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ABSTRACT 

The effects of hall current and rotation on unsteady hydro magnetic free convection flow past an 

exponentially accelerated infinite vertical plate with uniform temperature and variable mass diffusion has 

been discussed. The flow is induced by a general time-dependent movement of the vertical plate, and the 

cases of ramped temperature and isothermal plates are studied. The governing partial differential equations 

have been derived for the velocity, temperature, concentration profiles by Laplace transform technique. The 

solutions that have been obtained are expressed in simple forms in terms of elementary function and 

complementary error function. Expressions for velocity, temperature and concentration fields are obtained. 

The obtained results are discussed with the effect of various parameters like Rotation parameter, Hall 

parameter, Hartmann number, Schmidt number, radiation parameter thermal Grashof number and mass 

Grashof number. The numerical values of primary and secondary velocities are displayed graphically. The 

temperature and concentration distributions are discussed numerically and presented through graphs. 
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1. INTRODUCTION 

The Hall Effect is due to the nature of the current in 

a conductor. Current consists of the movement of 

many small charge carriers, typically electrons, 

holes, ions or all three. The applications of the 

effect of Hall current on the fluid flow with variable 

concentration have been seen in MHD power 

generators. The Hall Effect is due merely to the 

sideways magnetic force on the drifting free 

charges. Hall-magneto hydrodynamics (HMHD) 

takes into account this electric field description of 

magneto hydrodynamics. The most important 

difference is that in the absence of field line 

breaking, the magnetic field is tied to the electrons 

and not to the bulk fluid.  

Magneto hydrodynamics is the study of the 

dynamics of conducting fluids. Examples of 

such fluids include plasmas, liquid metals, and salt 

water or electrolytes MHD has applications in three 

different subject areas, such as astrophysical, 

geophysical and engineering problems. In addition, 

MHD free convection flows have significant 

applications in the field of stellar and planetary 

magneto spheres, aeronautical plasma flows and 

electronics. Al-Odat, Damseh and Al-Azab (2006) 

investigated thermal boundary layer on an 

exponentially stretching continuous surface in the 

presence of magnetic field effect. Ahmmed, et al. 

considered radiation and mass transfer effects on 

MHD free convection flow past a vertical plate with 

variable temperature and concentration. Bala Anki 

Reddy et al. (2012), discussed radiation effects on 

MHD flow past an exponentially accelerated 

isothermal vertical plate with uniform mass 

diffusion in the presence of heat source. 

Chandrakala and Bhaskar (2011) investigated 

effects of heat transfer on flow past an 

exponentially accelerate vertical plate with uniform 

heat flux. Chandrakala et al.(2013), discussed 

radiation effects on flow past an exponentially 

accelerated vertical plate with uniform flux. Jonah 

Philliph et al., discussed MHD rotating heat and 

mass transfer free convective flow past an 

exponentially accelerated isothermal plate with 

fluctuating mass diffusion. Kumar et al.(2011), 

investigated radiation effects on MHD flow past an 

impulsively started exponentially accelerated 

vertical plate with variable temperature in the 

presence of heat generation. Makinde et al.(2003), 
investigated unsteady free convection flow with 

suction on an accelerating porous plate. 

Muthucumaraswamy et al.(2010),discussed thermal 

radiation on linearly accelerated vertical plate with 

variable temperature and uniform mass flux. 

Muthucumaraswamy, Thamizhsudar et al. (2014), 
studied hall effects on MHD flow past an 

exponentially accelerated vertical plate in the 

presence of rotation. Okedoye and Lamidi (2009) 
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discussed analytical solution of mass transfer 

effects unsteady flow past an accelerated vertical 

porous plate with suction. Partha et al. (2006), 

investigated soret and dufour effects in a non-darcy 

porous medium. Pattnaik, Dash. Singh (2012), 

studied radiation and mass transfer effects on MHD 

free convection flow through porous medium past 

an exponentially accelerated vertical plate with 

variable temperature. Rajesh and Vijaya Kumar 

Varma (2009) discussed radiation and mass transfer 

effects on MHD free convection flow past an 

exponentially accelerated vertical plate with 

variable temperature.  

