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ABSTRACT 

Thermal instability in a horizontal layer of nanofluid with vertical AC electric field in a porous medium is 
investigated. The flux of volume fraction of nanoparticles is taken to be zero on the isothermal boundaries 
and the eigenvalue problem is solved using the Galerkin method. Darcy model is used for the momentum 
equation. The model used for nanofluid incorporates the effect of Brownian diffusion and thermophoresis. 
Linear stability theory based upon normal mode technique is employed to find the expressions for Rayleigh 
number for stationary and oscillatory convection. Graphs have been plotted to study the effects of Lewis 
number, modified diffusivity ratio, concentration Rayleigh number, AC electric Rayleigh number and 
porosity on stationary convection. 
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NOMENCLATURE 

a dimensionless resultant wave number 

d thickness of fluid layer 

D differential operator 

DB Brownian diffusion coefficient   

DT thermophoretic diffusion coefficient 

g acceleration due to gravity  

km thermal conductivity  

Le Lewis number 

n growth rate of disturbances 

NA modified diffusivity ratio

 NB modified particle -density increment 

p pressure

q Darcy velocity vector 

Ra thermal Rayleigh number 

Rac critical Rayleigh number 

Rn concentration Rayleigh number 

t time 

T temperature 

T0 temperature at z = 0 

T1 temperature at z = d 

(u, v, w) Darcy velocity components  

(x, y, z) space co-ordinates 
α coefficient of the thermal expansion 

μ viscosity

ε porosity 

ρ density of the nanofluid
 ρ0 density of nanofluid at z = 0 

ρp density of nanoparticles  

ρf density of base fluid 

(ρc)m heat capacity  of  fluid in porous  medium  

(ρc)p

 
heat capacity of  nanoparticles  

φ volume fraction  of the nanoparticles   

φ0 reference volume fraction of the 
nanoparticles  at z = 0 

κ  thermal diffusivity  

ω dimensionless frequency of oscillation  

σ thermal capacity ratio 
2
H horizontal Laplacian operator 

2  Laplacian operator 

Superscripts 

 ' non - dimensional variables 

' ' perturbed quantities 

Subscripts 

c critical 

s stationary convection 

p particle 

b basic state 

f fluid 
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1. INTRODUCTION 

When a small amount of nano-sized particles are 
added to the base fluid, the thermal conductivity of 
the fluid enhances and such a fluid is called 
nanofluid which was first coined by Choi (1995). 
Nanofluids have unique properties that make them 
potentially useful in many applications of heat 
transfer and thus nanofluids considered to be the 
next-generation heat transfer fluids. Recent 
developments in the study of heat transfer using 
nanofluids can be reported by Wong and Leon 
(2010), Yu and Xie (2012), Taylor et al. (2013).  
Thermal convection in nanofluids in a porous 
medium is an important phenomenon due to its 
wide ranges of applications in geophysics, food 
processing, oil reservoir modeling, petroleum 
industry, bio-mechanics, building of thermal 
insulations and nuclear reactors. The detailed 
study of thermal convection in a layer of 
nanofluid in porous medium based upon 
Buongiorno (2006) model has been given by 
Kuznetsov and Nield (210a, b, c), Nield and 
Kuznetsov (2009, 2010, 2011), Chand (2013), 
Chand and Rana (2012a, b, c), Rana et al. 
(2014a, b), Yadav and Kim (2015), Chand et al. 
(2015) and Yadav and Lee (2015). In all the 
above studies boundary condition on volume 
fraction of nanoparticle is physically not realistic 
as it is difficult to control the nanoparticle 
volume fraction on the boundaries and suggested 
the normal flux of volume fraction of 
nanoparticles is zero on the boundaries as an 
alternative boundary condition which is 
physically more realistic. Nield and Kuznetsov 
(2014),  Chand and Rana (2014a, b), Chand et al. 
(2014) pointed  out  that  this  type of  boundary 
condition on volume  fraction  of  nanoparticles is  
physically not  realistic as it is difficult to control  
the nanoparticle volume fraction on the 
boundaries and suggested the normal flux of 
volume fraction of nanoparticles  is zero  on the 
boundaries as an alternative boundary condition 
which is physically more realistic. Under the 
circumstances, it is desirable to investigate 
convective instability problems by utilizing these 
boundary conditions to get meaningful insight in 
to the problems. 

