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ABSTRACT

Thermal instability in a horizontal layer of nanofluid with vertical AC electric field in a porous medium is
investigated. The flux of volume fraction of nanoparticles is taken to be zero on the isothermal boundaries
and the eigenvalue problem is solved using the Galerkin method. Darcy model is used for the momentum
equation. The model used for nanofluid incorporates the effect of Brownian diffusion and thermophoresis.
Linear stability theory based upon normal mode technique is employed to find the expressions for Rayleigh
number for stationary and oscillatory convection. Graphs have been plotted to study the effects of Lewis
number, modified diffusivity ratio, concentration Rayleigh number, AC electric Rayleigh number and
porosity on stationary convection.
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NOMENCLATURE

dimensionless resultant wave number
thickness of fluid layer

differential operator

Brownian diffusion coefficient
thermophoretic diffusion coefficient
acceleration due to gravity

thermal conductivity

Lewis number

growth rate of disturbances
modified diffusivity ratio

modified particle -density increment
pressure

Darcy velocity vector

thermal Rayleigh number

critical Rayleigh number
concentration Rayleigh number
time

temperature

temperature at z =0

temperature atz=d
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coefficient of the thermal expansion
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density of the nanofluid

density of nanofluid at z= 0

density of nanoparticles

density of base fluid

heat capacity of fluid in porous medium

heat capacity of nanoparticles
volume fraction of the nanoparticles

reference  volume fraction of the

nanoparticles atz=0

thermal diffusivity

dimensionless frequency of oscillation
thermal capacity ratio

horizontal Laplacian operator

Laplacian operator

Superscripts

1

non - dimensional variables
perturbed quantities

Subscripts

c critical

s stationary convection
P particle

b basic state

f fluid
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1. INTRODUCTION

When a small amount of nano-sized particles are
added to the base fluid, the thermal conductivity of
the fluid enhances and such a fluid is called
nanofluid which was first coined by Choi (1995).
Nanofluids have unique properties that make them
potentially useful in many applications of heat
transfer and thus nanofluids considered to be the
next-generation heat transfer fluids. Recent
developments in the study of heat transfer using
nanofluids can be reported by Wong and Leon
(2010), Yu and Xie (2012), Taylor et al. (2013).
Thermal convection in nanofluids in a porous
medium is an important phenomenon due to its
wide ranges of applications in geophysics, food
processing, oil reservoir modeling, petroleum
industry, bio-mechanics, building of thermal
insulations and nuclear reactors. The detailed
study of thermal convection in a layer of
nanofluid in porous medium based upon
Buongiorno (2006) model has been given by
Kuznetsov and Nield (210a, b, ¢), Nield and
Kuznetsov (2009, 2010, 2011), Chand (2013),
Chand and Rana (2012a, b, c), Rana et al.
(2014a, b), Yadav and Kim (2015), Chand et al.
(2015) and Yadav and Lee (2015). In all the
above studies boundary condition on volume
fraction of nanoparticle is physically not realistic
as it is difficult to control the nanoparticle
volume fraction on the boundaries and suggested
the normal flux of volume fraction of
nanoparticles is zero on the boundaries as an
alternative  boundary condition which is
physically more realistic. Nield and Kuznetsov
(2014), Chand and Rana (2014a, b), Chand et al.
(2014) pointed out that this type of boundary
condition on volume fraction of nanoparticles is
physically not realistic as it is difficult to control
the nanoparticle volume fraction on the
boundaries and suggested the normal flux of
volume fraction of nanoparticles is zero on the
boundaries as an alternative boundary condition
which is physically more realistic. Under the
circumstances, it is desirable to investigate
convective instability problems by utilizing these
boundary conditions to get meaningful insight in
to the problems.

Natural convection under AC/DC electric field of
electrically enhanced heat transfer in fluids and
possible practical applications has been reviewed
by Jones (1978) and Chen et al. (2003). Stiles et al.
(1993) studied the problem of convective heat
transfer through polarized dielectric liquids. They
observed that the convection pattern established by
the electric field is quite similar to the familiar
Bénard cells in normal convection. Recently
Shivakumara et al. (2012) studied the effect of
velocity and temperature boundaries conditions on
electro-thermal convection in a rotating dielectric
fluid and found that AC electric field is to enhance
the heat transfer and to hasten the onset of
convection. Several studies have been carried out to
assess the effect of AC and DC electric fields on
natural convection due to the fact that many
problems of practical importance involve dielectric

fluids.

