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ABSTRACT 

The stagnation-point flow of an incompressible non-Newtonian fluid over a non-isothermal stretching sheet is 
investigated. Mathematical analysis is presented for a Casson fluid by taking into the account of variable 
thickness and thermal radiation. The coupled partial differential equations governing the flow and heat 
transfer are transformed into non-linear coupled ordinary differential equations by a similarity transformation. 
The transformed equations are then solved numerically by Runge-Kutta-Fehlberg method along with 
shooting technique. The effects of pertinent parameters such as the Casson fluid parameter, wall thickness 
parameter, velocity power index, velocity ratio parameter, Prandtl number and radiation parameter have been 
discussed. Comparison of the present results with known numerical results is shown and a good agreement is 
observed. 

Keywords: Stagnation point flow; Casson fluid; Variable thickness; Thermal radiation; Numerical solution. 

NOMENCLATURE 

A  parameter related with sheet profile 
b  parameter related with stretched surfaces 

pc  specific heat 

k  thermal conductivity 
*k  mean absorption co-efficient 

m velocity power index 
Nr  radiation parameter 
Pr  Prandtl number 

rq radiation heat flux 

T temperature of the fluid 

0T  characteristic temperature 

wT temperature at the wall 

T  large distance from the wall 

U free stream velocity 

wU stretching sheet velocity 

u , v  velocity components of the fluid along x

 and y  directions 

x coordinate along the stretching sheet 
y distance normal to the stretching sheet 

  coefficient of viscosity of the fluid 
  density of the fluid 

*  Stefan-Boltzman constant  
  similarity variable 
  stream function 
  wall thickness parameter 
  Casson parameter 

b  plastic dynamic viscosity of the non 

Newtonian fluid  
 product of the component of deformation

rate with itself 

c  critical value 

 ratio of rates of velocities
 kinematic viscosity
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1. INTRODUCTION 

There is an increasing application of non-Newtonian 
fluids specifically in the flow of nuclear fuel slurries, 
flow of liquid metal and flow of alloys, flow of 
plasma, flow of mercury amalgams, and flow of 
lubrication with heavy oil and greases, coating of 
papers, polymer extrusion and several others. With 
such facts in mind, the knowledge of non-Newtonian 
fluid dynamics with or without heat transfer is quite 
essential for better understanding regarding food 
freezing and polymer injection etc. Usually the study 
of non-Newtonian fluid is much more difficult, 
because of their complex nature and complex 
interactions with the flow field. The majority of the 
information on non-Newtonian fluids is very 
empirical. The governing equations for non-
Newtonian fluid flows are highly nonlinear. Also, the 
industrial applications of non-Newtonian fluid flow 
are increasing day by day. Among the many industrial 
non-Newtonian fluids some fluids behave like elastic 
solids, and for those fluids, a yield shear stress exists 
in the constitutive equations. Casson fluid is one of 
such non-Newtonian fluids. So if the shear stress 
magnitude is greater than yield shear stress, then flow 
occurs. Casson model is claimed to fit rheological data 
better than general viscoplastic models for many 
materials and is the preferred rheological model for 
blood and chocolate (1959).Dash et al. (1996) 
examined Casson fluid flow in a pipe with a 
homogeneous porous medium. Unsteady boundary 
layer flow of a Casson fluid due to an impulsively 
started moving with flat plate has been discussed by 
Mustafa et al. (2011). Eldabe and Salwa (1995) 
studied the flow and heat transfer of a Casson fluid 
between two rotating cylinder. Boyd et al. (2007) 
analyzed the Casson and Carreau-Yasuda non-
Newtonian blood models in steady flow and 
oscillatory flow using Lattice Boltmann method. 
Recently Bhattacharyya et al. (2014) obtained the 
exact solution for boundary layer flow of Casson fluid 
over a permeable stretching/shrinking sheet. 
Mukhopadhyay (2013) studied the Casson fluid flow 
and heat transfer over a nonlinear stretching sheet. At 
the current investigation, we refer some latest studies 
on stretched flows. Rashidi and Mohimanian Pour 
(2010) obtained the analytic solutions for unsteady 
boundary-layer flow and heat transfer due to a 
stretching sheet by means of homotopy analysis 
method. Further Rashidi and Keimanesh (2010) use 
the differential transform method and Padé 
approximant for solving MHD flow in a laminar liquid 
film from a horizontal stretching surface. Rana and 
Bhargava (2012) studied the flow and heat transfer of 
a nanofluid over a nonlinearly stretching sheet. 
Radiation effect on a steady two-dimensional 
boundary layer flow of a dusty fluid over a stretching 
sheet is analyzed by Ramesh and Gireesha (2013). 

