vertical velocity profile in the 

center region of steady fully developed turbulent 

open-channel flows. Lassabatere et al. (2013) 

integrated the RANS equation by assuming the 

variations in the transverse direction at the center of 

the channel could be neglected. 

For unsteady flows, Nezu et al. (1997) determined 

that the von Karman constant is not considerably 

affected from the unsteadiness. The deviation of  

from the value 0.41 depends on the unsteadiness 

parameter  and concluded that the von Karman 

constant was not affected from the unsteadiness and 

can be taken as equal to 0.41 (Onitsuka and Nezu 

1999). It is proposed as 0.40 by Song and Graf 

(1996) and 0.41 by Brereton et al. (1990) Tardu et 

al. (1994), Brereton and Mankbadi (1995) and 

Bares et al. (2008). 

The integration constant for smooth boundaries Bs 

has an average value of 5 (±25%). In unsteady 

flows, Nezu et al. (1997) calculated the Bs as 5.3 in 

the initial steady part. They find out that the value 

of Bs decreases in the rising limb of the hydrograph 

and gets its minimum value just before the peak is 

reached. The Bs value increases in the falling limb 

and gets it maximum value in the middle of the 

falling limb and then again decreases to its original 

steady value. Akhavan et al. (1991) and Nezu et al. 

(1997) obtained similar results. Onitsuka and Nezu 

(1999) and Nezu and Sanjou (2006) claimed that for 

hydrographs with small unsteadiness values (≈ 

0.001), the Bs remains nearly constant throughout 

the hydrograph, but for the ones with higher 

unsteadiness, (≈ 0.0063) Bs increases in the 

rising period and decreases in the falling period. 

The integration constant for rough boundaries Br 

has an average value of 8.5 (±15%). Song and Graf 

(1996) revealed that the Br parameter is equal to 8.5 

as an average value. Tu and Graf (1992) calculated 

Br in the range of 3.8 - 14.5. Similarly Song (1994) 

used the velocity data in the inner region to 

calculate the Br and concluded that in rising limb Br 

has smaller values than the one in the falling limb. 

Cellino (1998) used the Clauser method to calculate  
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Fig. 2. (a) Scheme of the experimental setup, (b) PSCU, (c) software of PSCU, (d) flowmeter, (e) flume 

computer and data logger, (f) Flow Tracker with side-looking sensors (Flow Tracker Users Manuel).  

(b) (c) 

(d) 

(e) (f) 

flow direction 

measurement volume 

9 mm 

acoustic 

receiver 

acoustic 

transmitter 

acoustic 

receivers 



G. Bombar / JAFM, Vol. 9, No. 2, pp. 839-853, 2016.  

 

844 

the shear velocity in investigating the effect of 

suspended sediment flux on the velocity profile in 

steady flows. The slope of the linear trend line 

found by least square regression for u versus ln(z) is 

used to calculate the u*. The shear velocity 

estimated by Clauser method is abbreviated as u*L: 

For unsteady flows, Song and Graf (1996) find that 

the log law is valid in the inner region and Coles 

wake law is valid in the outer region the Nezu and 

Nakagawa (1991) mentioned that for high Reynolds 

numbers this deviation from log law is more 

prominent. 

5. Parabolic Law (u*P): 

The parabolic law is given by Eq. (12) and 

applicable for the velocity data in the outer region 

(Graf and Altınakar 1998). 

2

*

1 











h

z

u

uum                                        (12)    

where um is the maximum velocity,  is given by 

the equation below (Afzalimehr et al. 2007) 

 





12

5.2
                                                  (13)    

Taking =0.2 will make the =7.8. Graf and 

Altınakar (1998) proposed to take  as 9.6. Kundu 

and Gholhal (2012) proposed to take  as 6.3 

proposed by Bazin. The slope of the linear trend 

line between u and (1-z/h)2 can be used to calculate 

the u*. Afzalimehr et al (2007) used this method 

successfully for decelerating steady flows. The 

shear velocity estimated by Eq. (12) is abbreviated 

as u*P. 

