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ABSTRACT 

The effects of three different nanoparticles and magnetic field on the nonlinear Jeffery-Hamel flow of water 

based nanofluid are analyzed in the present study. The basic dimensionless governing equations are solved 

using series solution which are then analysed to inspect the instability of the problem by a semi-numerical 

analytical technique called Hermite- Padé approximation. The velocity profiles are presented in convergent-

divergent channels for various values of nanoparticles solid volume fraction, Hartmann number, Reynolds 

number and channel angle. The dominating singularity behavior of the problem is analysed numerically and 

graphically. The critical relationships among the parameters are also performed qualitatively to observe the 

behavior of the various nanoparticles. 

Keywords: Jeffery-Hamel flow; Magnetohydrodynamic; Nanofluid; Dominating singularity; Hermite-Padé 

approximation. 

NOMENCLATURE 

f base fluid   channel angle 

H Hartmann number   nanoparticles volume fraction 

Re Reynolds number   dynamic viscosity 

s nano-solid particle   kinematic viscosity 

nf nanofluid   density 

    any angle 

    dimensionless angle 

  

1. INTRODUCTION 

The study of flows in converging-diverging 

channel is very important due to its industrial, 

aerospace, chemical, civil, environmental, 

mechanical and bio- mechanical engineering 

applications. Various applications of this type of 

mathematical model are to understand the flow of 

rivers and canals and the blood flow in the human 

body. Jeffery (1915) and Hamel (1916) first 

studied the two-dimensional steady motion of a 

viscous fluid through convergent-divergent 

channels which is called classical Jeffery-Hamel 

flow in fluid dynamics. Jeffery-Hamel flows are 

interesting models of the phenomenon of 

separation of boundary layers in divergent 

channels. These flows have discovered similarity 

solutions of the Navier-Stokes equations 

depending on two non-dimensional parameters, 

the flow Reynolds number and channel angular 

widths. Fraenkel (1962) then investigated the 

laminar flow in symmetrical channels with 

slightly curved walls. In his analysis the velocity 

field of the flow was obtained as a power series in 

small curvature parameter where the leading term 

is the Jeffery-Hamel solution. Sobey and Drazin 

(1986) studied some instabilities and bifurcations 

of two-dimensional Jeffery-Hamel flows using 

analytical, numerical and experimental methods. 

Moreover, the steady flow of a viscous 

incompressible fluid in a slightly asymmetrical 

channel was studied by Makinde (1997). He 

expanded the solution into a Taylor series with 

respect to the Reynolds number and performed a 

bifurcation study. The theory of MHD is inducing 

current in a moving conductive fluid in the 

presence of magnetic field; such induced current 

results force on ions of the conductive fluid. The 
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theoretical study of MHD channel has been a 

subject of great interest due to its extensive 

applications in designing cooling systems with 

liquid metals, MHD generators, accelerators, 

pumps, and flow meters in (Cha et al. 2002, 

Tendler 1983). Makinde (2006) investigated the 

magnetohydrodynamic (MHD) flows in 

convergent- divergent channels which was an 

extension of the classical Jeffery-Hamel flows to 

MHD. He interpreted that the effect of external 

magnetic field works as a parameter in solution of 

the MHD flows in convergent - divergent 

channels. A survey of information on this problem 

can be found in the Esmaili et al. (2008). 

Recently, the three analytical methods such as 

Homotopy analysis method, Homotopy 

perturbation method and Differential 

transformation method (DTM) were used by 

Joneidi et al. (2010) to find the analytical solution 

of Jeffery-Hamel flow. Moreover, the models on 

classical semi-analytical methods have 

experienced a revival, in connection with the 

scheme of new hybrid numerical-analytical 

techniques for nonlinear differential equations, 

such as Hermite–Padé approximation method, 

which demonstrated itself as a powerful 

benchmarking tool and a prospective substitute to 

traditional numerical techniques in various 

applications in science and engineering. The 

classical Jeffery-Hamel problem was extended in 

Axford (1961) to include the effects of external 

magnetic field on conducting fluid. Motsa et al. 

