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ABSTRACT

The linear and nonlinear stability analysig double diffusive reactiortonvection ina sparsely packed
anisotropic porous layer subjected to chemical equilibrium on the bdesdainvestigatednalytically The

linear analysis is basedn the usual normal mode method and the nonlinear theory otruheated
representation of Fourier series methdthe Darcy-Brinkman modelis employed for the momentum
equationThe onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically.
The effect ofDarcy number, Damkohlenumber, anisotropy parametetewis number, and normalized
porosity on the stationary, oscillatory, and finite amplitude convection is shown graphically. It is found that
the effect ofDarcy numberand mechanical anisotropy parameter have destabilefagt, while the thermal
anisotropy parameter has stabilizing effect on the stationary, oscillatory and finite amplitude conVaetion.
Damkohler number has destabilizing effect in the case of stationary mode, with stabilizing effect in the case
of oscilatory and finite amplitude mode&urther, the transient behavior of tiNusselt and Sherwood
numbers arénvestigated by solving the nonlinear system of ordinary differential equations numerically using

the RungeKutta method.

Keywords: Double diffusiveconvection Brinkman model Chemical reactionAnisotropy, Porous layer

Heat mass transfer.

NOMENCLATURE
a wavenumber, 12 +m? ;2
d height of the porous layer
Da Darcy number,m kz/ i T
g gravitational acceleratior(0,0,- g) FT
permeability tensorK, (i +jj) #,kk ) XV, 2
k lumped effective reaction rate
Le Lewis number,k;,/ K bs
l,m horizontal wavenumbers by
Nu Nusselt number €
pressure €n
q velocity vector, (u, v, w)
Ras  solute Rayleigh number, ks
ro 89DSdK,/ me, oT
Ray thermal Rayleigh number,
r'o ‘?gDTdKz/ The, ¢
S concentration m
Seq(T)  equilibrium cancentration of the solute at  p
a given temperature r

Sherwood number

concentration difference betweethe
walls

temperature

temperature difference lvetenthe walls
time

space coordinates

solutal expansion coefficient
thermal expansion coefficient

porosity

normalized porosity parameter,
e( ©¢/( Iy

solute diffusivity

thermal diffusivity tensor,

k(i +]i) + kKK )
Damkohler numberkdz/e £
dynamic viscosity

kinematic viscosity,ﬂj A
fluid density
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X mechanical  anisotropy  parameter, Subscripts
b basic state
Kx/Ks c critical
h thermal anisotropy parametety , / k5 f fluid phase
w growth rate,w; +i 0 reference
y stream function Superscripts
Other symbols * dimensionless quantity
2 ﬁ Nj perturbed quantity
p? ., B F finite amplitude
px2 M2 Osc oscillatory
2 St staionary
p? Dl2 +“—2
pz
1. INTRODUCTION (2010) Vanishree (2014andGaikwad ad Kamble
(2014).

The study of double diffusive convection in @ Thermal convection is considered to be an
porous media is motivated both theoretically and byimportant and in many practical cases a major
its practical applications in engineering. Some of nechanism for the transport and deposition of salts
the important areas of applications in engineeringang other chemicals in sedimentary basins. A
include the food and chemical rquess, ygriety of chemical reactions can occur as fluid,
solldlflcatlon_and centrifugal casting of_ metals, canying various dissolved species, moves through a
petroleum industry, and biomechanics and permeaple matrix. The nature of the resulting
geophysical problems. Extensive reviews of the gissolution or precipitation depends on the reaction
literature on this subject can be found in the booksyinetics and the influence of temperature, pressure,
by Ingham and Pop (2005), Vafai (2000, 2005), ang other factors on them has been studied by
Nield and Ejan (2006)and Vadasz (2008). Phillips (2009). The effect of chemical reactions on