Flow near stagnation-point is very interesting in 
fluid dynamics. Actually, the stagnation flow takes 
place whenever the flow impinges to any solid 
object and the local velocity of the fluid at the 
stagnation-point is zero. It is an important bearing 
on several industrial and technical applications such 
as cooling of electronic devices by fans, cooling of 
nuclear reactors during emergency shutdown, heat 

exchangers placed in a low-velocity environment, 
solar central receivers exposed to wind currents, 
and many hydrodynamic processes. The two-
dimensional flow of a fluid near a stagnation point 
was first examined by Hiemenz (1911). Later 
Chiam (1994) analyzed steady two dimensional 
stagnation-point flow of an incompressible viscous 
fluid towards a stretching surface. Mahapatra and 
Gupta (2002) studied the stagnation-point flow 
towards a stretching sheet taking different 
stretching and straining velocities. Various 
important aspects of the stagnation-point flow over 
stretching sheet under were presented by many 
investigators (Nazar et al. 2004, Pal. 2009, Pop et 
al. 2011, Ramesh et al 2012, Ramesh et al.2014). 
Mustafa et al. (2012) obtained the analytical 
solution for stagnation-point flow and heat transfer 
of a Casson fluid towards a stretching sheet using 
HAM method. Later Hayat et al. (2013) 
investigated the mixed convection stagnation-point 
flow of an incompressible Casson fluid over a 
stretching sheet under convective boundary 
conditions. Further Nandy (2013) studied the 
hydromagnetic boundary layer flow and heat 
transfer of a non-Newtonian Casson fluid in the 
neighborhood of a stagnation point over a stretching 
surface in the presence of velocity and thermal 
slips. Two-dimensional magnetohydrodynamic 
stagnation-point flow of electrically conducting 
non-Newtonian Casson fluid and heat transfer 
towards a stretching sheet with thermal radiation 
have been reported by Bhattacharyya (2013). 
Parand et al (2012) studied the laminar boundary 
layer flow using numerical method. Akbar et al. 
(2013) obtained the Numerical solutions of 
Magnetohydrodynamic boundary layer flow of 
tangent hyperbolic fluid towards a stretching sheet 
via RKF45 method. 

Aforementioned studies the boundary layer flow 
and heat transfer analysis is investigated for only 
flat stretching sheet. Study of flow and heat transfer 
of viscous fluids over stretching sheet with a 
variable thickness (non-flatness) can be more 
relevant to the situation in practical applications. 
For the first time Fang et al. (2012) obtain an 
elegant analytical and numerical solution to the 
two-dimensional boundary layer flow due to a non-
flatness stretching sheet. Further this problem was 
extended by Subhashini et al. (2013) by including 
the energy equation and found that thermal 
boundary layer thicknesses for the first solution 
were thinner than those of the second solution. 
Numerical solution for the flow of a Newtonian 
fluid over a stretching sheet with a power law 
surface velocity, slip velocity and variable thickness 
was studied by Khaddar et al. (2013). 

The present work is undertaken to study the effect 
of variable thickness on the boundary layer 
stagnation-point flow of Casson fluid over a 
stretching sheet. The thermal radiation effect in 
such configuration is also studied. Dimensionless 
expressions of velocity and temperature are solved 
numerically. The presented plots illustrate the 
behavior of pertinent parameters on the velocity and 
temperature. Numerical values of skin friction 
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coefficient and local Nusselt number are tabulated 
and analyzed. The results have possible 
technological applications in liquid-based systems 
involving stretchable materials. 

2. PROBLEM FORMULATION 

We consider the steady incompressible flow of 
Casson fluid over a stretching sheet located at 

2

1

)(
m

bxAy


 with a fixed stagnation point 

at 0x (figure 1). We assume that wall is 
impermeable, non-flat with a given profile and the 
coefficient A  being small so that the sheet is 
sufficiently thin. Assume that the stretching sheet 

has a velocity mbxUxU )()( 0  , where m is the 

velocity power index.  
 

 
Fig. 1. Physical description of the considered 

problem. 
 
The rheological equation of state for an isotropic 
and incompressible flow of a Casson fluid is 
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In above equation   is the product of the 
component of deformation rate with itself, 

i.e., ijijee  and ije  is the thji ),(  component of 

the deformation rate,   c   is a critical value of this 

product based on the non-Newtonian model, B  is 

plastic dynamic viscosity of the non- Newtonian 
fluid, and yp  is the yield stress of the fluid. 