6. Average Velocity (u*avg): 

The equation given below is used to calculate the 

shear velocity as u*avg. 
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Recently, one and two dimensional velocity 

distribution in open channels is derived by 

maximizing the Tsallis entropy showing an 

advantage in capturing low velocities near the 

channel bed for heavy sediment flows with high 

entropy value (Cui and Singh 2013, Cui and Singh 

2014b). Later Singh et al. (2014) derived a function 

for modelling the flow duration curve. Cui and 

Singh (2014a,c) computed the sediment discharge 

and sediment concentration distribution by the same 

method and revealed that this method has an 

advantage over other methods for the upper 80% 

depths. 

3. EXPERIMENTAL SET-UP 

The experiments were conducted in a rectangular 

flume of 70 cm width, 18 m length with a bed slope 

of 0.004 in the Hydraulics Laboratory of Ege 

University, Department of Civil Engineering. The 

transparent sides of the flume made from plexiglass 

were 50 cm high. A tail gate of 25 cm high was 

located at the end section. The sketch of the 

experimental setup is given in Fig. 2.a. The bed 

material used in the flume was composed of a non-

uniform sediment mixture with d50 = 0.43 mm. Its 

thickness was 20 cm. The geometric mean diameter 

was dg = 0.44 mm and geometric standard deviation 

was σg = 2.27. The uniformity coefficient (Cu = 

d60/d10) was 3.72. At the first 1.7 m of the flume 

coarse grains were placed in order to prevent the 

local scour at the entrance.  

The water was circulated continuously. The volume 

of the water supply reservoir was approximately 47 

m3. The pump used in this study was capable of 

producing a flow rate up to 100 l/s, and it was 

connected to a speed-control unit (PSCU) given in 

Fig. 2.b that can control the flow rate by a program 

by increasing and/or decreasing the pump speed 

HPSCU (in percentage of 1450 rpm) at desired time 

increments. The software window is given in 

Fig.2.c. An electromagnetic flow meter (Optiflux by 

Krohne) was mounted on the pipe before the 

entrance of the channel in order to measure the flow 

rate with a precision of 0.01 l/s (Fig.2.d). The water 

depths were measured by means of the level meters 

(IMP+) with a precision of 0.1 mm which were 

placed 6 m, 6.75 m, 8.25 m, 9.2 m, 10.75 m and 

11.25 m from the upstream end of the flume. The 

IMP+s and the flow meter are connected to a data 

logger (by Brainchild) which can record the data 

instantaneously as given in Fig 2.e. 

The ultrasonic instruments have been used in 

discharge, suspended measurements and pollutant 

fluxes in open channels and sewers (Abda et al. 

2008 and Larrarte and Le Barbu 2010). The 3D 

velocities are measured by such an instrument 

namely Flow Tracker (FT by Sontek) which is 

located at 9 m from the entrance of the channel. The 

acoustic transmitter generates a short pulse of sound 

with the majority of energy concentrated in a 

narrow beam which is 6 mm in diameter. The 

acoustic receivers are mounted on arms from the 

central probe head. The receivers are sensitive to a 

narrow beam and are focused on a common volume 

located a fixed distance which is 10 cm from the 

probe. The sampling volume is the physical location 

of the water velocity measurement. It also includes 

a temperature sensor mounted inside the probe. The 

temperature data is used to compensate for changes 

in sound speed. Sound speed is used to convert the 

Doppler shift to water velocity (Flow Tracker Users 

Manuel). A scheme of FT with side-looking sensors 

is presented in Fig. 2.f, for illustrative purposes. 

The length of the cylindrical measurement volume 

is 9 mm which is located perpendicular to the flow 

direction. The volume of the cylindrical shaped 

remote sensing volume is 0.25 cc. Unlike ADVP 

(Song and Graf, 1996) and Ultrasonic Velocity 

Profiler (UVP) (Bares et al. 2008), the point 

velocity measurement devices such as micro-

mouline (Tu 1991, Qu 2002), LDA (Nezu et al. 

1997) and FT, one has to repeat the hydrograph 

while changing the elevation of the instrument 

along the flow depth in order to obtain the velocity 

profile. The instantaneous time series of velocity 
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components were measured at various elevations.  

