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ABSTRACT

In this paper, the problem involving inviscid flow with a free surface over an undulating bottom is
studied within the framework of linear theory. Applying perturbation analysis in conjunction with
the Fourier transform technique, the boundary value problem arising from the flow problem is solved
analytically. Behaviour of both interface and free-surface profiles, which are unknown at the outset,
are analyzed. It is found that each profile (interface and free-surface) possesses a wave free region at
the far upstream, followed by a modulated downstream wave. It also observed, for the first time, that
the amplitude of the downstream wave is varying. Further, the effects of various system parameters
are analyzed and demonstrated in graphical forms.

Keywords: Inviscid fluid; Irrotational flow; Linear theory; Perturbation analysis; Fourier transform
technique.

1. INTRODUCTION

Problems involving free-surface inviscid flow
over an obstacle are studied by many re-
searchers to model various situations arising in
oceanography and atmospheric sciences. The
study of such flow problems is important to an-
alyze the qualitative insight of the mechanism of
wave generation by submerged bodies. Various
mathematical techniques have been employed
to study free-surface flows over different kinds
of obstacles situated at the bottom of a channel.
For example, Lamb (1932) studied the flow over
a cylindrical obstruction lying on the bottom
and calculated the drag force on the obstruc-
tion. Forbes and Schwartz (1982) considered
the flow over a semi-circular obstruction and
calculated the wave resistance offered by the
semicircle. Vanden-Broeck (1987) solved nu-
merically the problem of Forbes and Schwartz
(1982), and discussed the existence of the su-
percritical solutions. Forbes (1988) presented a
numerical solution for critical free-surface flow
over a semicircular obstruction attached to the
bottom of a running stream. Dias and Vanden-
Broeck (1989) studied the problem involving
free-surface flow past a submerged triangular
obstacle at the bottom of a channel and solved

the problem numerically by applying a series
truncation method. Forbes (1985) studied the
free-surface flow by considering a submerged
point vortex in a single-layer fluid of infinite
depth. Shen et al. (1989) obtained the numeri-
cal solution of the problem involving an inviscid
fluid flow over a semi-circular as well as a semi-
elliptical obstacles. Dias and Vanden-Broeck
(2002) solved the steady free-surface flow prob-
lem numerically, and demonstrated that there
exist supercritical flows with waves downstream
only. A good review on the flow problems is
provided by Gazdar (1973) and Yeung (1982).
Recently, Belward et al. (2003) studied the in-
viscid flow over topography using a series so-
lution method. Higgins et al. (2006) presented
an analytical series method to obtain the solu-
tion of the problem involving flow of a fluid
over a topography. They calculated the analyt-
ical series solutions for the supercritical, trans-
critical and subcritical flows. The above studies
were focused on the solution of the problem in-
volving steady flow of a fluid. For the problem
involving unsteady flow, Grimshaw and Smyth
(1986) presented a theoretical study of a strati-
fied fluid which is flowing over bottom topog-
raphy. They solved the problem by using weak
nonlinear theory and pointed out that the flow
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can be described by a forced Korteweg-de Vries
equation. Stokes et al. (2005) used numerical
technique to analyze the unsteady flow with a
submerged point sink beneath the free surface.
Milewski and Vanden-Broeck (1999) consid-
ered the time dependent free-surface flow over
a submerged moving obstacle in a single-layer
channel and solved the problem using weak
nonlinear theory. Generalized lattice Boltz-
mann method has been used by Rahmati and
Ashrafizaadeh (2009) to study flow of an in-
compressible fluid in three-dimension. They
have shown that their proposed model is very
convenient for simulation as compared to the
existing CFD simulation. Sheikholeslamia et al.
(2014) used lattice Boltzmann method to study
the magnetohydrodynamic flow in a concen-
tric annulus. They have discussed the charac-
teristics of flow and heat transfer for various
values of system parameters. Based on per-
turbation method, Saghafian et al. (2015) in-
vestigated the slip-flow heat transfer in a two-
dimensional incompressible flow. They have
shown that their results are in good agreement
with the available results. Using Lie group
method, Abd-el-Malek and Amin (2014) stud-
ied the nonlinear flow over a horizontal bot-
tom in a single-layer fluid. It is noticed that,
the solutions of flow problems are determined,
in most cases, for a specific bottom obstacle
like a semi-circle (Forbes and Schwartz 1982;
Forbes 1988; Vanden-Broeck 1987), a semi-
ellipse (Forbes 1981; Forbes 1982), a step (King
and Bloor 1987), a triangle (Dias and Vanden-
Broeck 1989), etc. Therefore, the flow over
an undulating bottom topography remained un-
solved. The relevance of such study is of impor-
tance due to the fact that, the undulating bottom
is a naturally occurring bottom formed in the
sea due to sedimentation and ripples growth of
sands. It is also noticed that, most of the above
studies were carried out by assuming flow in a
single-layer channel. However, the single-layer
approximation becomes insufficient in oceanog-
raphy and meteorology due to the continuous
stratification of the fluid as pointed out by Bel-
ward and Forbes (1993). The availability of
literature on two-layer flow problems is rather
limited.

