
 

 

Journal of Applied Fluid Mechanics, Vol. 9, No. 2, pp. 957-963, 2016.  

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 

DOI: 10.18869/acadpub.jafm.68.225.24019 

 

 

Axisymmetric Stokes Flow past a Swarm of Porous 

Cylindrical Shells 

S. Deo and I. A. Ansari† 

Department of Mathematics, University of Allahabad, Allahabad- 211002, India 

†Corresponding Author Email:iftekhar119@gmail.com 

(Received September 4, 2014; accepted March 28, 2015) 

ABSTRACT 

The problem of an axisymmetric Stokes flow for an incompressible viscous fluid past a swarm of porous 

cylindrical shells with four known boundary conditions as Happel’s, Kuwabara’s, Kvashnin’s and 

Cunningham/Mehta-Morse’s is tackled. The Brinkman equation is taken for fluid flow through the porous 

region and the Stokes equation for fluid region in their stream function formulation are used. Drag force 

experienced by the porous cylindrical shell within a cell is evaluated. The hydrodynamic permeability of the 

membrane built by the porous particles is also investigated. For different values of parameters, the variation 

of drag force and the hydrodynamic permeability are presented graphically and discussed. 

 

Key words: Cell models; Brinkman equation; Modified Bessel’s functions; Hydrodynamic permeability. 

NOMENCLATURE 

DC  drag coefficient  

F  drag force 

1( )I r & 1( )K r  modified Bessel functions of 

first and second kinds of order 

one, respectively 

i  phase (region) 1or 2or 3  

l , m  dimensionless quantity 

( )ip
 

pressures 

( , , )r z  cylindrical polar coordinates 

 

r  radial component 

T  stress tensor 
( )i

v  velocity vectors 

 

  transverse component 

  particle volume fraction 

  viscosity coefficient 

  permeability parameter 

( )i  stream function 

1. INTRODUCTION 

The fluid flow through porous media has been a 

topic of longstanding interest for researchers from 

last five decades, due to its numerous applications 

in bio-mechanics, physical sciences, chemical 

engineering, and industries etc. Several conceptual 

models have been developed for describing fluid 

flow in porous media as discussed in the classical 

book entitled ‘Convections in Porous Media’ by 

Neild and Bejan (2006). Henri Darcy proposed an 

empirical law which states that the rate of flow is 

proportional to pressure drop through a densely 

packed bed of fine particles, is one of the basic 

model that has been used extensively in the 

literature.  

During nineteenth century after the Darcy’s work, 

flow through porous media has been simulated by 

questions arising in practical problems. Brinkman 

(1947) proposed a modification of the Darcy’s law 

for a porous medium which was assumed to be 

governed by a swarm of homogeneous spherical 

particles and provides an equation commonly 

known as Brinkman equation. Some exact stream 

function solutions for axisymmetric flow are given 

in the classical book entitled ‘Low Reynolds 

Number Hydrodynamics’ by Happel and Brenner 

(1991). 

Happel (1958, 1959) and Kuwabara (1959) 

proposed cell models in which both particle and 

outer envelope are spherical/cylindrical. The 

Happel model assumes that the inner sphere –while 

at the center-moves with a constant velocity and 

fluid is at rest. Also, he used no-slip condition on 

the inner sphere, nil radial velocity and nil shear 

stress on the outer envelope. The Kuwabara model 

assumes that the inner sphere is stationary and that 

fluid passes through the unit cell. The following 

boundary conditions are imposed: nil radial and 

tangential velocity on the inner sphere/cylinder, 
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velocity with axial component equal to a constant 

approach velocity on the outer envelope and nil 

vorticity on the outer envelope. Cunningham (1910) 

and Mehta-Morse (1975) assumed the uniform 

velocity condition on hypothetical cell to 

investigate flow through charged membrane. This 

assumption signifies the homogeneity of flow on 

the cell boundary. Kvashnin (1979) assumed the 

symmetry condition for velocity and proposed that 

the tangential component of velocity approaches 

extreme value on the cell surface along radial 

direction. 

Pop and Cheng (1992) studied the problem of the 

steady, incompressible fluid flow past a circular 

cylinder embedded in a constant porosity medium 

based on the Brinkman model. They have obtained 

a closed form exact solution for the governing 

equation, which leads to an expression for the 

separation parameter. The streamlines and velocity 

profiles for flow past a circular cylinder embedded 

in a constant porosity medium with different 

particle diameter ratio are presented by them. 