The linear stability analysis of thermohaline Convective motion is not fully known and has
convection in a porous medium was performed received relatively little attention. Influence of
firstly by Nield (1968) andound the criteria for the ~ chemical reaction on doubtéffusive convection in
existence of steady and oscillatory thermohaline Porous medium was first introduced by Steinberg
convection. Finite amplitude owection in a twe  @nd Brand (19831984). Their analysis is restricted
component fluid saturated porous layer has beenf© the regime where the reaction rate was
studied by Rudraiakt al. (1982). It is found that a sufficiently fast that the solutal diffusion could be
vertical solute gradient sets up owtable motions.  Neglected. Gaticat al. (1989) and Viljoenet al.
The linear stability analysis of the thermosolutal (1990) have examined the effect of exothermic
convection is carried out by Blikakos (1986) reaction on the stabilityfdhe porous system. Their
using the DarcyBrinkman model. Some other study is limited to the case where the thermal and
researchers who have worked on double diffusiveSolutal diffusivities are equal so that overdamped
convection in a porous medium are Patil and oscillations are not possible. Linear stability

Rudraiah (1980)Mamou (2002), Bahloulet al. analysis for chemically driven instabilities in binary
(2003) Shivakumarat al. (2012)andBhadauriaet liquid mixtures with fas chemical reaction was
al. (2013). studied by Malashetty and Gaikwad (2003). They

found analytical expressions for the onset of
Most of the studieareusually been concerned with  stationary and oscillatory instabilities. Pritchard and
homogeneous isotropic porous structures. In the lasRichardson (2007) have been considered the effect
one decade, the effects of Rbamogeneity and of temperature dependent solulyilon the onset of
anisotropy of the porous medium have been studiedthermosolutal convection in an isotropic porous
The geological and pedological processes rarelymedium. Malashetty and Biradar (2011) have
form isotropic medium as is usually assumed in studied the onset of double diffusive reaction
transport studies. In a geothermal system with aconvection in aranisotropic porous layer.eRently,
ground structure composed of many strata of Soret and Dufur effects on hydro magnetic heat
different permeabilities, the overall horizontal and mass transfer over a vertical plate with a
permeability may be up to ten times as large as theconvective surface boundary condition and
vertical ~compoent.  Process such as chemical reactionis performed by Gangadhar
sedimentation, compaction, frost action, and (2013).
reorientation of the solid matrix are responsible for L .
the creation of anisotropic natural porous medium. !t is well known that many applications in
Anisotropy can also be a characteristic of artificial €ngineering disciplines as well &s circumstances
poreus materials such as peihgused in chemical linked to modern porous media involve high
engineeringprocesses, and fiber materialsed in ~ Permeability porous media and in such situations
insulating purposes. Some of taudiesrelated to the Darcy equatlon_falls to give sa_tlsfactory results.
anisotropic porous media ergiven by Tyvand So, use of noMarcian models, which take care of

(1980), Govender (2006)Malashetty and Swamy Poundary and/or inertia effects, is ofntiamental
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and practical interest to obtain accurate results for

high permeability porous media. We shall apply
Brinkmanos mo d e | whi ch
analogous to that appearing in the momentum
equation. Hence, nebDarcy effects on double

diffusive cavection in porous media have received

a great deal of attention in the recent past. Givler , - il - AT T

and Altobelli (1994) have established that for high
permeability porous media the effective viscosity is
about ten times the fluid viscosity. Therefore,
consideratin of the ratio of effective viscosity to
the fluid viscosity different from unity is warranted
in order to know its influence on critical stability.
Malashetty (1993) has studied the effects of
anisotropic thermo convective currents on the
double diffusie convection in a sparsely packed
porous medium. A noDarcy effect on double
diffusive convection in a sparsely packed porous

©)

term

(4)

18 N
(FOm—+( D@ OP (=4, B T
has a Lapl acian

egt+(q 08 ek’SDKG{T B

6 3, ®)

where the variables and constants have their usual
meaning, as given in the Nomenclature.
Furthermore, specific heat ratig= ( c)m/( ds,

where (rc); is the volumatc heat capacity of the
flud and (ro)p=@0 - & s H &) ¢
volumetric heat capacity of the saturated medium as
a whole, with the subscript$, s, and m denoting
the properties of the fluid, solidnd porous matrix,

is the

medium was studied by Shivakumara and Sumithrarespectively. Following ftchard and Richardson

(1999). Kuznetsov and Nield (2010) analyzed the
thermal instability in a porous yar saturated by a
nanofluid using the Brinkman model. However, the
studies on reactienonvection in a binary fluid
saturated porous layer based upon the-Darcian
models are very sparse and it is in mucibe
desired state.