(2010) found the solution of the nonlinear 

equation for the MHD Jeffery-Hamel problem by 

using spectral-homotopy analysis method. 

Moghimi et al. (2011) also solved the Jeffery-

Hamel flow problem by using the homotopy 

perturbation method. Alam and Khan (2010) 

studied the critical behavior of the MHD flow in 

convergent-divergent channels. The convergence 

of critical values and the change in bifurcation 

graph for flow Reynolds number and channel 

angle by the positive effect of H and the critical 

relationship among the parameters was discussed. 

Taghikhani (2014) investigated the magnetic field 

effect on laminar natural convection flow in a 

filled enclosure with internal heat generation using  

two-dimensional numerical simulation and 

showed that the strength of the magnetic field has 

significant effects on the flow and temperature 

fields. Taking into account the rising demands of 

modern technology, including chemical 

production, power station, and microelectronics, 

there is a need to develop new types of fluids that 

will be more effective in terms of heat exchange 

performance. The term ‘nanofluid’ was envisioned 

to describe a fluid in which nanometer-sized 

particles were suspended in conventional heat 

transfer basic fluids in Kaka and Pramuanjaroenkij 

(2009). The effects of magnetic field and 

nanoparticle on the Jeffery-Hamel flow using 

Adomian decomposition method were studied by 

Sheikholeslami et al. (2012). The velocity inside 

the divergent channel for different values of 

Hartmann number and channel angle and the 

effect of nanoparticle volume fraction on velocity 

field in absence of magnetic field was shown in 

their analysis.  More recently, Moradi et al. (2013) 

investigate the effect of three types of 

nanoparticles Cu, TiO2 and Al2O3 on Jeffery-

Hamel flow using Differential Transformation 

Method (DTM). They found that the influence of 

solid volume fraction of nanoparticles on the 

velocity and skin friction was more enunciated 

when compared with the type of nanoparticles. 

Also, the skin friction coefficient for Al2O3 was 

observed maximum in comparison to the other 

two nanoparticles. 

The aim of this work is to find the approximate 

solutions to the MHD Jeffery-Hamel flow using 

nanofluid by algebraic programming language 

MAPLE. The series is analysed by using Hermite–

Padé approximation to show the velocity profiles 

with effect of  ,  and Hartmann number H. The 

critical values and bifurcation diagrams of channel 

angle and flow Reynolds number with the effect of 

 for Cu, 322 OAl,TiO -nanoparticles are studied 

numerically and graphically. The critical 

relationships among the parameters are also shown 

which is not addressed yet. 

2. MATHEMATICAL 

FORMULATION 

 Consider a steady two-dimensional laminar 

incompressible viscous nanofluid flow from a 

source or sink between two channel walls intersect 

at an angle 2 .  A cylindrical coordinate 

system ),,( zr  is used and assume that the velocity 

is purely radial and depends on r and  so that 

there is no change in the flow parameter along the 

z-direction. Further it is presumed that there is an 

external magnetic field acting vertically downward 

to the top wall. Let be the semi-angle and the 

domain of the flow be   . Then the 

governing equations for the flow can be expressed 

as 

 ( ) ( ) 0,nf nfru v
r r r

 



 
 

 
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                                                                               (3) 

Where 
2 2

2

2 2 2

1 1

r rr r 

  
   

 
 

Assume a symmetric radial flow, so that 0v . 

Also the volumetric flow rate through the channel is  
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Q ur d






                                            (4) 

The boundary conditions are  

0u     at       

Where 0B is the electromagnetic induction,  is 

the conductivity of the fluid, u is the velocity along 

radial direction and p is the fluid pressure. The 

effective density nf , the effective dynamic 

viscosity nf , and the kinematic viscosity nf of 

the nanofluid are given as Aminossadati and 

Ghasemi (2009).  