Rajput and Sahu (2011), studied effects of rotation 

and magnetic field on the flow past an 

exponentially vertical plate with constant 

temperature. Sahin Ahmed studied modelling of 

Newtonian Hartmann flow through darcian porous 

medium adjacent to an accelerated vertical plate in 

a rotating system. Sami Ulhaq et al. (2013), 
discussed radiation and magneto hydrodynamics 

effects on unsteady free convection flow in a porous 

medium. Sanatan Das et al.(2013), investigated 

hall effects on unsteady free convection in a heated 

vertical channel in presence of heat generation. 

Seddeck (2001), studied thermal radiation and 

buoyancy effects on MHD free convective heat 

generating flow over an accelerating permeable 

surface with temperature dependent viscosity. 

Vijaya Kumar et al. (2011), discussed radiation 

effects on MHD flow past an impulsively started 

exponentially accelerated vertical plate with 

variable temperature in the presence of heat 

generation. Thamizhsudar et al. (2014), discussed 

Hall effects on magneto hydrodynamic flow past an 

exponentially accelerated vertical plate in a rotating 

fluid with mass transfer effects. The basic equations 

governing the flow field are partial differential 

equations and these have been reduced to a set of 

ordinary differential equations by applying suitable 

similarity transformations, and these have been 

solved numerically by using Laplace transform 

technique. The effects of Schmidt number, Grashof 

number, and radiation, convective heat transfer 

parameter on fluid velocity, temperature and 

concentration have been shown graphically. 

2. FORMULATION OF THE 

PROBLEM AND ITS SOLUTION 

Here consider the unsteady hydro magnetic flow of 

a viscous in compressible fluid past an 

exponentially accelerated infinite vertical plate with 

variable temperature and uniform mass diffusion, in 

the presence of thermal radiation. The x'-axis is 

taken along the plate in the vertically upward 

direction and also the z'-axis is taken normal to the 

plate. A uniform transverse magnetic field is 

applied in a direction which is parallel to 0B  is 

applied in a direction which is parallel to y  - axis. 

Initially, the plate and the fluid are at the same 

temperature T in the stationary condition with 

concentration level C at all the points. At time

2

2

C C
D

t y

  


 
, the plate and fluid are at the same 

temperature T  and concentrationC .At time >0t 

, the plate is exponentially accelerated with a 

prescribedvelocity 0u u exp ( )a t  , in its own plane 

and at the same time the temperature of the fluid 

near the plate is raised linearly with time t and 

concentration level near the plate is also increased 

linearly with time. 0u is the velocity of the plate. 

The geometry of the problem is presented in Fig. 1. 

Since plate is of infinite extent in x’ and y’ 

directions and is electrically non-conducting, all 

physical quantities except pressure, depend on z’ 

and t’ only. Then under the usual Boussinesq’s 

approximation the unsteady flow equations are 

momentum equation, energy equation, and diffusion 

equation respectively. 

 

 
Fig. 1. Geometry of the Problem. 

 

Equation of Momentum: 

2
0

2

1
2 y

Bu u p
v g j

t xz


 

  
     

 
            (1) 

2
0

2
2 x

Bv v
u j

t z




 
   

 
                               (2) 

Equation of Energy: 

2

2
= r

p

T T q
C k

t zz


   


                                      

(3) 

Equation of diffusion: 

2

2

C C
D

t z

  


 
                                                     (4) 

where T  is the fluid temperature, C  is the 

concentration, t  is the time, D is the diffusion 

term. 