Filippov et al. (2006) used the cell method to model 

the permeability of a membrane built from porous 

particles with a permeable shell. They investigated 

the influence of the porous shell on the total 

permeability by applying the Mehta-Morse 

boundary condition on the cell boundary. 

Deo et al. (2010) studied the problem of slow 

viscous flow through an aggregate of concentric 

clusters of porous cylindrical particles with Happel 

boundary condition. They have used the stream 

function formulation of the Brinkman equation for 

the evaluation of the problem. Hydrodynamic 

permeability of membranes built up by porous 

cylindrical or spherical particles with impermeable 

core is investigated by Deo and his collaborators 

(2011). Vasin and Kharitonova (2011) studied the 

problem of an infinite uniform flow of liquid 

around the encapsulated spherical drop coated with 

the porous layer. They assume that the external 

liquid pass through the porous layer but is not 

mixed with the liquid appear in the internal cavity 

of the capsule. They evaluated the velocity and 

pressure distributions and hydrodynamic force 

acting on the capsule. Recently, Gupta and Deo 

(2013) studied the problem of axisymmetric Stokes 

flow of a micropolar fluid past a sphere coated with 

a thin, immiscible Newtonian fluid. They obtained 

the expression for the drag force experienced by the 

fluid-coated sphere and its variations for different 

parameters were presented graphically and 

discussed. 

This work is concerns with the axisymmetric Stokes 

flow of an incompressible viscous fluid past a 

swarm of porous cylindrical shells with four known 

boundary conditions as Happel’s, Kuwabara’s, 

Kvashnin’s and Cunningham/Mehta-Morse’s. Drag 

force experienced by the porous cylindrical shell 

within a cell is evaluated. In addition to this, the 

hydrodynamic permeability of the membrane built 

by the porous particle has been evaluated. For 

different values of parameters, the variation of drag 

force and the hydrodynamic permeability are 

presented graphically and discussed. 

2. MATHEMATICAL 

FORMULATION OF THE 

PROBLEM 

Here, we consider an axisymmetric Stokes flow of 

an incompressible viscous fluid past a swarm of 

homogeneous porous cylindrical shells whose 

external and internal radii are b  and a  ( b > a ) 

respectively. Inner region of the shell is filled with 

incompressible Newtonian viscous fluid. Applying 

the cell method, we assume that the shell is 

enveloped by a hypothetical concentric cylinder of 

radius c named as the outer surface of shell. We 

further assume that fluid approaches to the shell and 

passes through the porous cylinder perpendicular to 

the axis of cylinder ( z -axis) with velocity U from 

left to right. The external region ( b r c  ), the 

porous region ( a r b  ) and the cavity region (

0 r a  ), are designated by I, II and III, 

respectively. 
 

 

Fig. 1. Schematic of the physical model. 

 

The governing equations for the creeping flow of an 

incompressible Newtonian viscous fluid, which lies 

in the outside of the porous cylindrical shell and in 

the cavity region, i.e. the regions I and III are 

governed by Stokes equations:  

2 ( ) ( )
1 , 1,3i ip i   v .                               (1) 

The flow of fluid through the porous cylindrical 

shell (in the region II) is governed by Brinkman’s 

equation: 

2 (2) (2) (2)1
2 p

k


    v v ,                                (2) 

where superscripts 1,2i  and 3 denote the external 

region, the porous region and  the cavity region, 

respectively; 1 is the viscosity of the clear fluid, 

2  is the effective viscosity in the porous region; 

k is the permeability of the porous region;

, , 1,2,3i ip i v  are the velocity vectors and 

pressures in abovementioned regions. The viscosity 

coefficients 1  and 2  are assumed to be constant 

I
II

III o 
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and taken equal. 

The equations of continuity for incompressible 

fluids must be satisfied in all the three regions:   

( ). 0i v ,i=1,2,3.                                                (3) 

The cylindrical polar coordinate system ( , , )r z  

with origin at the center of the cylindrical particle 

and z - axis along the axis of the cylinder, is used. 

Introducing the dimensionless variables and 

constants as follows:  

2

2

b

c
  ,

1c
m

b 
  ,

a
l

b
 ,

r
r

b
 , .b   ,

v
v

U
 ,

o

p
p

p
 , 1

o

U
p

b


 , 

2
2 b

k
  . 