Therefore, in the presentusly we intend to perform
linear and weak nonlinear stability analyses of
double diffusive reactioonvection in a sparsely
packed anisotropic porous layer. Our objective is to
study how the onset criterion for stationary,
oscillatory and finite amplitudeconvection is
affected by the Darcy number, chemical reaction
parameter and anisotropy parameters, and also t

more general porous medium.

2. MATHEMATICAL
FORMULATION

We consider a sparsely packed, reactivisaropic
porous layer, saturated with Boussinesq fluid of
infinite horizontal extent confined between the
planes atz=0 and z = d, with a distanced apart.

A Cartesian frame of referea is chosen with the
origin in the lower plane and th& -axis is vertical
upward, where the gravity forcegy is acting
vertically downward. The lower plane is held at
constant temperatur@, + O and constant solute

concentration S, + 5, while the upper plane is
held at T, and S, with DT >0 and DS >0. The
Darcy-Brinkman moal is employed for the

momentum equation and we are assuming that

chemical equilibrium is maintained at the
boundaries. The Boussinesq approximation is
applied to account for the effects of density
variations. With these assumptions the basic
governing eqations are

Dg ¢ 1)

Bp +}'<—nq m® m o, @)
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(2007),and Jupp and Woods (2003), it is assumed
that the equilibrium solute concentration is a linear
function of temperature SO that
Seq(M=9% #(T -p. Further, if chemical
equiibrium at the boundaries is assumed, then
f:—80+ B -9 E_
o+ O T TC
general may be positive or negative. Obviously, if
f >0, the solubility increases with temperature,
while if 7<0, the solubility decreases with

temperature. It should be noted that, only the case
f >0 is considered in the present paper.

The coefficient f in

The boundary conditions are that at the upper

know their effect on heat and mass transfer in a%oundary,T =T, S= % and at the lower boundary

T=T, +D,S=% + B and the vertical
component of velocity vanishes at both the
boundaries. The basic state of the fluid is assumed
to be quiescent. We then find thentperature and
solute distribution in the basic state as

o -
Tb(z):1;)+1% andso(z):§+%g ,

(6)

The initial distribution of solute is5, = S4( ) and

z
d

since Seq is linear in T, we allow the existence of

a steady basic state in which the solute is
everywhere in chemical equilibrium with the solid
matrix and therefore the vertical flux of solute is
constant in space. We study the stability of this
basic state using thmethod of small perturbations.

Now superimpose the small perturbation at the

basic state in the form
a=dp i, T=Th(2) +T. S H(k i

P=m(2 +pi, 7 =H(2 W ©)
where the primes indicate perturbations.

Substituting Eq. (7) imt Egs. (1)(5), using the
basic state solutions, we obtain equations governing
the perturbations in the form

DG 6 (8)

Ppi +€q im %@ ig( & 48)g 0 )
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HT i a ... 0§
— [0)}))
(ro)m . +( /c)f g@ql ) IWT 9 (10)
(reymP.(a1. BT,
pSi - . > 2
—_— O)B S
e y +(q| ) i WT ek 11)

+K(Spq(T) - S)i

By operating curl twice on Eq. (9), we eliminaps
and then use the scalings

2

Tz

d*zq*,T H{ DT s (=90s,

t,”

(xy.2=(x,y,2z)d t
(12)

e

gi=

to obtain nondimensionalize Egs. ()1L1) in the
form (on dropping the asterisks for simplicity)

& , +1_2 0 Da ‘@ Rg 2T
2 8 ' (13)
+Rag §S 8,

ur . ﬁT

Z+e,q OP ew AT B—-, (14)
ez

Biqos w t=2s(T §, (15)

e Le

where the nondimensional
defined in the NomenclatureThe boundary
conditions for the dimensionless perturbation
quantities are given by

parameters are as

w=T =S eéat z 01 (16)

3. LINEAR STABILITY ANALYSIS

In this section, we predict the tisteolds of both
stationary and oscillatory convection using linear
theory. The eigervalue problem defined by Eqgs.
(13)(15) and subject to the boundary conditions
(16) is solved using the time dependent periodic
disturbances in a horizontal plane, uponuasag

that amplitudes are small enough and can be

expressed as

WT,9=(W3 Q2 K) efilx+ny ni, 17)

wherel , m are the wavenumbers in the horizontal
plane and W/ is the gowth rate. Substituting Eq.
(17) into Egs. (13)15), we obtain

Ap? - a? —Da(D2 az)2 o Ra &

Ec g (18)
-Ragd F 9,

{w-(0* -2} Qew o, (19)

{W— Le'l(D2 —a2) %} Fe W-0, (20)

whereD* d/dz and a?=1% 4m?.