2.5

(1 ) ,

, ,
(1 )

nf f s

f nf
nf nf

nf

    

 
 



  

 


                             (5) 

Here,  is the solid volume fraction of the 

nanoparticles.  

If it requires ,0Q then for 0 the flow is 

diverging to a source at 0r . 

Let ),(  r be the stream function, then 

0,  rur    

Introducing the dimensionless variables 

   and QHF )(),,Re,;(   ,  

The Navier-Stokes equations (1-3) reduce to the 

ordinary differential equation 

( ) 2.5

1.25 2

2 Re (1 )

(4 (1 ) ) 0

ivF A F F

H F

 

 

  

   
                     (6) 

The boundary conditions are as follows: 

0,1  FF    at    1                         (7) 

2
0

(1 ) ,

Re , ,

s

f

f f f

A

BQ
H


 





  

  

 

                                   (8) 

Where A  is a parameter, Hartmann number H, 

flow Reynolds number Re, channel angle and 

nanoparticles solid volume fraction . 

3. SERIES ANALYSIS 

The following power series expansion is considered 

in terms of the parameter  as equation (6) is non-

linear for velocity field  

0

( ) ( ) ,i
i

i

F F  




   as    1                    (9) 

The non-dimensional governing equations are then 

solved into series solution by substituting the Eq. 

(9) into Eqs. (6) and (7) and equating the 

coefficients of  powers of  .  

Order zero )0( : 

4

4

( )
0,0d F

d




                                               (10) 

0 0( 1) 1, ( 1) 0,F F                                    (11) 

Order one ( )1 : 

24
2.5 0 01

4 2

( ) ( )( )
2Re (1 ) 0

dF d Fd F
A

dd d

 


 
    

(12) 

1 1( 1) 0, ( 1) 0,F F                                      (13) 

With the help of MAPLE, we have computed the 

first 18 coefficients for the series of the velocity 

( )F   in terms of , H , Re, , A . The first few 

coefficients of the series for ( )F   are as follows: 

 

3

5 2 2 2 2

2 2 4
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4 2 2 4 4 2 2 5

4 2 2 2 2 2 2
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 

 

(14) 

Applying differential and algebraic approximate 

methods to the series we determine the comparison 

between the present and previous solutions and the 

convergence of critical values and the changes in 

bifurcation graphs for the channel angle and flow 

Reynolds number by the positive effect of 

nanoparticle volume fraction. The effect of 

magnetic field and nanofluid on velocity field are 

also shown graphically using differential 
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approximate method. The details of Hermite-Pade' 

approximants method are described below. 

4. COMPUTATIONAL 

PROCEDURE: HERMITE-PADÉ 

APPROXIMANTS. 

The idea of channel angle criticality or non-

existence of steady-state solution to nonlinear 

boundary layer equations for certain parameter 

values are extremely important from physical point 

of view. To compute the criticality conditions in the 

system, we shall employ a very efficient solution 

method, known as Hermite-Padé approximants, 

which was first introduced by Padé (1892) and 

Hermite (1893). 

Assume that the partial sum  

1

1

0

( )
N

n
N n

n

S a 






      as 1                      (15) 

Because of the continuation of analytical solution 

and dominating singularity behavior, the bifurcation 

study is performed using the partial sum (15). The 

dominating behavior of the function  S  

represented by a series may be written as  

 

1 when 0, 1, 2, ...,

~

1 ln 1 when 0, 1, 2,...,

c

c c

B A

S

B A











 


 

  
    
  

  

     
  

    

                                                                             (16) 

as ,c  where A and B are some constants and 

c is the critical point with the critical exponent  .    