The Eqs. (1) and (2) in dimensionless form can be 

written as  

2 , 1,3i ip i   v ,               (4)

2 2 (2) (2) 2p   v v .(5)

 The equation of continuity (3) for axisymmetric, 

incompressible viscous fluid in cylindrical 

coordinates in dimensionless form in all three 

regions can be written as: 

( )( )( ) ( ) 0, 1,2,3
ii

rrv v i
r



 
  

 
,                  (6)  

where
( )i

rv  and 
( )iv are components of velocities 

in the directions of r and , respectively. 

Introducing the stream functions
( ) ( , )i r  , 

satisfying equations of continuity, in all the three 

regions can be defined as   

( )
( )

1i
r

i
v

r









,

( )
( )

i
i

v
r




 


.                         (7) 

Furthermore, in the dimensionless form the 

expressions for tangential and normal stresses
( ) ( ),
i i

rrrT T , 1,2,3i   respectively, can be find by 

the relation 

( )( )
( ) ( / )1

[ ]
ii

i r
r

v rv
T r

r r


 


 

 
,(8) 

( )
( ) ( ) 2

i
i i r

rr

v
T p

r


 


.                                       (9)  

Also, the pressures may be obtained in all the three 

regions by integrating the following relations 

respectively as  

 
( )

2 ( )1i
ip

r r




 
 

 
, 1,3i  ,     (10)

 
( )

2 ( )
i

ip
r

r




 
 

 
, 1,3i  ,      (11)

 
(2) (2)

2 (2) 21
[ ]

p

r r


 

 

  
  

  
                 (12) 

 
(2) (2)

2 (2) 2[ ]
p

r
r r


 



  
   

  
.              (13) 

3. SOLUTION OF THE PROBLEM 

Eliminating the pressure from Eqs. (4) and (5) by 

taking curl both sides, and using Eq. (7) we 

obtained the following fourth order, linear partial 

differential equation in terms of  the stream function 

as 

4 ( ) 2 2 ( )( ) 0i i     ,i = 1, 3,              (14) 

4 (2) 2 2 (2)

2 2 2 (2)( ) 0,

  

 

  

   
 (15) 

where the Laplacian operator
2 is : 

2 2
2

2 2 2

1 1
.

r rr r 

  
   

 
 

The suitable solutions of the Eqs. (14) and (15), by 

using the method of separation of variables can be 

expressed in the form as  

(1) 31
1 1

1

( , ) [

ln ]sin ,

B
r A r C r

r

D r r

 



  



(16)

(2) 2
2 2 1

2 1

( , ) [ ( )

( )]sin ,

B
r A r C I r

r

D K r

  

 

  


 

(17)

(3) 3
3 3( , ) [ ]sinr A r C r    ,                         (18) 

where 1( )I r and 1( )K r are the modified Bessel 

functions of order one of the first and second kinds, 

respectively (Abramowitz and Stegun 1972). 

1 1 1 1 2 2 2 2 3, , , , , , , ,A B C D A B C D A and 3C  are the 

arbitrary constants which can be obtained by 

applying boundary conditions. 

Expressions for velocity components, stress 

components and pressures: 

The velocity components, stress components and 

pressures are obtained by using the Eqs. (7)-(13) 

and Eqs. (16)-(18), which are given below as: 

(1) 21
1 1 12

[ ln ( )]cosr

B
v A C r D r

r
    ,  (19)

(1) 21
1 12

1

[ 3

(1 ln ( ))]sin ,

B
v A C r

r

D r





   

 

                  (20)

(2) 2 2
2 12

2
1

[ ( )

( }]cos ,

B C
v A I r

rr

D
K r

r

r 

 

  


 

(21)
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(2) 2
2 2 0 12

2 0 1

1
[ { ( ) ( )}

1
{ ( ) ( )}]sin

B
v A C I r I r

rr

D K r K r
r

   

   

    

 

 

 (22) 

(3) 2
3 3[ ]cosrv A C r   ,               (23) 

(3) 2
3 3[ 3 ]sinv A C r    .    (24) 

The components of stresses can be written in form 

as given below: 

(1) 1 1
13

4[ ]cosrr

B D
T C r

rr
    ,         (25)

(1) 1
13

4[ ]sinr

B
T C r

r
    ,    (26)