978
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The boundary conditions (16) now read as

W= Q= FO=atz 0,4 (21)

We assume the solutions s, Q, F in the form

W(2.Q(2.F(3) {W. Q dsinnp ,

(n=1,2,3,..... (22)

The most unstable mode correspondsitel which

is the fundamental mod&ubstituting Eq. (22) for
the fundamental mode into Eq48)-(20), and using
the solvabilitycondition we obtain an expression for
thermal Rayleigh number as

(& +Da ﬁ)( w‘zz)d
RaT: Bl
a’e
n (23)
dwt g ordRa
¢ + c+Le'1 %1 h
Where = f w2, #= 5 % w?

d22 = g +a%. The growth ratew is in geeral a
complex quantity such thatw= w + @ The
system with w; <0 is always stable, while for
w >0, it will become unstable. For a neutral
stability statew; =0.

3.1 Stationary Convection

For the validity of principle of exchange of
stabilities (i.e., steady case), we havd’=0
(i.,e.w, = w =0) at the margin of stability.
Therefore, for marginally stable steady mode Eqg.
(23) reads

Rad!= (a2 w2 i A b a?)z)

3.26'

In the absence of Darcy number, i.e., whea=0,
Eqg. (24) reduces to

2

Qo

e el S
e T T (29

+ LeRag ép2+ e+ £ ég

én ?Lec+ 4 w9

This result coincides with the results of Malashetty
and Biradar (201).

3.2.

For the marginally oscillatory state we now set
w=i win Eq. (23) and clear the complex quantities

from the denominator, to obtain

Ra = B

Oscillatory Convection

w

(26)

2
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(o{f+Da & equation and Egs. (10) andll) using the
D, =2—2 + transformations (12) to obtain
aén
where 8,7 , 2led @ 41 HZ ﬁ 5 Tu Su
au +(g cr i Lea) Ra g —+— -Da D Ry — Ray— "0,
? (c+ BLehH? + g 8%12 e 9 KX K
(29)
(+Da 8 5 2.8 T
D = aeE—h—E; L -ﬁ“@” ) el Mo,
o n ) topd g2 7 (2 !
dct- p) +We’ -7 oRa (30)

? (c+ 3Le'l)2 +ﬁ/v &: B H(,V S)
Since Ra; is a physical quantity, it ost be real. g?% Le! B % : _%u ctT 9-0,

Hence, from Eg. (26it follows that eitherw =0 31)

(principle of exchange of stabilis) or o, = ¢ ) o ) ) )
il Now consider a minimal Fouwmi series with one
(w . 0, oscillatory onset). term in the stream function, and to get some effects

For oscillatory convectionp, = o (i, 0) and this  of nonlinearity, take two terms in the temperature

gives an expression for the frequency of oscillations@nd concentration fields as given below
in the form

" y = A(t)sin(ax)sin(pz), (32
¥Ry (d - aet

@ b @7  T=B(tjcofasi(p3 +d ) sif 20}, (33

- g) -( c¥E’, s=D(t)coy @y sifp 3 +H } sif 20},  (34)

Now Eq. (26 with o, = C, gives
- OSC_(G{E+Da & 220, wherfa the amplltudes A/B,C,D,and E .are
& = 22e functions of time and are to beetérmined.
. n (29 Substituting Egs. (32)- (34) in Egs. 29) - (31) and
+i”42+( g ot ¥led) equating the coefficients of like rres of the
‘éé (c+ dLeH? + i%,/ resulting equations, we obtain the following system