Therefore, in the present paper, inviscid flow
over an undulating bottom is studied in a two-
layer fluid system, where the upper layer is free
to the atmosphere. The problem is formulated
mathematically in terms of a mixed boundary
value problem (BVP). This BPV is solved an-
alytically with the help of perturbation analy-
sis along with Fourier transform technique. The
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Fig. 1. Sketch of a two-layer flow with a free
surface over an undulating bottom.

free-surface and the interface profiles, which are
unknown at the outset, are determined to ana-
lyze their behaviour. The study also highlights
the role of the Fourier transform technique in an
elaborate way. It is found that the free-surface
as well as the interface possess a train of waves
downstream with varying amplitude. The vary-
ing nature, which is not observed in earlier stud-
ies, is noticed here for the first time. In addition,
the effects of various system parameters are an-
alyzed here.

2. DESCRIPTION AND MATHEMATI-
CAL FORMULATION

In this study, two-dimensional inviscid flow in
a two-layer fluid over an undulating bottom, as
shown in Fig. 1, is considered. The fluid is
subject to the downward acceleration due to the
gravity g, and it is flowing from the left to the
right. The upper layer of the fluid system is
free to the atmosphere and the lower layer is
bounded by an irregular bottom y=B(x), where
the x-axis is chosen along the undisturbed bot-
tom and the y-axis is measured vertically up-
ward (see Fig. 1). The flow is assumed to be ir-
rotational, and it is uniform at the far upstream.
The upstream depth of the lower layer is H1 and
that of the upper layer is H2. The upstream hor-
izontal velocities in the lower and upper layer
are, respectively, c1 and c2. Density, velocity
and pressure in the lower layer are, respectively,
ρ1, −→q1 and p1 and those in the upper layer are
ρ2 (< ρ1), −→q2 and p2. Let φ1(x,y) and φ2(x,y)
are the velocity potentials in the lower and up-
per layers respectively, so that −→q j = (φ j,x,φ j,y),
( j = 1,2) where φ j,x and φ j,y are, respectively,
the partial derivative of φ j with respect to x and
y. The effect of the surface tension is ignored
here. The free-surface, which is unknown at the
outset, is given by y = P(x). The interface (un-
known at the outset) between two fluid layers is
given by y = S(x). Only waves that are station-
ary with respect to the bottom profile are taken
into account, so that the partial derivatives with
respect to time are taken to be equal to zero. The
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problem is made dimensionless using H1 as the
length scale and c1 as the velocity scale. There-
fore, the work proceeds purely with dimension-
less variables.

Under the assumptions as mentioned above, the
equation of continuity in each layer yields the
Laplace equation:

∂2φ2

∂x2 +
∂2φ2

∂y2 = 0 in the upper layer, (1)

∂2φ1

∂x2 +
∂2φ1

∂y2 = 0 in the lower layer. (2)

As no fluid particle leaves the surface, the kine-
matic condition on the free surface y = P(x) can
be written as

∂φ2

∂n
= 0 on y = P(x), (3)

where ∂/∂n is the normal derivative at a point
(x,y) on the surface.
The dynamic condition on the free surface,
which is given below, is derived by using
Bernoulli’s equation:

1
2

F2 (q2
2− γ

2)+P(x)= 1+λ on y=P(x),(4)

where F (= c1/
√

gH1) is the Froude number,
γ (= c2/c1) is the ratio of the upstream fluid
velocities, and λ (= H2/H1) is the ratio of the
upstream depths.

At the interface y = S(x), the condition of no
fluid exchange is

∂φ2

∂n
= 0 on y = S(x), (5)

∂φ1

∂n
= 0 on y = S(x). (6)

The continuity of pressure coupled with the
Bernoulli’s equation gives rise to the condition
at the interface

1
2

F2 (q2
1−Dq2

2
)
+(1−D)S(x)=

1
2

F2 (1−Dγ
2)

+(1−D) on y = S(x), (7)

where D = ρ2/ρ1(< 1).