(2) 22
2 13 2

2
0 2 12

0

4 4
[ {( ) ( )

2 4
( )} {( ) ( )

2
( )}]sin ,

r

B
T C I r

r r

I r D K r
r r

K r
r

  


  


 

   

  



 

(27) 

2 2 2
(2) 2 2

2 0 12

2 0 12

4
[ ( )

2 4
{ ( ) ( )}

2 4
{ ( ) ( )}]cos .

rr

B
T rA

rr

C I r I r
r r

D K r K r
r r

 


 


  

  

 

 

   

(28) 

The pressures in all the three regions are given 

below as: 

(1)
1 1

2
[8 ]cosp C r D

r
                        (29)

(2) 2
2 2

1
[ ]cosp A r B

r
     (30) 

(3)
38 cos .p C r 

                                                 
(31) 

Boundary Conditions:  

The boundary conditions at the surfaces of the 

cylinder can be taken as follows: 

(i) Continuity of velocity components: 

At 1( )r r b  ; 

(1) (2)
r rv v , 

(1) (2)
v v 

                                      
.(32)  

At ( )r l r a  ; 

(2) (3)
r rv v ,

(2) (3)
v v  .                                      (33)  

(ii) Continuity of stress components: 

At 1( )r r b  ; 

(1) (2)
r rT T  ,  

(1) (2)
r r r rT T

                                   
(34)  

At ( )r l r a   

(2) (3)
r rT T  ,  

(2) (3)
r r r rT T

                                  
(35)    

(iii) The boundary conditions on the outer cell 

boundary, ( )r m r c  . 

Applying the four boundary conditions, which are 

used by Happel’s, Kuwabara’s, Kvashnin’s and 

Cunningham/Mehta-Morse’s in their  models on the 

outer cell boundary. All the four models assume 

continuity of the radial component of the liquid 

velocity on the outer cell surface ( )r m r c  : 

(1) ( , ) cosrv m   .                                              (36)   

According to the Happel’s model, the tangential 

stress vanishes on the cell boundary ( )r m r c  :   

(1)
( , ) 0rT m   .                                                   (37)  

According to the Kuwabara’s model, the curl of 

velocity (vorticity) vanishes on the cell boundary

( )r m r c  :  

2 (1) ( , ) 0m   .                                              (38) 

According to the Kvashnin’s model, on the cell 

boundary ( )r m r c  :    

(1)

0
v

r





.                                                           (39)  

According to the Cunningham/Mehta-Morse’s 

model, the condition on the cell boundary

( )r m r c  : 

(1)
( , ) sinv m    .            (40)    

Using these above boundary conditions (Eqs. (32)-

(36)) and one from Eqs. (37)-(40), we obtained the 

constants 1 1 1 1 2 2 2 2 3, , , , , , , ,A B C D A B C D A  and 3C  

which are cumbersome, so they are not mentioned 

here. 

Evaluation of drag force and hydrodynamic 

permeability of membrane: 

On integration of the normal and tangential stresses 

over the porous cylindrical shell of radius b  in a 

cell gives the experienced drag force per unit length 

F  which is given below as: 

2
(1) (1)

1

0

( cos sin )rr r r b
F T T r d F U



   


    

(41) 

where,
2

(1)(1)
1

0

( cos sin )rr rrF T T d



    (42) 

is the force in dimensionless form. 

Substituting the values from Eqs. (25) and (26) in 

Eq. (42) and integrating, we obtain the force as : 
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14F D .                                                          (43) 

Also, the drag coefficient DC can be found as: 

1
2

4

1( ) 2
2

D
e

F D
C

RU b




  ,                             (44) 

where
2

Re
bU


 is the Reynolds number and 

1


 being the kinematic viscosity of  the fluid. 

Hydrodynamic permeability of a membrane is 

defined as the ratio of the uniform flow rate U to 

the cell gradient pressure /F V : 

11

U
L

F V
                                                          (45) 

where
2V c is the volume of the cell per unit 

length. 

Substituting the value of F , using Eq. (43) in Eq. 

(41) and value of V  from above in Eq. (45), we 

can find as 

2 2

11 11
1 1 14

b b
L L

D 
                                         (46) 

where 11
1

1

4
L

D
  is the dimensionless 

hydrodynamic permeability of a membrane. 