The analytical expression for the oscillatory of nonlinear differential equations:
Rayleigh number given by Eq. (& minimized dA >
with respect to the wavenumber numericallyemft - = (& Ba A aRg B aRg [ (39

substituting forl/l/;2 (>0) from Eq. (27, for various

&5
%,

values of physical parameters in order to know their @8 _ d°B agA a QAC, (36)
effect on the onset of oscillatory convection. dt
dcC g
4. NONLINEAR STABILITY o 4p°C 41“2—’3 AB, (37)
ANALYSIS
dD

- ;1,2
In this section we consider the nonlinear asialy gt — A Led"D pAE (8 D, (38)

using a truncated representation of Fourier series

containing only two terms. Although the linear dE _ 2, -1~ pa

stability analysis is sufficient for obtaining the ‘g 4p°le’E ?AD ¢C B (39)
stability condition of the motionless solution and

the corresponding eigenfunctions describing The above nonlinear system of autonomous
qualitatvely the convective flow, it cannot provide differential equations for time dependent variables is
information about the values of the convection not suitable to be solved analytically, and thus it is
amplitudes and hence about the rate of heat ando be soled using a numerical method. After
mass transfer. To obtain this additional information, determining the value of the amplitude functions
we perform the nonlinear analysis, which is useful A, B,C, D and E, we will obtain the expressions
to understad the physical mechanism with a for the Nusselt number and Sherwood number as a
minimum amount of mathematics and it is a step function of time.

forward toward understanding the full nonlinear o ) .
problem. 4.1 SteadyFinite Amplitude M otions

For simplicity of analysis, we confine ourselves to From qualitative predictions, we look into the
two-dimensional rolls, so that all the physical Possibility of an analytical solution. In the case of
quantities are indeendent of y. We introduce slteadc)j/:(notlons, EqS-h (?]5zt(3h9) gandbe fSO|VeCé |n)

; _ closed form. Settig the left hand side of Egs. (35
stream funct|.on y  such that u_—_ W/ 2, (39) equal to zero and alination of all amplitudes,
w= -/ x into the Eqg. (9), eliminate the exceptA, gives

pressure and nedimensionalize the resulting
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b$+bs+h €, (40) The Nusselt number and Sherwood number are
defined respectively by

Where s = A2/8 and H
NU:k—DT/d 4 2,0C and

b = 4a’Lep? @( Jd+Da %y, Tz\]
Sh=—«—— 4 E 46

b, =4p?a’leg( \Ra - LeRq) 4 %A ksDSd - ¥ 49

3 (2 2,2 2
(¢ +Da I a et g cLezz)) Writing C and E in terms of A and substituting

+a’e’le € ‘d+Da Hd ? de), into Eq. (46, we obtain
by=(4p? +eef A(Ra L& + peRan  nyop e S @
B2 R

2 ey ¢fd Da Y02 de) o

4p2a2Le25( g+ & s+ n} e
+a’lec £ d+ L¢

o2+ te) d+ Le 4 Za;%Le2§

(<
(48)

. - . The second term atle righthand side of Egs. (47)
characte.nzes thenset of finite amplitude steady 4 (48 represents the convective contribution to
motions: the heat and mass transport, respectively

The required root of Eq. (30s,

¢

&
=5
x
_ 14 U2 ¢ -1 e
e [ ann) " ¢ 41)  sh=1 +2§
&
¢

e
(
(
e
{
e
(
When we let the radical in the above equation ¢
vanish, we obtain the expression for a finite =
amplitude  Rayleigh number Raf , which

a U2 ¢
=% (ﬂ% 4%) i (42) 5. RESULTS AND DISCUSSION

The onset ofdouble diffusive reactiogonvection
in a sparsely packed anisotropic porous layer is
studied analytically using the linear and nonlinear
4.2. Heat and MassTransport theories. The linear theory is based on the usual
normal mode technigue and the nonlinear theory on
In the study of conveéon in fluids, the the truncated repsentation of the Fourier series
quantification of heat and mass transport is method. The expressions for the stationary,
important. This is because the onset of convection,oscillatory and finite amplitude Rayleigh numbers
as the Rayleigh number is increased, is more readilyfor different values of the parameters such as Darcy
detected by its effect on the heat and mass transporiaumber, Damkohler number, mechanical anisotropy
In the basic state, heat and geatransport is by parameter, thermal anisotppparameter, Lewis
conduction alone. We now proceed to find the number, solute Rayleigh number, and normalized

where the constantsc,C,,and C; are not
presented here for brevity.