The condition of no penetration at the bottom
gives rise to the bottom condition

∂φ1

∂n
= 0 on y = B(x). (8)

The conditions at the upstream are

−→q2→ γ
−→
i , −→q1→

−→
i , S(x)→ 1, P(x)→ 1+λ

as x→−∞. (9)

The primary aim of the present work is to de-
termine (analytically) the unknown functions
φ1(x,y) and φ2(x,y) along with S(x) and P(x).
These unknowns can be determined once the
mixed coupled boundary value problem de-
scribed in relations (1)-(9) is solved. In the fol-
lowing section, the above boundary value prob-
lem is solved using a similar kind of mathemat-
ical procedure, i.e., perturbation analysis along
with Fourier transform technique, as described
in Panda et al. (2015) .

3. SOLUTION OF THE PROBLEM

It is assumed that the bottom profile is given by
B(x)= ε f (x), where ε is the maximum height of
the bottom profile and is a dimensionless quan-
tity. When the height ε is small, then an ap-
proximate solution of the boundary value prob-
lem described in relations (1)-(9) can be derived
by using the regular perturbation expansion in
powers of ε, retaining only the first-order terms.
The asymptotic expansions of the velocity po-
tential, the interface profile and the free-surface
profile can be expressed respectively as follows:

φ2(x,y) = γx+ εφ21(x,y)+O(ε2)
φ1(x,y) = x+ εφ11(x,y)+O(ε2)
S(x) = 1+ εS1(x)+O(ε2)
P(x) = 1+λ+ εP1(x)+O(ε2)

 , (10)

where φ21(x,y) and φ11(x,y) are the first-order
corrections of the velocity potentials; S1(x) and
P1(x) are the first-order corrections of the inter-
face and the free-surface, respectively.

Employing the asymptotic expansions (10) into
relations (1)-(8); and then comparing the first
order terms of ε on both the sides of all equa-
tions, the following BVP is obtained:

∂2φ21

∂x2 +
∂2φ21

∂y2 = 0 in the upper layer,(11a)

∂2φ11

∂x2 +
∂2φ11

∂y2 = 0 in the lower layer,(11b)

∂φ21

∂y
= γP′1(x)on y = 1+λ,(11c)

F2
γ

∂φ21

∂x
+P1(x) = 0 on y = 1+λ, (11d)

∂φ21

∂y
= γS′1(x) on y = 1, (11e)

∂φ11

∂y
= S′1(x) on y = 1, (11f)
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F2
(

∂φ11

∂x
−Dγ

∂φ21

∂x

)
+(1−D)S1(x) = 0,

on y = 1,(11g)

∂φ11

∂y
= f ′(x) on y = 0. (11h)

The system defined in relations (11a)-(11h)
gives rise to the linearized version of the orig-
inal problem. To solve the above BVP (11a)-
(11h), it is assumed that the Fourier trans-
forms of the first-order potentials φ11(x,y) and
φ21(x,y) exist, and are defined as:

φ̂ j1(k,y) =
∫

∞

0
φ j1(x,y)sin(kx)dx, ( j = 1,2)(12a)

with the inverse transforms

φ j1(x,y)=
2
π

∫
∞

0
φ̂ j1(k,y)sin(kx)dk, ( j = 1,2).(12b)

Define S1(x), P1(x) and f (x) as follows:

S1(x) =
∫

∞

0
a(k)cos(kx)dk, (12c)

P1(x) =
∫

∞

0
b(k)cos(kx)dk, (12d)

and

f (x) =
∫

∞

0
M(k)cos(kx)dk, (12e)

where a(k) and b(k) are two unknowns will be
determined here, and M(k) can be determined
from the shape of the undulating bottom.

Applying Fourier transform (12a) along with its
inverse (12b) and using relations (12c)- (12e) in
Eqs. (11a)-(11h), the velocity potentials (solu-
tion of the above BVP) are obtained as:

φ11(x,y)=
∫

∞

0

[
M(k)−a(k)coshk

sinhk
coshk(y−1)

−a(k)sinhk(y−1)
]

sin(kx)dk,

and

φ21(x,y) =∫
∞

0

{
γ [a(k)−b(k)cosh(kλ)]

sinh(kλ)
coshk(y−1−λ)

− γb(k)sinhk(y−1−λ)

}
sin(kx)dk,

where

a(k) =
E1(k)F2kM(k)sinh(kλ)

E2(k)
(13a)

and

b(k) =
F4γ2kM(k)sinh(kλ)

E2(k)
(13b)

in which

E1(k) =
(
F2

γ
2k coshkλ− sinhkλ

)
/k

and

E2(k) =
{

F2k coshk sinhkλ+
[
F2Dγ

2k coshkλ

−(1−D)sinhkλ

]
sinhk

}
E1(k)− γ

4DF4k sinhk.