Since there is no large velocity gradient here, the 

viscous term in Equation (1) vanishes for small and 

hence for the outer flow, beside there is no 

magnetic field along x-direction gradient, so we 

have 

0
p

g
x




  


                                                    (5) 
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By eliminating the pressure term from Equations (1) 

and (5), we obtain 

2
0

2
2 ( ) y

Bu u
v g j

t z
  




 
     

 
           (6) 

The Boussinesq approximation gives             

( ) ( )T T C C      
                     (7) 

On using (7) in the equation (6) and noting that   

is approximately equal to 1, the momentum 

equation reduces to 

2
0

2
2

( ) ( )

y

Bu u
v j

t z

g T T g C C




  
 

 
   

 

      

                      (8) 

where  is the density,   the kinematic viscosity, 

u and v are fluid velocity components, g the 

acceleration due to gravity, pC  the specific heat at 

constant pressure, rq the radiative heat flux in the 

z– direction, k is thermal conductivity,   the 

volumetric coefficient of thermal expansion,  
the 

volumetric coefficient of expansion with 

concentration. 

The generalized Ohm's law, on taking Hall currents 

into account and neglecting ion-slip and thermo-

electric effect, is 

0

( ) ( )e ej j B E q B
B

 
                             (9) 

Where j  is the current density vector, q the 

velocity vector, B the magnetic field vector, E the 

electric field vector, e the cyclotron frequency, 

the electrical conductivity of the fluid and e the 

collision time of electron.  

The equation (9) gives 

0x yj mj vB                                                (10) 

0y xj mj uB                                              (11) 

where e em   is the Hall parameter. Solving (10) 

and (11) for xj and yj , we have  

0
2

( )
1

x

B
j v mu

m


 


                                        (12) 

0
2

( )
1

y

B
j u mv

m


 


                                       (13) 

On the use of (12) and (13), the momentum 

equations (8) and (2) become 

22
0

2 2

( )
2

(1 )

( ) ( )

B u mvu u
v

t z m

g T T g C C





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 

 
   

  

      

                (14) 

22
0

2 2

( )
2

(1 )

B mu vv v
u

t z m






 
   

  
                 (15) 

Here u is the axial velocity (along the direction of 

the plate) and v is the transverse velocity 

(transverse to the main flow), the initial and 

boundary conditions are given by 

0u  , 0v  ,T T  ,C C  , 

0t z  

0u u exp ( )a t  , 0v  , >0t   at z =0                 (16) 

wT T  , wC C  , >0t   at z =0                      

0u  , 0v  , T T  ,C C   

as  z   

The local radiant for the case of an optically thin 

gray gas is expressed by 

* 4 4= 4 ( )rq
a T T

z
 


  


                                  (17)  

It is assumed that the temperature differences within 

the flow are sufficiently small such that 
4T   may 

be expressed as a linear function of the temperature. 

This is accomplished by expanding 
4T  in a Taylor 

series about T  and neglecting higher-order terms, 

thus 

4 3 44 3T T T T                                               (18)  

By using equations (17) and (18), equation (3) 

reduces to 

2
* 3

2
= 16 ( )p

T T
C k a T T T

t z
   

  
   

 
        (19) 

Let us introducing the following non-dimensional 

quantities 
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,
u

U
u


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,
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, 

' 'w

C C
C

C C




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


  , 
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pC

k


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
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3
0

( ' ' )
,wg T T

Gr
u

 


2 3

2
0

16 *
,

a T
R

ku

 

*

3
0

( ' ' )wg C C
Gc

u

  
 ,

2
0

a
a

u


  

where   is the rotation parameter,Gr is the 

thermal Grashof number, Gc is the mass Grashof 

number, Pr  the Prandtl number, Sc the Schmidt 

number, R  the radiation parameter, t the 

dimensionless time, a  the accelerating parameter 

u and v the dimensionless velocity, m - Hall 
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parameter, M- Hartmann number, C is the 

dimensionless concentration and  is the 

dimensionless temperature. 