The sampling frequency of all the instruments (level 

meters, flow meter and velocity meter) was 1 Hz. 

All the experiments were recorded by a camera and 

a chronometer is used in order to check and validate 

the synchronization of the instruments and the 

PSCU.  

Three different triangular-shaped asymmetrical 

hydrographs were generated in the flume with same 

base and peak HPSCU as 35% and 70% but different 

design rising durations as 180 s, 270 s and 540 s, for 

Exp1, Exp2 and Exp3, respectively. Their falling 

duration was 60 s. The flow rate was increased 

slowly and when the base flow was reached the 

hydrograph was started. No sediment transport was 

observed during the base and peak flow conditions. 

4. PRELIMINARY RESULTS OF 

EXPERIMENTS 

The velocity readings were taken 9 m from the 

flume entrance and at different vertical positions 

from the bed within the flow depth at least 10 

points, which some of them were repeated more 

than twice (Fig. 3). The sampling time for Exp1 is 

380 seconds, for Exp2 is 460 seconds and for Exp3 

720 seconds for each experiment. The 

measurements in this experiment were taken in the 

Cartesian coordinate system x and z. The coordinate 

x is defined as the distance from the entrance of the 

flume, y is the transverse distance from the center 

line which is  
 

 
Fig. 3. Variation of velocity with time for 

repeated runs (Run1, Run2 and Run3), their 

average and the smoothed value of the average 

velocity for hydrograph in Exp3. 

 

the line of symmetry of the center line of flume, and 

z is the vertical distance from the surface of the bed.  

The u and w are the instantaneous point velocities in 

x and z directions can be decomposed into time 

varying mean point velocities u  and w  and their 

time varying fluctuating components of point 

velocities u’ and w’ as 'uuu   and 'www  . 

There are procedures proposed for obtaining the 

time varying mean for unsteady flows such as 

Fourier Transform, Wavelet, Moving average etc. 

(Bombar et al. 2010). In this case the moving 

average algorithm is adopted in which the nth data 

is equal to the average of previous and proceeding 

10 measured velocity data, totally 21 data including 

itself, as given in Eq. (15). Signal-to-noise ratio 

(SNR) is the ratio of the received acoustic signal 

strength to the ambient noise level. It is expressed 

in logarithmic units as dB (Flow Tracker Users 

Manuel). The velocity time series were carefully 

inspected before the analysis and concluded that the 

minimum SNR never becomes less than 15.  








10

10
21

1
n

ni

in uu                                        (15)    

There are two main reasons for smoothing the raw 

velocity time series. The smoothed velocity time 

series is used only in calculating the partial 

derivative of cross sectional mean velocity with 

respect to time tV  /  in Saint-Venant method. The 

second reason is to obtain the time that the 

parameter attains its maximum value accurately. 

These values are also given in Table 1. In the rest of 

the calculations, the raw velocity time series is used 

in the calculations. As an example the velocity time 

series obtained by three repetitions as Run1, Run2 

and Run3 at z=4.5 cm as well as their average uavg 

and the smoothed average as uavg smt for Exp3 are 

depicted in Fig. 3. 

 

Table 1 Characteristics of the experiments 

Parameter Exp1 Exp2 Exp3 

Qbase (l/s) 2.06 2.06 2.06 

QFM peak (l/s) 38.8 38.4 39.3 

QFM (l/s) 36.7 36.4 37.3 

Tr QFM (s) 187 273 544 

QVM peak (l/s) 37.0 37.0 38.9 

QVM (l/s) 34.9 34.9 36.8 

Tr QVM (s) 186 274 539 

QFM peak-QVM peak (%) 4.9 3.8 1.0 

hbase (cm) 12.16 12.16 12.16 

hpeak (cm) 20.10 20.57 20.80 

h (cm) 7.94 8.41 8.64 

Tr (s) 194 282 553 

Tf (s) 218 230 210 

T = Tr  + Tf 412 512 763 

Vbase (cm/s) 2.42 2.42 2.42 

Vpeak (cm/s) 25.70 25.90 26.90 

V (cm/s) 23.48 23.48 24.48 

Vc = (Vbase+Vpeak)/2 14.06 14.16 14.66 

Tr V (s) 186 272 537 

F base 0.022 0.022 0.022 

F peak 0.183 0.182 0.188 

 0.003 0.002 0.001 

 

The average velocity at any instant time V is 

calculated by taking the average of the 

instantaneous point velocities along the water 

column. Assuming V as the mean cross sectional 

velocity, the discharge is obtained as QVM = VhB. 