The nano dielectric fluid may be used in an
electrical apparatus and other electrical equipment
such as distribution transformers, regulating
transformers, shunt reactors, converter transformers,
instrument transformers and power transformers.
The nano dielectric fluid used herein exhibits an
increased thermal conductivity as compared to the
insulating liquids commonly used without the
nanoparticles. A high thermal conductivity of the
nanoparticles is often desirable for the nano
dielectric fluids.

Although EHD instability has been extensively
investigated in Newtonian and non-Newtonian fluid
dielectric fluid layer, but no effort has been made to
study the EHD instability in a layer of nanofluid. So
keeping in view the importance of thermal
convection of dielectric (when fluid layer is
subjected to a uniform vertical AC/DC electric
field) nanofluids, an attempt has been made to study
the electro thermo convection in a horizontal layer
of nanofluid in a porous medium.

2. MATHEMATICAL
FORMULATIONS OF
PROBLEM

THE

Consider an infinite horizontal layer of nanofluid of
thickness‘d’ bounded by planes z=0and z=d.
Fluid layer is heated from below in a porous
medium whose medium permeability is k; and
porosity is €. Nanoparticles are being suspended in
the nanofluid using either surfactant or surface
charge technology, preventing the agglomeration
and deposition of these on the porous matrix. Layer
of fluid is subjected to a uniform vertical AC
electric field applied across the layer; lower surface
is grounded and upper surface is kept at an
alternating potential whose root mean square is [J;.
A Cartesian coordinate system (X, y, z) is chosen
with the origin at the bottom of the fluid layer and
the z- axis normal to the fluid layer in the
gravitational field g (0,0,-g). The normal component
of the nanoparticles flux has to vanish at an
impermeable boundary and the temperature T is
takento be Toatz=0and Tyatz=d, (Ty>T;) as
shown in Fig. 1. The reference scale for
temperature and nanoparticles fraction is taken to be
T, and @q respectively,

According to the works of Chandrasekhar (1981),
Nield and Kuznetsov (2014) and Shivakumara et
al. (2012), the relevant equations under the
Oberbeck- Boussinesq approximation in a porous
medium are

V-q=0, (1)

0=—5p+ (o, +(1-)fprl1—o(T-Ty)})y —ffq

—%(E-E)Ve
(2)
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Fig. 1. Physical Configuration of the problem.
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where q is the Darcy velocity of fluid, p is the
pressure, po is the density of nanofluid at lower
layer, p, is the density of nanoparticles, ¢ is the
volume fraction of the nanoparticles, T is the
temperature, o is coefficient of the thermal
expansion, g is acceleration due to gravity, k; is
medium permeability of fluid, € is the porosity of
porous medium and p is the viscosity, (pc), is the
heat capacity of fluid in porous medium, (pc), is
the heat capacity of nanoparticles, k,, is the thermal
conductivity of the fluid, D, is the Brownian
diffusion coefficient, D is the thermoporetic

diffusion coefficient of the nanoparticles, E is the
root mean square value of the electric field and €is
the dielectric constant.

Since there is no free charge, the relevant Maxwell
equations are

VxE =0, )
V-(€E)=0. (6)
In view of equation (5), E can be expressed as
E=-Vy, @)
where ¥ is the root mean square value of the
electric potential.

The dielectric constant is assumed to be a linear
function of temperature in the form

e=e, (1-v(T-T,))=0, (3)

where y(>0) is the thermal expansion coefficient of
dielectric constant and is assumed to be small.

We assume that the temperature is constant and
nanoparticles flux is zero on the boundaries. Thus
boundary conditions (Chandrasekhar 1981, Nield
and Kuznetsov 2014) are

w=0, T:TO,DB%+&5T

9 _pat z=0 and
T oz
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w=0, T=T, DB@+&§ =0 at z=d.
T, oz
(€))

2.1 Steady State and its Solutions
The steady state is given as
=0, =0, p=p@). T=T,(). e=¢ (2
E = Es (Z)’ W = Ws (Z)

(10)

The solution of steady state is

AT D.AT
T, =T,- Z, (ps—(Po""[ L st
D,Td

1+LZ

s

where subscript s denote the steady state.