RESULTS AND DISCUSSION  

In this section, we discuss the variation of 

hydrodynamic permeability of a membrane and 

Re DC  on permeability parameter and particle 

volume fraction for all four cell models. From Fig.-

2, it is seen that Re DC  with particle volume 

fraction for  the value of 0.5l   and 25  , 

increases slightly up to 0.3  and then increases 

rapidly with  for all four models.   

 

 

Fig. 2. Variation of DReC  with particle volume 

fraction   for  l = 0.5 an σ = 25  for different 

models: 1-Happel, 2Kvashnin, 3-Kuwabara and 

4-Cuningham/Mehta Morse. 

Fig.-3 shows the variation of Re DC  with 

permeability parameter   at 0.5l   and 0.4   

for the different models, Happel’s, Kvashnin’s, 

Kuwabara’s and Cunningham/Mehta-Morse’s. We 

observe that Re DC  increases with increasing 

permeability parameter . 

 

 

Fig. 3. Variation of DReC  with permeability 

parameter   for l = 0.5  and γ = 0.4  for 

different models: 1-Happel, 2-Kvashnin, 3-

Kuwabara and 4-Cuningham/Mehta-Morse. 

For the low value of permeability parameter  (

3  ), Re DC  increases slowly for all models, 

and after 3   the value of Re DC  increases 

rapidly with . It is seen that the effect of is to 

reduce the drag on the porous cylinder i.e. for 

highly permeable porous shells of the particles the 

drag on the porous cylinder is lower. In both the 

Figs. 2 and 3, the value of Re DC  is highest for 

Mehta-Morse’s model and lowest for Happel’s 

model.  

On analyzing the effect of dimensionless 

permeability of the membrane with particle volume 

fraction  from Figs.-4 and 5, we observe that the 

hydrodynamic permeability at low particle volume 

fraction, all four cell models agree. At 0   , 11L  

increases unboundedly and for 1   

hydrodynamic permeability tends to zero. In this 

case the hydrodynamic permeability is slightly 

higher for Happel’s model and lower for 

Cunningham/Meta-Morse’s model. Other models 

show a similar variation with particle volume 

fraction.  

Figs.-6 and 7 show that the hydrodynamic 

permeability decreases with  , i.e. for highly 

permeable porous shells of the particles, the 

hydrodynamic permeability of the membrane is 

higher. The hydrodynamic permeability is highest 

for Happel’s model and lowest for 

Cunningham/Meta-Morse’s model. The dependence 

of hydrodynamic permeability for a porous medium 

built by cylindrical particles matches the earlier 

results reported in [11]. 

There are many physical situations in which the 

flow of a viscous fluid through a swarm of porous 

cylindrical particles arises, such as fluidization flow 

0.1 0.2 0.3 0.4 0.5 0.6

200
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 

1
2
3

4
Re DC

 

1
2
3

4

Re DC



Deo S. and Ansari I. A.  /JAFM, Vol. 9, No. 2, pp. 957-963, 2016.  

 

962 

in packed bed, filtration, in petroleum reservoirs, 

etc. Hence the results of this paper are applicable to 

study the membrane filtration problemsor flow of 

fluids through a sandy or earthen soil (like bank of 

rivers). 
 

 

Fig. 4. Variation of natural logarithm 

dimensionless hydrodynamic permeability with 

cylindrical particle volume fraction   for 

l = 0.5  and σ = 30  for different models: 1-

Happel, 2-Kvashnin, 3-Kuwabara and 4-

Cuningham/Mehta-Morse. 

 

 

Fig. 5. Variation of dimensionless hydrodynamic 

permeability with cylindrical particle volume 

fraction   for l = 0.5  andσ = 30  for different 

models: 1-Happel, 2-Kvashnin, 3-Kuwabara and 

4-Cuningham/Mehta-Morse. 

 

 
Fig. 6. Variation of natural logarithm 

dimensionless hydrodynamic permeability with 

  for l = 0.5  and γ = 0.2  for different models: 

1-Happel, 2-Kvashnin, 3-Kuwabara and 4-

Cunningham/Mehta-Morse. 

 

 

 
Fig. 7. Variation of dimensionless hydrodynamic 

permeability with  for l = 0.5  and γ = 0.2  for 

different models: 1-Happel, 2-Kvashnin, 3-

Kuwabara and 4-Cunningham/Mehta-Morse. 
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