The discharge obtained from the electromagnetic 

flow meter mounted on the pipe is denoted as QFM. 

The time variation of QFM and QVM are depicted in 

Fig. 4. 
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Fig. 4. Time variation of the QFM and QVM. 

 

The total volume of water under the hydrograph 

Exp1 are 5.87 m3 and 5.55 m3 (5.4% difference) 

considering QFM (
FM ) and QVM (

VM ), 

respectively. The volume obtained in the pipe 14.34 

m3 and in the flume is 13.93 m3 (2.8% difference). 

The average value for the ratio throughout the 

experiments is 1.059 for Exp1, 1.043 for Exp2 and 

1.030 for Exp3. Therefore the measurements can be 

considered to be representing the discharge in the 

flume satisfying the continuity within the 

experimental system. This shows that the flow rate 

do not change too much for pipe flow and for open 

channel flow. 

The flow depth variation with dimensionless time 

(t/Tr) at x= 9 m is given in Fig. 5. At the base flow, 

before the hydrograph started, the water surface 

slope was determined by measuring the flow depth 

at various points and calculated as xh  / base = 

0.0033. The variation of the water surface profile is 

given in Fig. 6.a and Fig. 6.b for Exp1 and Exp3, 

respectively. The profiles are given at times 0.0, 

0.2, 0.4, 0.6, 0.8 and 1.0 times Tr of the rising 

period. It is observed that the water depth at the 

downstream never becomes smaller than the 

upstream water depth for all phases of the 

hydrograph.  

 

 
Fig. 5. Variation of flow depth h with t/Tr. 

 

The characteristics of the experiments are given in 

Table 1. Here F base and F peak are the Froude 

numbers at base and peak flow conditions, 

respectively. The subscripts “VM” and “FM” 

corresponds to the parameter obtained considering 

QVM and QFM, respectively. Tr V  is the rising 

duration considering the velocity. As seen from the 

table, all experiments were conducted under 

subcritical flow conditions. 

 

 
Fig. 6. Water surface slopes at various times for  

(a) Exp1 and (b) Exp3. 

5. ESTIMATION OF SHEAR VELOCITY  

The methods given in the introduction part for 

calculating the shear velocity are adopted for the 

case in this study. Among them, the momentum 

equation (u*UN), the Saint-Venant method (u*SV), 

Clauser Method (u*L) the Parabolic Law (u*P), and 

(u*avg) are used. The velocity data in the viscous 

sub-layer could not be measured since the boundary 

layer thickness 11.6/u* is very small, therefore this 

method was not used. Also since the total shear 

stress does not obey the linear distribution any 

longer in unsteady flows, it is decided not to use the 

Reynolds Stress graph method. The shear velocities 

are calculated and discussed below. 

 

5.1. Shear Velocity Calculations 

1. The Slope Method, Saint-Venant Equations (u*UN 

& u*SV): 

The velocity measurements were carried out only at 

one section i.e. 9 m from the channel entrance. 

Therefore it was not possible to calculate the term  
  xVgV  //  in Eq. (6). This term has an order of 

magnitude 10-5 while the S0 or Se has an order of 10-

3 (Graf and Altınakar, 1998). It was assumed that 

the spatial variation of velocity in the channel is 

negligible (Powell et al. 2001, Hassan et al. 2006). 

Therefore the term   xVgV  //  is interpreted as 

0/  xQ  thus the shear velocity becomes, 





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1
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1 2

0*            (16)    

The variation of h/x (V2/gh-1) term with 

normalized time t/Tr is given in Fig. 7. 
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Fig. 7. The variation of h/x (V2/gh-1) term with 

normalized time t/Tr. 
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Fig. 8. (a) second, (b) third and (c) fourth terms 

in Eq. (17) for experiments. 