Assume that the  1d   tuple of polynomials, 

where d is a positive integer:  

     0 1
, , ...,

d
N N NP P P  

where,
     0 1

deg deg ... deg ,
d

N N NP P P d N        

(17)  

is a Hermite-Padé form of these series if  

       
0

i N
N

i

P S Oi

d
  


  as 1      

      (18) 

Here 0 1( ), ( ), ..., ( )dS S S   may be independent 

series or different form of a unique series. We need 

to find the polynomials 
 i
NP  that satisfy the 

equations (17) and (18). These polynomials are 

completely determined by their coefficients. So, the 

total number of unknowns in equation (18) is    

 
deg 1 1

0

i
NP d N

i

d
   


                                (19) 

Expanding the left hand side of equation (18) in 

powers of   and equating the first N equations of 

the system equal to zero, we get a system of linear 

homogeneous equations. To calculate the 

coefficients of the Hermite-Padé polynomials it 

requires some sort of normalization, such as 

   0 1
i

NP   for some integer 0 i d               (20) 

It is important to emphasize that the only input 

required for the calculation of the Hermite-Padé 

polynomials are the first N coefficients of the 

series 0 1( ), ( ), ..., ( )dS S S   . The equation (19) 

simply ensures that the coefficient matrix associated 

with the system is square. One way to construct the 

Hermite-Padé polynomials is to solve the system of 

linear equations by any standard method such as 

Gaussian elimination or Gauss-Jordan elimination.  

In practice, one usually finds that the dominant 

singularities as well as the possibility of multiple 

solution branches for the nonlinear problem are 

located at zeroes of the leading polynomial 
[ ]( )d
NP   coefficients of the equation (18). If the 

singularity is of algebraic type, then the exponent 

  may be approximated by  

   
   

1
,

,

2

d
c NN

N d
c NN

P
d

DP








                                  (21) 

Drazin –Tourigney (1996) Approximants is a 

particular kind of algebraic approximants and Khan 

(2002) introduced High-order differential 

approximant (HODA) as a special type of 

differential approximants. High-order partial 

differential approximants (HPDA) discussed in 

Rahman (2004) is a partial differential 

approximants. More information about the above 

mentioned approximants can be found in the 

respective references.  

5. RESULTS AND DISCUSSION 

The main objective of the current work is to 

analyze the effects of different nanoparticles and 

magnetic field on Jeffery-Hamel flow of viscous 

incompressible fluid by using Hermite-Padé 

approximants. The understanding of the flow 

physics is achieved through a combination of 

numerical studies. Although there are four 

parameters of interest in the present problem the 

effects of nanoparticles volume fraction , channel 

angle , Reynolds number Re and Hartman 

number H. The densities of the base fluid, Cu, 

2 2 3TiO ,Al O -nanoparticles are respectively 998.1 

(
3kg/m ), 8933(

3kg/m ), 4250(
3kg/m ), 

3970(
3kg/m ). The series (14) is analyzed by 

differential approximation method to show the 

comparison between present results and the results 

of Fraenkel (1962) in Tables 1-2 and the variation 

in the critical values c and cRe with critical 

exponent c for various values of nanoparticles 

significantly. The results of the numerical  
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Fig. 1. Geometry of the problem. 

 

 

                                       a) 0                                                                  b) 05.0  

Fig. 2. Velocity profiles in divergent channel with different values of  at Re = 7, H = 1  

for Cu-water nanofluid. 

 

 

                                      a) 0                                                            b) 05.0  

Fig. 3. Velocity profiles in divergent channel with different values of H at Re = 7, α = π 4 for 

Cu-water nanofluid. 

 

computations of velocity profiles for different 

values of the aforementioned parameters are 

displayed graphically in Figs. (2) - (5). 

Table 1 exhibits the changes of critical channel 

semi-angle c  for four different values of 

2.0,1.0,05.0,0  as Cu-nanoparticles where 

water is the base fluid at 4d  taking .18N  

The values of c confirm that c  is a branch point 

using HODA. 