Using these boundary conditions in above 

equations, we obtain the following dimensionless 

form of the governing equations: 

2 2

2 2

2 ( )
2

1
r c

U U M U mV
V G G C

t Z m


  
     

  
 

                                                                              

(20) 

2 2

2 2

2 ( )
2

1

V V M mU V
U

t Z m

  
   
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               (21) 
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R

t Z

 


 
 

 
                             (22)   

2

2

1C C

t Sc Z

 


 
                                                (23) 

The boundary conditions for corresponding order 

are 

0U  , 0V   at 0t   for all Z  

>0t exp (a t )U   , 0V  at 0Z                      (24) 

0U  , 0V   as Z   

Now equations (20) & (21) and boundary 

conditions (24) can be combined to give 

2

2 r c

F F
wF G G C

t Z


 
   

 
                       (25) 
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R
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                                               (27)   

Where  F U iV  , 

2 2

2 2

2
2 ( )

1 1

M M m
w i

m m
   

 
 

The initial and boundary conditions in non-

dimensional quantities are 

0F  , 0,  0C   for all Z, 0t   

0t , exp( )F at , 1  , 1C  at 0Z            (28) 

0F  , 0  0C  as Z   

Exact solution for the fluid temperature and 

concentration of (26),(27) is expressed in the 

following form by taking inverse Laplace transform 

of solution as 

( , ) ( )C Z t erfc Sc                                          (29) 

exp(2 Pr ) ( Pr
1

( , )  ) exp(-2 Pr )  
2

( Pr )

b t erfc

Z t bt b t

erfc bt

 

 



 
 

   
 

  

         (30) 

The equations (25), (26), (27), subject to the 

boundary conditions (28), are solved by the usual 

Laplace-transform technique and the solutions are 

derived as follows:  
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( ( )),B erfc Sc  where  
2

z

t
   

(31) 

3. RESULTS AND DISCUSSION 

The physical depth of the problem of flow past an 

exponentially accelerated infinite vertical plate and 

temperature with variable mass diffusion has been 

formulated and solved analytically. In order to 

investigate the effects of the heat sources when the 

plate moves with velocity 0u u exp ( )a t  in its 

own plane, numerical calculations are carried out 

for different values of Rotation parameter, Hall 

parameter, Hartmann number, thermal Grashof 

number, mass Grashof number, Prandtl number, 

Schmidt number, Radiation parameter and time. 

The value of the Prandtl number Pr is chosen to 

represent air (Pr = 0.71). The value of Schmidt 

number is chosen to represent water vapour (Sc = 

0.6). The Thermal Grashof number Gr represents 

here the effects of the free convection currents, and 

receives positive, zero or negative values. The 

velocity distribution, temperature distribution and 

concentration distribution are studied in figures 2-

19, while keeping the other parameters as constants. 
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In fig. 2, the concentration profile at time t=0.2 

decreases with increase in the values of Sc. The 

temperature profiles are calculated for different 

values of thermal radiation parameter(R=0.2, 0.2, 

2.0, 5.0) and time (t=0.2, 0.6, 0.2, 0.2) are shown in 

fig. 3. It is observed that the temperature increases 

with decreasing radiation parameter.  

 
Fig. 2. Concentration profiles for different values 

of Sc.  

 

 
Fig. 3. Temperature profiles for different values 

of R and t. 

 

 

In fig .4 the primary velocity profile for different Ω 

has been presented and it is observed that the 

primary velocity U falls when Ω are increased. It is 

observed from fig .5 secondary velocity with 

minimum for Ω = M2m/(1+m2) and increases as Ω 

increases. From fig .6.it is clear that the primary 

velocity increases with decreasing values of the 

Hartmann number (M). Fig.7. show that due to an 

increase in the Hartmann number M, the secondary 

velocity increases. Fig.8 represents the velocity 

profiles for various values of m. It is observed that 

the primary velocity rises due to increasing value of 

the Hall parameter m. It is found that from fig .9due 

to an increase in the Hall parameter, m, there is rise 

in the secondary velocity components. In the fig.10, 

it is observed that the primary velocity increases 

with increasing values of the thermal Grashof 

number or mass Grashof number. It is observed 

from fig .11 that the velocity increases with 

increasing values of Gr, Gc. The effect of radiation 

parameter R on velocity profile is shown in fig .12, 

13. From fig .12.it is clear that the primary velocity 

increases with decreasing values of radiation 

parameter. 