Natural convection under AC/DC electric field of 
electrically enhanced heat transfer in fluids and 
possible  practical applications has been reviewed 
by Jones (1978) and Chen et al. (2003). Stiles et al. 
(1993) studied the problem of convective heat 
transfer through polarized dielectric liquids. They 
observed that the convection pattern established by 
the electric field is quite similar to the familiar  
Bénard cells in normal convection. Recently 
Shivakumara et al. (2012) studied the effect of 
velocity and temperature boundaries conditions on 
electro-thermal convection in a rotating dielectric 
fluid and found that AC electric field is to enhance 
the heat transfer and to hasten the onset of 
convection. Several studies have been carried out to 
assess the effect of AC and DC electric fields on 
natural convection due to the fact that many 
problems of practical importance involve dielectric 

fluids.  

The nano dielectric fluid may be used in an 
electrical apparatus and other electrical equipment 
such as distribution transformers, regulating 
transformers, shunt reactors, converter transformers, 
instrument transformers and power transformers. 
The nano dielectric fluid used herein exhibits an 
increased thermal conductivity as compared to the 
insulating liquids commonly used without the 
nanoparticles. A high thermal conductivity of the 
nanoparticles is often desirable for the nano 
dielectric fluids. 

Although EHD instability has been extensively 
investigated in Newtonian and non-Newtonian fluid 
dielectric fluid layer, but no effort has been made to 
study the EHD instability in a layer of nanofluid. So 
keeping in view the importance of thermal 
convection of dielectric (when fluid layer is 
subjected to a uniform vertical AC/DC electric 
field) nanofluids, an attempt has been made to study 
the electro thermo convection in a horizontal layer 
of nanofluid in a porous medium. 

2. MATHEMATICAL 
FORMULATIONS OF THE 
PROBLEM 

Consider an infinite horizontal layer of nanofluid of 
thickness‘d’ bounded by planes z = 0 and      z = d. 
Fluid layer is heated from below in a porous 
medium whose medium permeability is k1 and 
porosity is ε. Nanoparticles are being suspended in 
the nanofluid using either surfactant or surface 
charge technology, preventing the agglomeration 
and deposition of these on the porous matrix. Layer 
of fluid is subjected to a uniform vertical AC 
electric field applied across the layer; lower surface 
is grounded and upper surface is kept at an 
alternating potential whose root mean square is �1. 
A Cartesian coordinate system (x, y, z) is chosen 
with the origin at the bottom of the fluid layer and 
the z- axis normal to the fluid layer in the 
gravitational field g (0,0,-g). The normal component 
of the nanoparticles flux has to vanish at an 
impermeable boundary and the temperature T is 
taken to be T0 at z = 0 and T1 at z = d,   (T0 > T1) as 
shown in Fig. 1. The reference scale for 
temperature and nanoparticles fraction is taken to be 
T1 and φ0 respectively. 

According to the works of Chandrasekhar (1981), 
Nield and Kuznetsov (2014) and Shivakumara et 
al. (2012), the relevant equations under the 
Oberbeck- Boussinesq approximation in a porous 
medium are    
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The linearized perturbation equations in non- 
dimensional form 
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[Dashes ( '' ) are dropped for  simplicity] 

Where  

BD

κ
Le  is the Lewis number,  

μκ
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Ra 10 

  

is the thermal Rayleigh number, 
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Non- dimensional boundary conditions are given as 

2
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at z = 0 and z = 1.                                                (17) 

Now eliminating the pressure from Eq. (13) by 
using the identity curl curl = grad div– 2 together 
with Eq. (12), we obtain z-component of the 
momentum equation as  
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3. NORMAL MODES ANALYSIS 

Analyzing the disturbances into the normal modes 

and assuming that the perturbed quantities are of the 
form  
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where kx and  ky  are wave numbers in x and y 
directions respectively, while ‘n’ is the growth rate 
of disturbances. 

Using Eq. (19), Eqs.  (18), (14) - (16) become 
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dimensionless the resultant wave number. 