Also we have

1//5(2): —ELdlog(l +ﬂj|2 ,

AT d
AT
Y1 :
where Ej=-——F——— is the root mean
log (1 + 7AT)

square value of the electric field at z = 0.
2.2 Perturbation Equations

Let the initial steady state as described by equation
be slightly perturbed so that the perturbed state is
given by

q=q,T=T+T,p=p,+p,e=¢ +€,
E=E+E.y=y+v,

where the prime denote the perturbed quantities.
Substituting the Eq. (11) into the Egs. (1) — (9),
linearizing by neglecting the products of primed
quantities, the obtained perturbations equations to
be converted into to non-dimensional form by
introducing the following dimensionless variables
as follows

(x”,f,z”):[%j, WV W) = [ujd

K

(11)
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t=—nt, p'=—p, T"=—,
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" '/// km
v"=———, where k = —=— the thermal
7E gATd (e )y

re o L (pe p)
diffusivity of the fluid is, o = —(—)m—
PCp )k

thermal capacity ratio.

is the

The linearized perturbation equations in non-
dimensional form

V.q=0, (12)
0=-Vp-q+RaTe, —Rnge,, (13)
Ty yops N (T o) 2NANg T
ot Le\ oz oz Le oz
(14)
1o, 1oty Nagoy (15)
oot ¢ Le Le
vz, =20 (16)
0z

[Dashes (") are dropped for simplicity]

Where
Le = -~ is the Lewis number, Ra = M
B uK
is the thermal Rayleigh number,
- - k,d
Rn:(pppx(pl—(p())gl the  nanoparticle
uK

7> e E3(AT)?d?

Rayleigh number, Re = is the AC
uK
electric Rayleigh number, N, = DrAT is the
DgTieo
PdpPo
modified diffusivity ratio, Ny _((—p is the
PYr

modified particle-density increment.

Non- dimensional boundary conditions are given as

WM v o3 T
012 oz oz o1
atz=0andz=1. 17

Now eliminating the pressure from Eq. (13) by
using the identity curl curl = grad div— V? together
with Eq. (12), we obtain z-component of the
momentum equation as

G
V2w=RaV}T-RnV§e + ReV%I[ a_‘/z’j

(18)

3. NORMAL MODES ANALYSIS

Analyzing the disturbances into the normal modes

and assuming that the perturbed quantities are of the
form
[W’T’ (2 ‘//] =
[W(z)@(z),fl)(z), ‘P(Z)]ex}{ikxx + ikyy + nt),
(19)

where k, and k, are wave numbers in x and y
directions respectively, while ‘n’ is the growth rate
of disturbances.

Using Eq. (19), Egs. (18), (14) - (16) become

(D2 —az)W+aZRaG)—aan<I)+a2 Re(©-DW)=0,

(20)
w2 Nap 2NN 1y 2 g Ne g, g,
Le Le Le
(21)
WNp Naf2_ 2 (1 2 .2 ﬂj
oA TAID?2_a?p-| —(D?-a?)]-= @ =0,
€ Le( b Le( ) o
(22)
(Dz—az =De, (23)
where D=i and a:1lk>%+k§ is the
dz

dimensionless the resultant wave number.

The boundary conditions of the problem in view of

normal mode analysis are

W=0, D’W=0,0=0,D¥=0,Db+N,DO=0 at z=0,1
(24)

4. LINEAR STABILITY ANALYSIS

For the present formulation, we have considered the
case of free -free boundaries for which system of
Egs. (20) - (23) together with the boundary
conditions (24) constitute a linear eigenvalue
problem with variable coefficient for the growth
rate of disturbance of the system. The resulting
eigenvalue problem is solved numerically by the
Galerkin method of first order (N = 1), which gives
the expression for Rayleigh number Ra as

2

1 a
Ra 2—2(71'2 +a2X7r2 +a? +n)— 5 5 Re
a 7 +a

NA(ZZ'2+32)+E(7[2+32 +n)
€

nlLe
(71'2 + a2)+ —_—
c

(25)

For neutral stability, the real part of n is zero. Hence
on putting n = i®w, (where © is real and is
dimensionless frequency) in Eq. (25), we have

Ra:Al—i-ia)Az, (26)

where
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ef

SR vy
(7;2+a2)2[NA+Le]+wz (27)
Re i; 208
@2+¥f+ﬁi%
o
and
Le Le Le
) )
2 a’ (nLe2 .
(ﬁ2+a2)2+( S }
(28)

Since Rais a physical quantity, so it must be real.
Hence, it follow from the Eq. (26) that either ® =0
(exchange of stability, steady state) or A, =0 (o # 0
over stability or oscillatory onset).