Nusselt number and Sherwood number. porosity are computed antheir the effects are
If H and J are the rate of heat and mass transportshown through figures. We fixed the values of the
per unit area respectively, then p;;ir%égzr:sc =3 x=07,7=0.5, Le=20, as
H= -/(TZ<%>Z . and Rag=50, and g, =0.4 except the varying
parameter.
J= ks <m> , (43 Figqre 1 shows _the neutral stabilit_y curves for
720 stationary and oscillatory modes for different values

of Darcy numberDa and for fixed values of other
where the angular bracket corresponds to aparameterslt is worth mentioning here that the

horizontal average and Rayleigh number is normalized with respect to the
Darcy number in the sense that the Rayleigh
Tiota = To - 'DE T¢x z Jand number is modified for the clear fluitlVe dbserved
d from this figure that the minimum value of the
S =S - 53 $ x.2). (44) Rayleigh number i.e.Rar/ Da for bgth staFionary .
and oscillatory modes decreases with an increase in

the value of the Darcy numbdda, indicating that
the effect of Darcy number is to destabilize the
system.This is because, with increasing the Darcy
number the permeability increases and thus the
1 'Z'OE)' viscous drag decreases. Therefore, the critical
(45) Rayleigh number decreases. Moreover, the
wavenumber at which thminimum ofthe Rayleigh

Substituting Egs. (33) and (34) into Eq. Y44nd
usng theresultant equations into Eq. (43ve get

_ ksDS (
d

H - kTZDT (
d

1-2pC)and J

980



S. N. Gaikwad and MDhanraj/ JAFM, Vol. 9, No. 2, pp975-986, 2016.

number for both stationary and oscillatory modes Da=0.05x =0.7,/7 9.5,.e 20Ra 5t and
decreases with an increase D&, indicating that e,=0.4, we findc, =8.5966E, see Fig. 2).

the wavelength increases wia Further, we can observe from this figure that the

effect of the Darkohler number ¢ is more

8x10 — - pronounced on the stationary mode than on the
: Stationary oscillatory mode.

7X10' ¢ ‘Da=0.001 —— Oscillatory
eachk | ¢=3,x=0.7,h =0.5, 5x10f

Le=20, £=0.4,Ra=50 - Stationary
516 L —— Oscillatory

Ra/Dal’ 10F - Finite amplitude
c=3,x=0.7,h=0.5,

x10 F
. Le=20,6=0.4
Da= 0001 .

P

3x10H

Rq_o/pa
Q,

210+

XICF N o

0 2 4 6

Fig. 1. Neutral stability curves for different Ra
valuesof Darcy number Da..
Fig. 3. Variation of critical Rayleigh number
with solute Rayleigh number for different values

1200 . of Darcy number Da .
Lol
| Da=0.05x=07,A=0.5,
1000+ ~ Rn 5000
Le=20,6=0.4Ra=50 pv—
’ —— Oscillatory
soof % S s g0 0 | Finite amplitude
Ra, Da=0.05,x=0.7,h =0.5,
Le=20,6=0.4
600k ‘ 1000 |
N R L
4001 N> Stationary
- Oscillatory|
300 1 1 1
0 2 4 6 8 9 e
a
1001 lb 160 500
Fig. 2. Neutral stability curves for different Ra

values of Damkohler number ¢ .