 
Fig. 4. Primary velocity profiles for several 

values of   when Sc=0.6, Pr=0.71, a=0.1, t=0.2, 

M=0.5, m=0.5, Gr=5, Gc=5, R=5 

 

 
Fig. 5. Secondary velocity profiles for several 

values of  when Sc=0.6, Pr=0.71, a=0.1, t=0.2, 

M=0.5, m=0.5, Gr=5, Gc=5, R=5. 

 

 
Fig. 6. Primary velocity profiles for several 

values of M whenSc=0.6, Pr=0.71, a=0.1, 

t=0.2,=0.1, m=0.5, Gr=5, Gc=5, R=5. 

 

Fig.13. show that due to an increase in the radiation 

parameter, the secondary velocity increases. In 

fig.14. it is observed that the primary velocity 

increases with decreasing values of Schmidt 

number (Sc). 

 



R. Muthucumaraswamy and K. M. A. Prema. / JAFM, Vol. 9, No. 2, pp. 889-897, 2016.  

 

894 

 
Fig. 7. Secondary velocity profiles for several 

values of M when Sc=0.6, Pr=0.71, a=0.1, t=0.2, 

=0.1, m=0.5, Gr=5, Gc=5, R=5. 

 

 
Fig. 8. Primary velocity profiles for several 

values of m when Sc=0.6, Pr=0.71, a=0.1, t=0.2, 

=0.1, M=0.5, Gr=5, Gc=5, R=5. 
 

Fig.9. Secondary velocity profiles for several 

values of m when Sc=0.6, Pr=0.71, a=0.1, 

t=0.2,=0.1, M=0.5, Gr=5, Gc=5, R=5. 
 

In fig.15.it is observed that the secondary secondary 

velocity increases with increasing values of Sc. The 

velocity profiles for different values of time t are 

presented in fig .16, 17. It is observed that the 

primary velocity and secondary velocity increases 

with increasing values of t. The velocity profiles for 

different (a=0.2, 0.5, 0.8), Pr=0.71, R=5,t=0.2,=0.1, 

M=0.5, m=0.5, Gr=5, Gc=5, Sc=0.6 are studied and 

presented in fig 18,19. It is evident from figures that 

the primary velocity and secondary velocity increases 

with increasing values of ‘a’. 
 

 

 
Fig. 10. Primary velocity profiles for several 

values of Gr and, Gc when Sc=0.6, Pr=0.71, 

a=0.1, t=0.2,=0.1, M=0.5, m=0.5, R=5. 

 

 
Fig. 11. Secondary velocity profiles for several 

values of Gr and, Gc when Sc=0.6, t=0.2, 

Pr=0.71, a=0.1,=0.1, M=0.5, m=0.5, R=5. 

 

 
Fig. 12. Primary velocity profiles for several 

values of R when Sc=0.6, Pr=0.71, a=0.1, 

t=0.2,=0.1, M=0.5, m=0.5, Gr=5, Gc=5. 

 
The rate of heat transfer and mass transfer between 

the plate and the fluid, molecular concentration 

respectively. It is found by using the non-

dimensional quantities, the Nusselt number Nu and 

the Sherwood number Sh. The Nusselt number is 

defined as negative gradient of the temperature. The 

Sherwood number is negative gradient of 

concentration.  
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Z=0

d
Nu

dZ

 
  

 
                                                (32) 

From equations (30) and (32) we get Nusselt 

number as 
Pr

1 ( ) ( )Nu b t erf bt
t




  
 

 

From the concentration field, now we study 

Sherwood number (rate of change of mass transfer) 

it is given in non dimensional form as 

Z=0

dC
Sh

dZ

 
  

 
                                                 (33) 

From equations (29) and (33) we get Sherwood 

number as 

Sc
Sh

t
  

Table 1 Sherwood number –Sh 

Sc t Sh 

0.3 0.2 0.6912 

0.16 0.2 0.5048 

0.78 0.2 1.1145 

0.6 0.2 0.9774 

2.01 0.2 1.789 

0.6 0.4 0.6912 

0.6 0.6 0.5644 

 

 
Fig.13. Secondary velocity profiles for several 

values of R when Sc=0.6, a=0.1, t=0.2, Pr=0.71, 

=0.1, M=0.5, m=0.5, Gr=5, Gc=5. 