4.1 Stationary Convection

For the case of stationary convection [n = ® = 0],
Eq. (25) reduces to

N

R R )Re‘[

NA + Ej}{n
&

29

It is observed that stationary Rayleigh number
(Ra)S is function of the Lewis number Le, the

modified diffusivity ratio N,, the nanoparticles
Rayleigh Rn, porosity € and AC electric Rayleigh
number Re but independent of modified particle-
density increment Ng. Thus the instability is purely
a phenomenon due to buoyancy coupled with the
conservation of nanoparticles.

Eq. (29) is

differentiated with respect to and then equated
to zero. A polynomial in a*> whose coefficients are
function of parameter AC Rayleigh number Re
influencing the stability is given as

ag +27° ag -n* Re ag -27° ag -zt =0.
(30)

To find the critical value of(Ra)

s

‘az,

The above equation is solved for various value of
AC Rayleigh number Re and critical value a. is
obtained and then corresponding critical Rayleigh
number is obtained.

In the absence of electrical field (Re = 0), Eq. (29)
reduces to

2,2
(Ra), :M_[NA +E)Rn. 31)
€

aZ

This result agrees with the result obtained by Nield
and Kuznetsov (2012).

The minimum of first term of right- hand side of

Eq. (31) is attained at @, =70 and minimum value

1085

found to 47%, so the corresponding critical Rayleigh

number given by (Ra)s =472 —(N A +E]Rn.
&
(32
This is same result which was derived by Nield and
Kuznetsov (2010).

One recognizes that in the absence of nanoparticles
(Rn = Le = N, = 0) and AC vertical electric field
(Re = 0), one recovers the well- known results that
the critical Rayleigh-Darcy number is equal to 4m°.

Thus presence of the nanoparticles lowers the value
of the critical Rayleigh number by usually by
substantial amount. Also parameter Ng does not
appear in the Eq. (29), thus instability is purely
phenomena due to buoyancy coupled with
conservation of nanoparticles. Thus average
contribution of nanoparticles flux in the thermal
energy equation is zero with one-term Galerkin
approximation.

4.2 Oscillatory Convection

For oscillatory convection ® # 0, we must have A, =
0, thus Eq. (28) gives an expression for frequency of
oscillations as

(33)

Since ®?>0for the occurrence oscillatory
convection, but the values of the parameters

considered in the range 102 <Ra<10° (thermal

Rayleigh number), 1 < N £10 (modified

diffusivity ratio), 102 < Le<10* (Lewis number),

107 <Rn<10 (nanoparticles Rayleigh number),
0.1<0 <5 (capacity ratio), 0.1<&<1 (porosity
parameter) (Chand and Rana 2012a) and

10<Re<10* (AC electric Rayleigh number)

(Shivakumara et al. 2012), the value of o’ in Eq.
(33) is found to be negative, which imply that
oscillatory convection is not possible for the
problem.

5. RESULT AND DISCUSSION

An expression for the stationary Rayleigh number,
which characterize the stability of the system are
obtained for free-free boundary conditions. The
computations are carried out for different values of
parameters considered in the range 10? < Ra <10°

(thermal Rayleigh number), 1 < N 4 <10 (modified

diffusivity ratio), 102 <Le<10* (Lewis number),

107" <Rn<10 (nanoparticles Rayleigh number),
0.1<0 <5 (capacity ratio), 0.1<e <1 (porosity
parameter) [Chand and Rana (2012a)] and
10<Re<10* (AC electric Rayleigh number)

[Shivakumara et al. (2012)] to find the effects of
various parameters on the stationary convection.
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Stability curves for Lewis number Le, modified
diffusivity ratio N, AC electric Rayleigh number
Re, nanoparticles Rayleigh number Rn and porosity
parameter are shown in figures 2-6.