 
One can rewrite the Eq. (16) as Eq. (17). The time 

variation of the second, third and fourth terms in the 

parenthesis of Eq. (17) which are -h/x, 

(V2/gh)h/x and (1/g)V/t, respectively are given 

in Fig. 8.a, 8.b and 8.c, respectively for the 

experiments. The minimum value of ∂h/∂x occurs at 

250 s, 340 s and 620 s for Exp1, Exp2 and Exp3, 

respectively. The spatial-variation of the flow depth 

depends on the downstream boundary conditions of 

the flume. It is equal to 0.0034 for the leading and 

tailing steady flows, i.e. the steady parts preceding 

and proceeding the hydrograph. When the flow 

increases, the spatial-variations of the flow depth, h 

start to decrease till minimum values of 0.004 when 

the flow reaches its peak value. The spatial-

variation of h went back to their steady state after 

fluctuating around it. 


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The variation of the second term (V2/gh)(∂h/∂t) with 

time attains its peak value as 180 s, 270 s and 540 s 

for the hydrographs Exp1, Exp2 and Exp3, 

respectively. The third term –(1/g)(∂V/∂t) for Exp1 

has more fluctuations in the rising limb when 

compared with those for Exp2 and Exp3. This is 

attributed again to the wave propagation in the 

flume. It is seen that the magnitude of the second 

and third terms are much less than spatial-

variations. Obviously the spatial-variations have the 

dominating roles as mentioned by Qu (2002). 

2. Clauser Method (u*L): 

In this study the Clauser Method used by Cellino 

(1998) was adopted and modified for the unsteady 

flow case. The linear best fit line of u versus ln(z) 

was obtained for each velocity profile measured at 

each sampling time as performed by Qu (2002), 

Nezu and Sanjou (2006) and Tu (1991). The mean 

value of the correlation coefficients R2 for Exp1 

was around 0.8 and for Exp2 and Exp3, it is 0.6. 

3. Parabolic Law (u*P): 

The correlation coefficient R2 is calculated as 0.6 

for Exp1, 0.56 for Exp2 and 0.55 for Exp3, when 

the best fit line is drawn between u and (1-z/h)2. The 

 is taken as 7.8 and the maximum velocity 

calculated from the u intercept. As depicted in Fig. 

9, the um obtained from the measured velocity time 

series is in accord with the calculated one for all 

experiments. 

 

 
Fig. 9. um obtained from the measured velocity 

and calculated by Eq. (12). 
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4. Average Velocity (u*avg): 

The Eq. (14) is used to find the shear velocity by 

using the mean average velocity V. The equivalent 

sand roughness was taken as ks = 10 d50. 

 

5.2. Comparison of the Results 

The time variation of the obtained shear velocities 

named as u*UN, u*SV, u*L, u*P and u*avg are depicted 

in Fig. 10.  

 

 
Fig. 10. The variation of shear velocity u* with 

time for (a) Exp1, (b) Exp2 and (c) Exp3. 

 

The percentage deviations from the shear velocity 

found by Clauser method from the other shear 

velocities are calculated and the root mean square 

values are given in Table 2, for the rising, falling 

and total durations. Kironoto (1993) calculated the 

shear velocity by the Reynolds stress graph and 

Clauser Method. He found the greatest deviation 

from the shear velocity obtained by Clauser method 

is the one found by energy slope method. The 

percentage difference was in the range of ±20%. Qu 

(2002) calculated the shear velocity by Clauser 

method, slope method and in his conclusions in his 

study on sediment transport. Qu (2002) found that 

the shear velocity, u∗SV estimated from Saint-Venant 

equations is smaller than the others. There is no one 

shear velocity whose root mean square (RMS) value 

is the lowest for all. Afzalimehr et al (2007) also 

mentioned that the parabolic law is applied when 

the data are far from the bed so as a reference the 

shear velocity calculated by the parabolic law is 

also considered and the deviations found by 

parabolic law are given in Table 3. Unlike the 

Clauser method, it is observed that the shear 

velocity calculated by average velocity equation has 

particularly the lowest RMS value. The critical 

shear velocity u*UN was overestimated due to the 

steady and uniform flow assumption. The u*SV was 

also overestimated particularly during the first 

phases of the hydrograph. On the other hand u*P and 

u*avg coincides well. It is concluded that the shear 

velocities found by the parabolic law and the 

average velocity equation can be used 

interchangeably. 