Moreover, Table 2 implies that Rec decreases both 

significantly and uniformly for different values of 

  and Rec  is a branch point verified by the values 

of c . The results of Tables 1-2 show a good 

agreement with those results of Fraenkel (1962) 

  

r

 

0B  

0   

   

Source or Sink
 

2
   
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Table 1 Numerical values of critical angles c  and corresponding exponent c at Re 20 and 

1H  for Cu-nanoparticles with various values of .  

 Present study  
Fraenkel 

(1962) 

  c  c  c  

0 0.2691819115000 0.49515872313 0.269 

0.05 0.2122678984825 0.49785814583 __ 

0.1 0.1963360739593 0.50387522948 __ 

0.2 0.1828175409234

 

0.49803815751 __ 
 

Table 2 Numerical values of critical Rec  and corresponding exponent c at 0.1   and 1H   for Cu-

nanoparticles with various values of .  

 Present study  
Fraenkel 

(1962) 

  Rec  c  Rec  

0 54.47285679258 0.5071160433 54.61 

0.05 44.31499529952 0.4985570114 __ 

0.1 39.49239826450 0.4996886803 __ 

0.2 36.73956809792 0.4990504907 __ 

 
Table 3 Variation of critical angles c  with different nanoparticles at Re 20 and 1H  for various 

values of  . 

c  

  Cu 2TiO  2 3Al O  

0 0.26918191150 0.2691819115000 0.26918191150 

0.05 0.21993061586 0.2632195331417 0.26618826894 

0.1 0.19633607395 0.2641976761310 0.26975026485 

0.2 0.18281754092

 

0.2839251923510 0.29355796430 

 

Table 4 Variation of critical cRe  with different nanoparticles at 0.1  and 1H  for 

various values of  . 

cRe  

  Cu 2TiO  2 3Al O  

0 54.47285679 54.4728567925 54.47285679 

0.05 44.31499529 53.2537722229 53.90465402 

0.1 39.49239826 53.4686730461 54.60503673 

0.2 36.73956809 57.6132508744 59.63881039 

 

for 0.   It is seen from Table 3 that the values of 

c increases uniformly for 

2 2 3Cu,TiO and Al O nanoparticles respectively as 

the nanoparticles are arranged in descending order 

of density. The similar behavior of the above three 

nanoparticles are observed in Table 4 for critical 

Reynolds number Rec . 

Figs 2 and 3 show the effects of channel angle and 

magnetic field on the velocity profiles in divergent 

channel for both viscous and Cu-water nanofluid 

respectively. It is seen from Fig 2(a) that the 

velocity increases moderately with rising values of 

 at Re 7, 1H  for viscous fluid  0   but 

the differences between velocity profiles are more 

noticeable at larger angles. However, the backflow 

is detected in diverging channel for higher values 

of 3  . In Fig 2(b) the effect of 

 0.05  accelerates the increment of centerline 

velocities more rapidly and there occur major 

backflow near the walls at large value of 3  . 

The flow breaks the symmetry, with most of the 

fluid going in a thin layer along the walls. The fluid 

is prevented from utilizing the whole area of the 

expanding channel by a recirculation vortex which 

blocks the exit. In addition, secondary instabilities 

driven by this vertical motion develop in this flow. 

The velocity curves in Fig 3(a) show that the rate of 

alteration is significantly and uniformly reduced 

with increase of Hartmann number H in absence of 

Cu-nanoparticles  0  . The transverse magnetic 

field opposes the alteration phenomena clearly. 

Because the variation of H leads to the variation of 

the Lorentz force due to magnetic field and the  



M. D. S. Alam  et al. / JAFM, Vol. 9, No. 2, pp. 899-908, 2016.  

 

905 

        

        a) Divergent channel  4                          b) Convergent channel  4    

Fig. 4. Velocity profiles with different values of  at 1,7Re  H  for Cu-water nanofluid. 