100 +
80 - Le=100
60 Le=200

. RayleighNumber
=

Re=100,N,=5,

Rn=01,s=04,
-80 . c=04
100 -
Wave Number

Fig. 2. Variation of the thermal Rayleigh number
(Ra)s with wave number for different value of
Lewis number.
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Le=200, N,=5,
Ro=0.1, £=04,
00 - a=08

Ray leigh Number
g o
1

200 -

-300 -

Wave Number

Fig. 3. Variation of the thermal Rayleigh number
(Ra)s with wave number for different value of
AC electric Rayleigh number.

The variation of the stationary Rayleigh numbers
(Ra); with wave number have been plotted
graphically.

Fig. 2 shows the variation of stationary Rayleigh
numbers (Ra), with wave number for different
value of Lewis number Le and fixed value of
other parameters and it is found that stationary
Rayliegh number decreases as the values of
Lewis number increases, indicating that Lewis
number destabilize the stationary convection.
This is good agrement of the result obtained by
Chand and Rana (2014).

Fig. 3 shows the variation of stationary Rayleigh
numbers (Ra); with wave number for different
value of AC electric Rayleigh number Re and
fixed value of other parameters and it is found that
stationary Rayliegh number decreases with an
increase in the value of AC electric Rayleigh
number Re, indicating that the AC electric
Rayleigh number Re destabilze the stationary
convection. This is good agrement of the result
obtained by Shivakumara et al. (2012).

Fig. 4 shows the variation of stationary Rayleigh
numbers (Ra); with wave number for different
value of modified diffusivity ratio and fixed value of
other parameters and it is found that stationary
Rayliegh number decreases with an increase in the
value modified diffusivity ratio, indicating that the
modified diffusivity ratio destabilze the stationary
convection. This is good agrement of the result
obtained by Chand and Rana (2014).

Re=100, Le =200,
Rn=0.1,e=04,
30 - =038
20 A
10

0 —

\ l 4 6 8

N.=1,10,20

-10 €
20
-30 A
40 4
50
-60 -
-70 4
-80 -
Fig. 4. Variation of the thermal Rayleigh
number (Ra)s with wave number for different
value of modified diffusivity ratio.

Rayleigh Number

‘Wave Number

Fig. 5 shows the variation of stationary Rayleigh
numbers (Ra); with wave number for different
values of nanoparticle Rayleigh number and it is
found that stationary Rayliegh number decreases
with an incease in the value of nanoparticles
Rayleigh number. This is good agrement of the
result obtained by Chand and Rana (2014).

200 +

150 | Rn =01

100 - Rn =02

.
2 Rn =03

=50

=
Z o .
5 715 20
@

%;50 B

o

-100

o Re=100,N,=5,
150 - Le=200, e= 0.4,
=08
200 -

Wave Number

Fig. 5. Variation of the Rayleigh number (Ra)s
with wave number for different value of
nanoparticle Rayleigh number.

Fig. 6 represent the variation of stationary Rayleigh
numbers (Ra); with wave number for different
value of porosity parameter and it is found that
stationary Rayliegh number increases with an
increase in the value of porosity parameter, thus
porosity stabilize the stationary convection. This is
good agrement of the result obtained by Chand and
Rana (2014).
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Fig. 6. Variation of the Rayleigh number (Ra)s
with wave number for different value of porosity
parameter.

7. CONCLUSIONS

Thermal instability in a horizontal layer of
nanofluid with vertical AC electric field in a porous
medium is studied using linear instability theory by
employing a model for nanofluid that incorporates
the effects of Brownian motion and thermophoresis.
The flux of volume fraction of nanoparticles is
taken to be zero on the isothermal boundaries and
the eigenvalue problem is solved using the Galerkin
residual method. The main conclusions of present
analysis are as follows

(i)  The instability purely phenomenon due to
buoyancy coupled with the conservation of
nanoparticle and is independent of the
contribution of Brownian motion and
thermophoresis.

(i)  Oscillatory convection is not possible for the
problem.

(iii) Porosity parameter stabilizes the

stationary convection while Lewis number, AC
electric field, modified diffusivity ratio and
concentration Rayleigh number destabilize the
stationary convection.
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