Fig. 4. Variation of critical Rayleigh number
Figure 2 indicates the effect of thBamkohler  with solute Rayleigh number for different values
number ¢ on the neutral stability curves for of Damkohler number C .
stationary and oscillatory modes. We find that the
minimum value of Rayleigh number for oscillatory The detailed behavior of critical Rayleigh number
mode increases with increasing Damkohler numberwith respect to thesolute Rayleigh number for
¢, indicating that the Damkohler number stabilizes stationary, oscillatory and finite amplitude modes is
the system in the oscillatory mode. On the otheranalyzed in theRay.- Ra plane through Figs3-
hand, increasinghe Damkohler number decreases g \ve observe from these figures that all the
the minimum of the stationary Rayleigh number. g aniities namely, the critical Rayleigh number f
This indicates that chemical reaction parametergiationary, oscillatory, and finite amplitude modes
destabilizes the systerim the case of stationary gre increasing functions of the solute Rayleigh
mode. Thus, the chemical reaction parameter has @umber. It is clear that for the parameters chosen
contrasting effect on stationary and oscillatory fo these figuresthe steady finite amplitude mode
modes. It is also interesting to note that there existSgets in prior to the oscillatory and stationarydes.
critical Damkohler numberc. such that when  pyrther, the steady finite amplitude Rayleigh
c> ¢, the convection mode switches to the number is a slowly increasing function of solute
. . Rayleigh number. Furthermore, in each of these
stationary type, and whew < ¢, the convection figures, the curves corresponding to the oscillatory
first sets in through oscillatory mode. Further, when convection start from a point where the solute
¢ = ¢, both stationary and oscillatory convection Rayleigh number attains some threshold value
occurs  simultaneously but with  different Pelow which the oscillatory convection is not
wavenumbers  (e.g., for fixed vakie of possible. This threshold value depends on the other

981



S. N. Gaikwad and MDhanraj/ JAFM, Vol. 9, No. 2, pp975986, 2016.

parameters Figure 3 showsthe variation of
Ra;./ Da with Rag for different valies of the

Da. We find that an increase iba decreases the
critical Rayleigh numberRar./ Da for stationary,

oscillatory and finite amplitude modes indicating
that the effect is destakiing. Also, we observe
from this figure that the threshold value of the
solute Rayleigh number below which the oscillatory
convection is not possible increases with an
increase of the Darcy numbdrhe variation of the
critical Rayleigh numbewith the sdute Rayleigh
number for different values of the Damkohler
number ¢ is shown in Fig. 4. The critical Rayleigh
number for the oscillatory and finite amplitude
modes increases with an increase in the value of
indicating that the effect of Damkohler number is to
delay the onset of convection in oscillatory and
finite amplitude modes. On the other hand, the
critical Rayleigh number for the stationary mode
decreases with an increase of indicating that the
effect of chemical reaction parameter is to
destabilize the system in the stationary mode. Also,
we find from this figure that the threshold value of
the solute Rayleigh number below which the
oscillatory convection is not pos$hincreases with
an increase of Damkohler number.

In Fig. 5 the variation ofRar. with Rag for
different values of mechanical anisotropy parameter
X is shown. We find from this figer that the

critical Rayleigh number decreases with an increase

of mechanical anisotropy paramet&r for all the

cases nhamely stationary, oscillatory, and finite
amplitude modes. Also, we observe that the
threshold value of the adle Rayleigh number

below which the oscillatory convection is not

possible increases with the decrease of mechanical

anisotropy parameter.

5000

Stationary
—— Oscillatory
Finite amplitude

¢=3,Da=0.05,/=0.5,
| Le=20,e=0.4

1000

Ra,

100= L '
1 100 500

Fig. 5. Variation of critical Rayleigh number
with solute Rayleigh number for different values

of mechanical anisotropy parameterX .

Figure 6 depicts the effect dhermal anisotropy
parameter/1 on the critical Rayleigh number for

stationary, oscillatory and finite amplitude modes.
We obseve that an increase i1 increases the

critical Rayleigh number for stationary, oscillatory,
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finite amplitude modes indicating that the effect of
an increase of thermal anisotropy parameter is to
inhibit the onset of stationary,saillatory, finite
amplitude convection. Herd,is interesting to note

that the effect of? is opposite to that ofX . Also,

we find from this figure that the threshold value of
the solute Rayleigh nurmeb below which the
oscillatory convection is not possible increases with
the decrease of thermal anisotropy parameter.

10000

Stationary
—— Oscillatory
Finite amplitude

¢=3,Da=0.05,x=0.7,
Le=20,e=0.4

1000

Ra,

100l

Fig. 6. Variation of critical Rayleigh number
with solute Rayleigh number for different values
of thermal anisotropy parameter /7 .

4000

Stationary
—— Oscillatory
Finite amplitude
¢=3,Da=0.05,x=0.7
| 7=05,e=0.4

' 20,50,100°
1000 :

Ray,

Le=5,20,50,10

10 100 500

Ra,

Fig. 7. Variation of critical Rayleigh number
with solute Rayleigh number for different values
of Lewis number Le.