 
Lorentz force produces more resistance to the 

alternation phenomena. It can be noted from Fig 

3(b) that the centerline velocity increases 

reasonably for nanofluid  0.05  than viscous 

fluid with dropping H at a small angle 0.1  . 

Whereas to diminish the backflow an increased H is 

essential. Fig 4 represents the consequences of solid 

volume fraction on velocity profile at 0.1   in 

both convergent-divergent channels. In Fig. 4(a) 

at 4  for divergent channel as  increases, the 

center line velocity increases and backflow is 

observed near the walls. Conversely, Fig. 4(b) for 

convergent channel  4    represents that 

backflow starts at the centerline 

when  0.05  whether there is no sign of 

backflow in absence of nanoparticles  0   and 

this properties is enhanced with rising 0.1  . 

Therefore, the state of backflow in convergent 

channel is completely opposite in comparison to 

divergent channel. 

Figure 5 predicts the combined effects of magnetic 

field and Cu-nanoparticles volume fraction on the 

velocity for divergent channel with fixed Reynolds 

number. The figure represents sensible decreases in 

the centerline velocity with rising Hartmann 

number for both viscous and nanofluid that coincide 

with those results of Sheikholeslami (2012). It is 

also observed that for all values of Hartmann 

number there is no backflow in the viscous 

fluid  0  , nevertheless backflow starts for 

nanofluid with 0H  at 0.1,Re 7   and this 

phenomenon is abolished with the rising values of 

Hartmann number. Employing the algebraic 

approximation method to the series (14) we have 

obtained the bifurcation graphs of Reand . 

Figure 6(a) shows the bifurcation diagram of   

with the effect of nanofluid. It is interesting to 

notice that there are two solution branches of 

velocity when ,c  one solution 

when ,c  and no solution when 

,c  where c is the critical value of  for 

which the solution exists. It can be also noted here 

that the bifurcation points change from 

0.2691819115   to 0.2122678984   and then 

to 0.1963360739   for different values of Cu-

nanoparticles volume fraction respectively at 

Re 20, 1H  . On the other hand, it is noticed 

from Fig. 6(b) that the bifurcation curves of 

2 2 3TiO and Al O -nanoparticles almost coincide 

whereas there is a significant variation for Cu-

nanoparticles due to their respective densities. 
 

 
Fig. 5. Combined effects of Hartmann number 

and solid volume fraction of Cu-nanoparticles on 

velocity profile for 7Re,4   . 

 
Moreover, from Fig 7(a) it is observed that the flow 

also bifurcates at Re Rec . On the other hand, the 

bifurcation points decreases uniformly for three 

different values of Cu-nanoparticles volume 

fraction at 0.1, 1H   . Figure 7(b) represents the 

effect of three different nanoparticles on the 

bifurcation diagram of Re remarkably. The 

conjecture of Figs 6(a-b) and 7(a-b) is consistent 

with the results shown in Tables 1-4 using 

differential approximation. One major finding is 

that, as nanoparticles volume fraction increases the 

critical channel angle and flow Reynolds number  
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                                                 a)                                              b)  

Fig. 6. Approximate bifurcation diagrams of   in the ))0(,( F   plane at 20Re,1 H  (a) with 

different  of Cu-water nanofluid and (b) for various types of nanoparticles at 05.0 obtained by 

Drazin-Tourigny method (1996) for 4d . 

 

           
                                   a)             b) 

Fig. 7. Approximate bifurcation diagrams of Re  in the ))0((Re, F   plane at 1.0,1  H (a) with 

different  of Cu-water nanofluid and (b) for various types of nanoparticles at 05.0 obtained by 

Drazin-Tourigny method (1996) for 4d . 