 
Table 2 Deviation of the shear velocities from the 

one calculated by Clauser method 

   RMS (cm/s)  

  u*UN u*SV u*P u*avg 

 Rising 4.36 0.56 0.81 0.91 

Exp1 Falling 5.39 0.93 0.49 0.53 

 Total 4.90 0.77 0.67 0.74 

 Rising 4.54 0.50 0.58 0.80 

Exp2 Falling 5.18 0.81 0.68 0.65 

 Total 4.72 0.60 0.60 0.76 

 Rising 4.61 0.70 0.79 0.74 

Exp3 Falling 5.51 1.00 0.36 0.22 

 Total 4.84 0.78 0.71 0.66 

 
Table 3 Deviation of the shear velocities from the 

one calculated by parabolic law 

   RMS  (cm/s)  

  u*UN u*SV u*P u*avg 

 Rising 5.00 0.55 0.81 0.35 

Exp1 Falling 5.44 0.87 0.49 0.24 

 Total 5.23 0.73 0.67 0.30 

 Rising 5.03 0.60 0.39 0.34 

Exp2 Falling 5.32 0.88 0.76 0.24 

 Total 5.18 0.76 0.60 0.29 

 Rising 5.26 0.92 0.79 0.21 

Exp3 Falling 5.72 0.77 0.36 0.18 

 Total 5.37 0.89 0.71 0.20 

5.3.  Velocity Profiles 

The velocity profile measured and the velocity 

values obtained by logarithmic and parabolic laws 

are given in Fig. 11 at t/Tr equal to 0.3, 0.6 and 0.8 

for the experiments. Here the solid line represents 

the best fit line obtained by logarithmic and 

parabolic laws.  Kundu and Ghoshal (2012) also 

combined the logarithmic law for inner region and 

the parabolic law for outer region. 

6. HYSTERESIS 

The variation of the mean point velocities at z=2.5 

cm as u2.5 and at z=10.5 cm as u10.5 are depicted in 

Fig. 12 with respect to flow depth. The maximum 
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velocity values are also given in the same figure. As 

it is expected the maximum velocity values at 

z=10.5 cm are all greater than the ones 

corresponding to the velocity values at z=2.5 cm. 

The ratios are 1.21, 1.18 and 1.13 for Exp1, Exp2 

and Exp3, respectively. This reveals that the greater 

the unsteadiness the higher the maximum point 

velocity occurs close to the surface than close to the 

bottom. 

 

Fig. 11
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Fig. 11. Velocity profiles for the experiments at 

for (a) t/Tr = 0.3, (b) t/Tr = 0.6 and (c) t/Tr = 0.8, 

here the solid line represents the best fit line. 

 

The clock-wise hysteresis is observed for both 

hydrographs given in Fig 12. The rising and falling 

limbs are close to each other for Exp3 in which the 

unsteadiness is small whereas for Exp1, the limbs 

become further apart. This distance between the 

limbs depends on the unsteadiness of the 

hydrograph as mentioned by Graf and Altınakar 

(1998). 

A hysteresis intensity parameter  is proposed as 

given in equation below in order to calculate how 

far the limbs from each other. The area between the 

limbs is normalized by the unit discharge difference 

of corresponding to the peak and base values, qpeak 

and qbase, respectively. 

basepeak

n

i

iii

qq

uhh












 2/)(

2

1

12

                              (18)    

It is revealed that the hysteresis intensity parameter 

 increases with flow depth, in other words the 

more you are close to the surface the hysteresis is 

felt more.  