The variation of Ra, with Rag for different

values of the Lewis numbdre on the onset criteria
is shownin Fig. 7. This figure reveal that with an
increase of Le decreases the critical Rayleigh
number for oscillatory and finite amplitude modes
whereas it increases the critical Rayleigh number
for stationary mode. Also, we observe that the
threshold value of the solute Rayleigh number
below which the oscillatory convection is not
possible increasewith the decrease of Lewis
number. Figure 8 shows the effect of normalized

porosity paramete€,, on Rar. with Ras and for
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fixed values of the other parameters. We find thatparameter # reduces the heat transfer while
the critcal Rayleigh number for the stationary, enhanceghe mass transfer.
oscillatory, and finite amplitude modes decreases

with an increase o€, , indicating that the effect of 5

normalized porosity parameté, is to advance the ,

onset of ftionary, oscillatory, and finite amplitude ar

modes. As normalized porosity parameter R

increases, t he t her mal 3flli bl

advective behavior in the terminology of Phillips N :‘

(2009)) is reduced. This makes advective heat ‘

transfer more effective and soakes it easier for 2r A\ J

the destabilizing thermal buoyancy gradient to —Da=0.05

produce convectian 1 Da=0.2
¢=3,x=0.7,h=0.5,Ra=50,
Le=2,e=0.4,Ra =8 xRd_

10000 0 ! ! ! ! !
- Stationary 0.0 0.1 0.2 03t 04 0.5 0.6

—— Oscillatory
—————— Finite amplitude
¢=3,Da=0.05,x=0.7,
h=0.5,Le=20

Fig. 9(a). Variation of Nusselt number with time
for different values of Da.

100f 08 o
501 10 100 500
Ra,
. o N . ——Da=0.05
Fig. 8. Variation of critical Rayleigh number
e e e
P yp n Le=2,=0.4,Ra =B xRq_

To know the transient behavior of Nusselt and %.0 0.1 02 t 03 0.4
Sherwood numbers the autonomous system of

unsteag finite-amplitude equations (3%B9) is ) o )
solved numerically using Rungéutta method with Fig. 9(b). Variation of Sherwood number with
suitable initial conditions. The Nusselt numbisu time for different values of Da.

and Sherwood numberSh are evaluated as a
function of timet . The unsteady transient behavior

of Nu and Sh is show graphically though Figs.

9-13. From these figures it is seen that bddh and

Sh start with a conduction state value (i.e., 1) at 4
t=0 and then oscillate initially with time& and

finally achieve a steady state value (i.e., close to 3)

for t>0. This periodic variation ofNu and Sh is

very short lived and decays as time progresses. The Nu

3+

values of Nu and Sh then tend toward their 2 \

stealy state value 3. Figures 9(a) a(h) show that ' —c=1

the transient heat and mass transfer increases with ~e0=10
increasing both Darcy numbdba. Figures 11(a) Da=0.05,x=0.7,/1=0.5,Ra=50,
and 11(b) indicate that the effect of increasing Le=2, ¢=0.4,Ra =8 xRe|
mechanical anisotropy parameter is to decrease both o " Lt " L

heat ad mass transfer. Figures 10(d))(b) and 0.0 0.1 02 ¢ 03 0.4 0.5

13(a), 13b) respectively show that Damkohler

number ¢ and normalized porosityarametere&, Fig. 10(a). Variation of Nusselt number with

enhance the Nusselt number while suppress the time for different values of ¢
Sherwood omber. We find from Figures 12(a) and
12(b) show that increasing thermal anisotropy
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—c=1

w210
1
Da =0.05,x=0.7,h =0.5,Ra;=50,
Le=2,e=0.4,Ra =8 xRd_
0 - - .
0.0 01 to02 03 0.4

Fig. 10(b). Variation of Sherwood number with
time for different values of ¢ .

Fig. 11(a). Variation of Nusselt number with
time for different values of

Fig. 11(b). Variation of Sherwood number with
time for different values of

Fig. 12(a). Variation of Nusselt number with
time for different values of

Fig. 12(b). Variation of Sherwood number with
time for different values of

Fig. 13(a). Variation of Nusselt number with
time for different values of