It should be noted that the relation

E2(k) = 0 (14)

is known as the dispersion relation. It can be
shown (discussed later in Section 4.) that, the
relation (14) has two positive real roots, say k0
and k1. It is worth-mentioning here that the
root of the dispersion relation signifies the wave
number of the downstream waves. Note that,
−k0 and −k1 are also real roots of the relation
(14).

It is observed from relations (12c)- (12e) and
(13) that, the interface as well as the free-
surface profiles depend on the shape of the un-
dulating bottom. Hence, the profiles S(x) and
P(x) can be determined once the bottom profile
is known. To evaluate these profiles, the follow-
ing bottom topography is considered:

B(x)=


ε

2

[
1+ cos

(
πx
L

)]
, −L≤ x≤ L

0, otherwise,
(15)

where L is the half length of the obstacle.

From relations (12e), (13) and (15), a(k) and
b(k) are determined as

a(k) =
E1(k)πF2 sin(kL)sinh(kλ)

L2
(

π2

L2 − k2
)

E2(k)
, (16a)

b(k) =
πF4γ2 sin(kL)sinh(kλ)

L2
(

π2

L2 − k2
)

E2(k)
. (16b)
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Now, substituting Eq. (16a) in Eq. (12c), the
interface profile is obtained as:

S1(x) =
πF2

4L2 ×∫
∞

−∞

E1(k)sinh(kλ) [sink(x+L)− sink(x−L)](
π2

L2 − k2
)

E2(k)
dk.

(17a)

In a similar way, from relations (16b) and (12d),
the expression of the free-surface profile is de-
termined as:

P1(x) =
πF4γ2

4L2 ×∫
∞

−∞

sinh(kλ) [sink(x+L)− sink(x−L)](
π2

L2 − k2
)

E2(k)
dk.

(17b)

It is worthy to note that, each integral in rela-
tions (17a) and (17b) is singular with poles on
the real axis at k =±k0 and±k1. Therefore, the
integrals in relations (17a) and (17b) have to be
treated as a Cauchy principal value with an in-
dentation below the singularities. Hence, using
the residue theorem, the interface profile S1(x)
and the free-surface profile P1(x) are obtained
as:

S1(x)=


−π2F2

L2

1

∑
i=0

E1(ki)C(ki), for x > L

0, for x <−L,

(18a)

P1(x)=


−π2F4γ2

L2

1

∑
i=0

C(ki), for x > L

0, for x <−L,
(18b)

where

C(k) =
sinh(kλ)(

π2

L2 − k2
)

E ′2(k)
sin(kx)sin(kL).

It can be noticed from relations (18a) and (18b)
that, the interface and the free-surface profiles
are oscillatory in nature. In addition, each
profile possesses a wave-free region at the up-
stream of the obstacle, followed by a down-
stream wave. This is completely consistent with
the result of Belward and Forbes (1993). The
study further reveals that the amplitude of the
downstream waves are varying, which is an im-
portant observation noticed for the first time.

The varying nature occurs due to the presence
of two wave numbers. The varying nature is im-
portant because wave free solution may occur
at the downstream due to this varying nature.
In addition, some other phenomena like beat-
ing behaviour, resonance, etc. also possible due
to the varying nature for certain values of the
system parameters. These phenomena were not
noticed in earlier studies (Belward and Forbes
1993; Chakrabarti and Martha 2011).

4. COMPUTATIONAL RESULTS AND
DISCUSSION

In this section, various computational results are
demonstrated to analyze the behaviour of the
free-surface as well as the interface for the sub-
critical type flow. Therefore, the value of the
Froude number (F) is chosen, in this section, as
F < 1. The effects of various system parame-
ters are examined. In addition, this section also
contains a discussion about the roots of the dis-
persion relation (14).

The positive real roots of the relation (14) are
calculated using Newton’s method for various
values of the dimensionless parameters, and
shown in Table 1. For this purpose, the ratio
of densities is fixed at D = 0.7 and the ratio
of the upstream fluid velocity is fixed at γ = 1.
From Table 1, it is clear that the dispersion re-
lation (14) has two non-zero real positive roots
which affirm the remark made in Section 3. It
is also noticed (refer first and second coloumns
of Table 1) that the value of the wave number
decreases as the Froude number F increases.