 

decreases. The temporal and spatial complexity of 

observed flows changes in a succession of 

bifurcations until the onset of instability. Each 

bifurcation is marked by the onset of instability of 

one flow and followed by equilibrium to another 

stable flow. The High-order partial Differential 

Approximant HPDA (2004) is applied to the series 

(14) in order to determine the critical relationship 

among the parameters Reand, H with the effect 

of nanofluid. Fig 8(a) displays the critical relation 

between the channel angular width  and flow 

Reynolds number Re for three various values of 

nanoparticles solid volume fraction. It is found that 

as   increases then Re  decreases and conversely 

Re increases when decreases. This implies that 

both channel angle and Reynolds number are 

inversely proportional to each other which are an 

excellent agreement with previously established 

results obtained by Fraenkel (1962) for 0  in 

classical Jeffery-Hamel flow. A significant 

variation is observed in the relationship curves of 

Cu-nanoparticles for 0.05 & 0.1   . 

 

 
Fig. 8. Critical relation between   and Re with 

different values of  for Cu-water nanofluid at 

1H  obtained by HPDA (2004) for 5d . 

c  

cRe  
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Fig. 9. Critical relation between   and Re for 

different nanoparticles at 1,05.0  H  

obtained by HPDA (2004) for 5d . 

 
Moreover, from Fig. 9 it is found that Cu-

nanoparticles produce a clear difference in the 

relationship curve than 2 2 3TiO and Al O -

nanoparticles. 

Fig.10 depicts the relationship between  and 

Hartmann number H with different volume fraction 

of nanoparticles in divergent channel. It is seen 

from the figure that  increases as H increases and 

the rate of increment is lower in Cu-water 
nanofluid. 

 
Fig. 10. Critical relation between   and H for 

different values of  with Cu-water nanofluid at 

02Re   obtained by HPDA(2004) for 4d . 

 

However,  decreases as  increases. Finally, in 

Fig.10, the flow Reynolds number Re increases with 

rising H but then the tendency of increment 

becomes slower for 0.05 & 0.1   . The 

conjecture of both the Figs 10 and 11 are coincides 

with those results of Alam and Khan (2010) at 

0.   Therefore, nanofluid diminishes the 

alternation phenomenon in the relationship graphs 

among the parameters. Series analysis plays an 

important role in many areas, particularly in fluid 

dynamics, where, as mentioned earlier, the presence 

of real singularities in the solution may reflect some 

changes in the nature of the flow. The criticality of 

channel angle and flow Reynolds number lead to 

instability in the fluid flow with a significant effect 

of nanofluid.   

 
Fig. 11. Critical relation between Re  and H for 

different values of  with Cu-water nanofluid at 

1.0  obtained by HPDA (2004) for 4d . 

6. CONCLUSION 

The magnetohydrodynamic Jeffry-Hamel flow 

problem with three types of nanoparticles as water 

is the base fluid is investigated applying Hermite-

Padé approximation technique. A comparison is 

made between the available results and the present 

approximate solutions.The accurate numerical 

approximation of the critical parameters of the flow 

is obtained. The influence of various physical 

parameters on the velocity is discussed in detail. 

The basic conclusions are as follows:  

 Increasing channel semi angle leads to 

enrichment of fluid centerline velocity in the 

channel. 

 Increasing Hartmann number reduces fluid flow 

in the channel centerline and produces the 

backflow reduction near the walls for both base 

fluid and nanofluid.  

 The velocity increases as nanoparticles volume 

fraction increases along the centerline whereas 

increasing volume fraction generates backflow 

near the walls.  

 The dominating singularity behaviour is a branch 

point singularity with the critical exponent half 

for both the wall divergence semi-angle  and 

flow Reynolds number Re is found with the 

effect of various types of nanoparticles volume 

fraction.  

 The critical relationship among the parameters 

with the effect of nanofluid coincides with the 

conjecture of classical Jeffery-Hamel flow. 

Hermite-Padé approximation technique could 

produce better and accurate results if more terms of 

the series were computed. However, we provide a 

basis for guidance about new approximants idea for 
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summing power series that should be chosen for 

many problems in fluid mechanics and similar 

subjects.  
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