 

 

Fig. 14. Primary velocity profiles for several 

values of Sc when Pr=0.71, R=5, a=0.1, 

t=0.2,=0.1, M=0.5, m=0.5, Gr=5, Gc=5. 

 
Fig. 15. Secondary velocity profiles for several 

values of Sc when Pr=0.71, R=5, a=0.1, t=0.2, 

=0.1, M=0.5, m=0.5, Gr=5, Gc=5. 

 

 
Fig. 16. Primary velocity profiles for several 

values of t when Pr=0.71, R=5, a=0.1, Sc=0.6, 

=0.1, M=0.5, m=0.5, Gr=5, Gc=5. 

 

 
Fig. 17. Secondary velocity profiles for several 

values of t when Pr=0.71, R=5, a=0.1, Sc =0.6, 

=0.1, M=0.5, m=0.5, Gr=5, Gc=5. 

 

Table 2 Nusselt number for air at R=5 
t Nu  

0.2 3.09056 

0.4 2.94847 

0.6 2.84173 

0.8 2.76595 
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Fig. 18. Primary velocity profiles for several 

values of ‘a’ when Pr=0.71, R=5, t=0.2, =0.1, 

M=0.5, m=0.5, Gr=5, Gc=5, Sc=0.6. 

 

 
Fig. 19. Secondary velocity profiles for several 

values of ‘a’ when Pr=0.71, R=5, =0.1, M=0.5, 

m=0.5, Gr=5, Gc=5, Sc=0.6, t=0.2. 

 

The Nusselt number and Sherwood number has 

been 

discussed for a range of physical parameters. The 

values of Sherwood number are tabulated in table 1 

for different timeSchmidt number (Sc) and time 

t.Sherwood number increases when the values of Sc 

increase at t=0.2 but it decreases when the values 

time increase at Sc=0.6.The values of Nusselt 

number are tabulated in table 2 for different time t. 

Nusselt number increases when the values of time 

increase. 

4. CONCLUSION 

An analytic solution of radiation effects on 

exponentially accelerated infinite vertical plate in 

the presence of variable temperature and with 

variable mass diffusion has been studied. The 

dimensionless governing equations are solved by 

the usual Laplace transform technique and 

computed for different parameters using MATLAB. 

The effects of temperature and concentration 

profiles, axial velocity and secondary velocity for 

different parameters like Rotation parameter, Hall 

parameter, Hartmann number, accelerating 

parameter, radiation parameter, mass Grashof 

number, thermal Grashof number, Schmidt number, 

and time are presented graphically. The 

concentration increases with decreasing values of 

the Schmidt number. The concentration increases 

with decreasing values of the Schmidt number. The 

temperature increases with decreasing radiation 

parameter. The axial velocity rises due to increasing 

value of the Hall parameter, accelerating parameter, 

thermal Grashof number and mass Grashof number 

and time. The axial velocity u falls when Ω are 

increased, the velocity increases with decreasing 

values of the Hartmann number, the radiation 

parameter. Transverse velocity increases as Ω 

increases, due to an increase in the Hartmann 

number M, the Hall parameter, m, accelerating 

parameter, the radiation parameter R, Gr, Gc, Sc 

and t. 
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APPENDIX 
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In order to get the physical insight into the problem, 

the numerical values of F have been computed from 

(20). While evaluating this expression, it is 

observed that the argument of the error function is 

complex and, hence, we have separated it into real 

and imaginary parts by using the following formula: 

( )erf a ib   

2exp( )
( ) [1 cos(2 ) sin(2 )]

2

a
erf a ab i ab

a


   

2

2

2 2
1

exp( )
2exp( ) 4 [ ( , )

4

( , )] ( , )
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n

a
f a b
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Where   

2 2 cosh( )cos(2 )

sinh( )sin(2 )

nf a a nb ab

n nab ab

 


 and 

2 cosh( )sin(2 )

sinh( )cos(2 )

ng a nb ab

n nab ab




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