Table 1 Positive real roots of the dispersion
relation (14) for D = 0.7 and γ = 1

Values of the parameters Positive real roots
F = 0.2,λ = 1 4.41023

24.4086
F = 0.3,λ = 1 1.85119

11.1012
F = 0.3,λ = 2 1.90928

11.1132
F = 0.4,λ = 3 0.88410

6.24986

The effect of height of the bottom obstruction
is demonstrated in Figs. 2(a) and 2(b). The in-
terface profile S(x) and the free-surface profile
P(x) are shown in Figs. 2(a) and 2(b), respec-
tively, for two different values of height of the
obstacle ε = 0.06 and 0.1. From Fig. 2, it is
found, for the first time, that S(x) and P(x) pos-
sess downstream waves with varying amplitude
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which confirms the observation made in Section
3. The amplitude is varying due to presence of
waves having two different wave numbers. This
phenomenon cannot be noticed in the case of
a single-layer fluid with free surface or in the
case of a two-layer fluid with a bounded upper
layer (Belward and Forbes 1993; Chakrabarti
and Martha 2011). Because, in these two cases,
there exist wave with only one wave number,
and hence, the amplitude becomes constant. It
is also noticed that the amplitude of the down-
stream wave increases as the height of the ob-
stacle increases. This agrees with the physical
intuition, as high obstacle produces waves with
higher amplitude.
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(b)

Fig. 2. Effect of height of the bottom
obstruction. In (a) S(x) and (b) P(x) for
F = 0.3, γ = 1, λ = 1, L = 1 and D = 0.7.

The Froude number (F) plays a significant role
in the behaviour of both free-surface and inter-
face profiles. This important issue is not yet ad-
dressed in the literature to analyze the behaviour
of the profiles. In the present work, the role of
the Froude number (F) has been illustrated in
Figs. 3(a) and 3(b). In Fig. 3(a), the interface
profile S(x) is depicted for three different val-
ues of the Froude number, F = 0.3,0.4 and 0.5
with ε = 0.1, γ = 1, λ = 1, L = 1 and D = 0.7.
Similarly, in Fig. 3(b), the free-surface profile
P(x) is depicted for the same set of values of
the parameters as considered in Fig. 3(a). It is
observed from Figs. 3(a) and 3(b) that, the am-
plitude of each profile increases as the Froude
number increases. In addition, the variable na-
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Fig. 3. Effect of the Froude number F . In (a)
S(x) and (b) P(x) for ε = 0.1, γ = 1, λ = 1,

L = 1 and D = 0.7.
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Fig. 4. Effect of the density ratio D. In (a)
S(x) and (b) P(x) for ε = 0.1, γ = 1, λ = 1,

L = 1 and F = 0.3.

ture of the profiles diminishes as the Froude
number increases. As the varying nature dimin-
ishes, the downstream wave having varying am-
plitude become wave with constant amplitude.
It is also noticed from Fig. 3, that the wave-
length of the downstream wave increases with
the Froude number. This is mainly due to the
fact that the Froude number (F) is directly de-
pendent on the wave number, which can be re-
alized from the relation (14).

Effect of the density ratio is shown in Figs. 4(a)
and 4(b). In Fig. 4(a) the interface profile S(x)
and in Fig. 4(b) the free-surface profile P(x) are
presented for three different values of the den-
sity ration D= 0.7,0.9 and 1 with ε= 0.1, γ= 1,
λ= 1, L= 1 and F = 0.3. It can be noticed from

Fig. 4 that, the amplitudes of both profiles de-
crease as the density ratio of the fluids increases.
Further, the varying nature of the amplitude di-
minishes for D = 1 and, therefore, it becomes a
constant amplitude. This is due to the fact that,
when the density ratio tends to 1, two-layer flow
problem reduces to a single-layer flow problem.
In the case of single-layer, there exists wave
downstream with only one wave number, and
as a result, the amplitude of the downstream be-
comes constant.

5. CONCLUSIONS

Two-dimensional inviscid flow over an undulat-
ing bottom in a two-layer fluid, in which the
upper layer is free to the atmosphere, was con-
sidered to analyze the behaviour of the free-
surface and the interface profiles. Based on lin-
ear theory, the problems are formulated math-
ematically in terms of mixed coupled bound-
ary value problem (BVP). Applying perturba-
tion analysis along with Fourier transform tech-
nique, the obtained BVP is solved to determine
the free-surface and the interface profiles. The
main findings of the present study are summa-
rized as follows:

• It is found that, each profile possesses a
wave-free region upstream of the obsta-
cle, followed by a modulated downstream
wave.

• The amplitude of the downstream waves is
varying. This phenomenon can be not be
noticed in case of a single-layer flow or a
two-layer flow with a bounded surface.

• The wave number of the downstream wave
decreases, i.e., wavelength increases, as
the Froude number increases.
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