The boundary conditions of the problem in view of 

normal mode analysis are 

0,1zat      0DND 0,D0,Θ0,WD  0,W A
2   

(24) 

4. LINEAR STABILITY ANALYSIS 

For the present formulation, we have considered the 
case of free -free boundaries for which system of 
Eqs. (20) - (23) together with the boundary 
conditions (24) constitute a linear eigenvalue  
problem  with  variable  coefficient  for  the  growth  
rate  of disturbance of  the  system.  The resulting 
eigenvalue problem is solved numerically by the 
Galerkin method of first order (N = 1), which gives 
the expression for Rayleigh number Ra as 
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For neutral stability, the real part of n is zero. Hence 
on putting n = iω, ( where ω is real and is 
dimensionless frequency) in Eq. (25), we have  

21Ra  i ,                                             (26) 

where   
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 Since Ra is a physical quantity, so it must be real. 
Hence, it follow from the Eq. (26) that either ω = 0 
(exchange of stability, steady state) or Δ2 = 0 (ω ≠ 0 
over stability or oscillatory onset).  

4.1   Stationary Convection  

For the case of stationary convection [n = ω = 0], 
Eq. (25) reduces to  
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It is observed that stationary Rayleigh number 
 sRa  

is function of the Lewis number Le, the 

modified diffusivity ratio NA, the nanoparticles 
Rayleigh Rn, porosity ε and AC electric Rayleigh 
number Re but independent of modified particle- 
density increment NB. Thus the instability is purely 
a phenomenon due to buoyancy coupled with the 
conservation of nanoparticles. 

To find the critical value of   ,Ra s
 Eq. (29) is 

differentiated with respect to ‘a2’ and then equated 
to zero. A polynomial in a2 whose coefficients are 
function of parameter AC Rayleigh number Re 
influencing the stability is given as     
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The above equation is solved for various value of 
AC Rayleigh number Re and critical value ac is 
obtained and then corresponding critical Rayleigh 
number is obtained. 

 In the absence of electrical field (Re = 0), Eq. (29) 
reduces to   

   
.RnN

a

aπ
Ra A2

222

s 





 





Le

            
(31) 

This result agrees with the result obtained by Nield 
and Kuznetsov (2012). 

The minimum of first term of right- hand side of 

Eq. (31) is attained at ca  and minimum value 

found to 4π2, so the corresponding critical Rayleigh 

number given by    .RnN4Ra A
2

s 
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This is same result which was derived by Nield and 
Kuznetsov (2010). 

One recognizes that in the absence of nanoparticles 
(Rn = Le = NA = 0) and AC vertical electric field 
(Re = 0), one recovers the well- known results that 
the critical Rayleigh-Darcy number is equal to 4π2. 

Thus presence of the nanoparticles lowers the value 
of the critical Rayleigh number by usually by 
substantial amount. Also parameter NB does not 
appear in the Eq. (29), thus instability is purely 
phenomena due to buoyancy coupled with 
conservation of nanoparticles. Thus average 
contribution of nanoparticles flux in the thermal 
energy equation is zero with one-term Galerkin 
approximation.   

4.2   Oscillatory Convection 

For oscillatory convection ω ≠ 0, we must have Δ2 = 
0, thus Eq. (28) gives an expression for frequency of 
oscillations as 
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 Since 0ω2  for the occurrence oscillatory 
convection, but the values of the parameters 

considered in the range 52 1010  Ra  (thermal 

Rayleigh number),

 

101  AN (modified 

diffusivity ratio), 42 1010  Le (Lewis number),

1010 1  Rn  (nanoparticles Rayleigh number),
51.0    (capacity ratio), 11.0    (porosity 

parameter) (Chand and Rana 2012a) and 
410Re10   (AC electric Rayleigh number) 

(Shivakumara et al. 2012), the value of 2ω  in Eq. 
(33) is found to be negative, which imply that 
oscillatory convection is not possible for the 
problem. 

5. RESULT AND DISCUSSION 

An expression for the stationary Rayleigh number, 
which characterize the stability of the system are 
obtained for free-free boundary conditions. The 
computations are carried out for different values of 
parameters considered in the range 52 10Ra10 
(thermal Rayleigh number),

 

101  AN (modified 

diffusivity ratio), 42 1010  Le (Lewis number),

1010 1  Rn  (nanoparticles Rayleigh number),
51.0    (capacity ratio), 11.0    (porosity 

parameter) [Chand and Rana (2012a)] and 
410Re10   (AC electric Rayleigh number) 

[Shivakumara et al. (2012)] to find the effects of 
various parameters on  the stationary convection. 
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