It may also be concluded that the constant of the 

power trend line curve drawn for Exp1 is greater 

than the one obtained for Exp2 which is also greater 

than Exp3. This means the more the unsteady the 

hydrograph the more the hysteresis . 

 

 
Fig. 12. Variation of u with h (a) Exp1, (b) Exp2 

and (c) Exp3. 

The variation of hysteresis intensity parameter  

with normalized elevation as z/hbase, is depicted in 

Fig. 13. One can observe that there is a relation 

between these two dimensionless parameters which 

are given in Eq. (19.a), Eq. (19.b) and Eq. (19.c) 

below for Exp1, Exp2 and for Exp3, respectively. 
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Fig. 13. The variation of  with z/hbase. 
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The variation of cross sectional mean velocity V 

and flow depth h is given in Fig. 14. It is observed 

that when the unsteadiness is less as for Exp3, the 

rising and falling limbs are close to each other, 

whereas for Exp1, the limbs become further apart. 

When the mean average velocity Vi+1 is inserted for 

ui+1 in Eq. (18), the hysteresis intensity parameter is 

calculated as 0.12, 0.11 and 0.09 for Exp1, Exp2 

and Exp3, respectively. 

 

 
Fig. 14. The variation of velocity V with h. 

7. CONCLUSION 

The shear velocity is an important parameter in 

characterizing the shear at the boundary and there 

exist methods to estimate the shear velocity in 

steady flows. These methods are listed as the use of 

the Saint-Venant equations u*SV, use of the 

procedure given by Clauser Method u*L, use of the 

parabolic law u*P, use of the momentum equation 

assuming the slope of energy grade line is equal to 

bed slope u*UN and use of the average velocity 

equation u*avg. The methods which are used to 

calculate the shear velocity in steady flows were 

tested under unsteady flow conditions for three 

asymmetrical triangular-shaped hydrographs. 

The stream-wise and vertical components of 

velocity time series and the velocity profiles were 

obtained by means of an acoustic Doppler velocity 

meter. The instantaneous velocity time series were 

obtained at various vertical elevations and the 

moving average algorithm is adopted to obtain the 

time varying mean velocity. The variation of flow 

depth at various locations along the flume was used 

to calculate the water surface and energy slope 

variation. It is observed that the water depth at the 

downstream never becomes smaller than the 

upstream water depth which means a positive water 

surface slope throughout the flume for all phases of 

the hydrograph. Assuming the spatial variation of 

velocity in the channel is negligible, the Eq. (17) is 

obtained by which the u*SV can be calculated. It is 

seen that the magnitude of the second 

((V2/gh)h/x) and third ((1/g)V/t) terms are 

much less than spatial-variations. Obviously the 

spatial-variations (-h/x) have the dominating 

roles. The momentum equation assuming the flow 

is uniform was used to calculate the shear velocity 

u*UN. 

The shear velocity was also calculated as u*L by 

using the Clauser method. The shear velocity 

calculated by using the parabolic law as u*L and it is 

observed that the maximum velocity um obtained 

from the measured velocity time series is in accord 

with the calculated one. The well-known average 

velocity equation was used to obtain the shear 

velocity as u*avg. 

Among the methods, u*UN and particularly during 

the first phases of the hydrograph u*SV were 

overestimated. On the other hand u*P and u*avg 

coincides well. It is concluded that the shear 

velocities found by the parabolic law and the 

average velocity equation can be used 

interchangeably. 

The logarithmic law for inner region and the 

parabolic law for outer region combined in order to 

obtain the mean velocity profiles. Furthermore the 

hysteresis was investigated and a hysteresis 

intensity parameter is proposed in order to see the 

depth variation of hysteretic behavior at point 

velocity. It is revealed that the hysteresis intensity 

parameter  increases with flow depth, in other 

words the more you are close to the surface the 

hysteresis is felt more. The hysteresis parameter 

was adapted to the variation of cross-sectional mean 

velocity and flow depth. It is revealed that the more 

the unsteady the hydrograph the more the hysteresis 

both in terms of point velocity and cross-sectional 

mean velocity. 
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