The simplified two dimensional equations 
governing the flow in the boundary layer of a 
steady, laminar, and incompressible Casson fluid 
are (Bhattacharyya et al. 2014) 
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where u and v are the velocity components of the 
fluid along x  and y  directions, respectively, x  is 
distance along the sheet, y  is distance 

perpendicular to the sheet, k,, and pc are the 

co-efficient of viscosity of the fluid, density of the 
fluid, thermal conductivity and specific heat of the 

fluid respectively. ycB p/2  is Casson fluid 

parameter. 

The associated boundary conditions for the present 
problem are [Fang et al. (2012)] 
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Where m
w bxUxU )()( 0  is the stretching 

velocity, 0U and b  is uniform velocity of sheet (i.e 

for 0m ) and b is a constant. wT and T denote 

the temperature at the wall and at large distance 
from the wall respectively and 0T is the 

characteristic temperature 

By employing the generalized Bernoulli’s equation, 
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Using the Rosseland approximation for radiation 
[19], radiation heat flux is simplified as 
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Where * and *k are the Stefan-Boltzman constant 
and mean absorption co-efficient, respectively. 
Assuming that the temperature differences within 
the flow such  

that the term 4T  may be expressed as a linear 

function of the temperature, we expand 4T  in a 
Taylor series  

about T
 and neglecting the higher order terms 

beyond the first degree in )( TT  we get 
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The momentum and energy equations can be 
transformed using the following similarity 
transformation 
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(10) into equations (6) and (9), we obtain the 
following ordinary differential equations: 

  0)(
1

2

)()()(
1

1

22 



















f
m

m

fff
                    (11) 

0)()(
1

)()()(
Pr

1

3

4
1












 





f
m

m

fNr
                      (12) 

Subjected to the boundary conditions (4) which 
becomes 
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3. INTRODUCTION OF RUNGE-KUTTA-
FEHLBERG METHOD 

Runge-Kutta-Fehlberg method has a procedure to 
determine if the proper step size h  is being used. 
At each step, two different approximations for the 
solution are made and compared. If the two answers 
are in close agreement, the approximation is 
accepted. If the two answers do not agree to a 
specified accuracy, the step size is reduced. If the 
answers agree to more significant digits than 
required, the step size is increased.  
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An approximation to the solution is made using a 
Runge-Kutta method of order 4: 
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4. NUMERICAL SOLUTION 

The non-linear coupled equations (11) and (12) 
along with boundary conditions (13) are solved 
numerically using Runge-Kutta-Fehlberg method 
with a shooting technique. In the shooting method, 
it is essential to select a suitable finite value of 

 . The step size 001.0 issued to obtain 

the numerical solution with  . The asymptotic 

converged results within a tolerance level of 
610  are obtained. Table 1 represents a comparison 

of )0(f  obtained in the present work and those 
work obtained earlier by Fang et al. (2012) in the 
absence of NrPr,,,  and  . It is clearly 

observed that good agreement between the results 
exists. This lends confidence in the numerical 
method. It is also observed from Table 2, that the 
numerical values of )0(  in the present paper for 

different value of mPr,  are in good agreement with 
results obtained by Rana and Bhargava (2012) and 
Zaimi et al. (2014)  

5. GRAPHICAL RESULTS AND 

DISCUSSION 

We discuss the influences of different 
parameters Nrm,,,,  and Pr on velocity and 
temperature fields. Figures 2 and 3, respectively 
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represents the velocity and temperature profiles for 
various values of velocity ratio parameter . In 
figure 2, we can see that two different classes 
(types) of boundary layers. In the first class, the 
velocity of fluid inside the boundary layer decreases 
from the surface towards the edge of the layer 
( 1 ) and in the second type the fluid velocity 

increases from the surface towards the edge ( 1 ). 

One important note that if 1 , the stretching 
velocity and the straining velocity are equal, then 
there is no boundary layer of Casson fluid flow near 
the sheet, this is similar to that of Chiam’s (1994) 
observation for Newtonian fluid. In Fig. 3, one can 
see that in all cases thermal boundary layers formed 
and the temperature at a point decreases with 
increase of  . 
 
Table 1 Comparison of the values of skin friction 

coefficient )0(f  for various values of m in the 

case of 0Pr  Nr  and 5.0  
m  Fang et al. (2012) Present result 

10.0 -1.0603 -1.06034 
9.0 -1.0589 -1.05893 
7.0 -1.0550 -1.05506 
5.0 -1.0486 -1.04862 
3.0 -1.0359 -1.03588 
2.0 -1.0234 -1.02342 
1.0 -1.0000 -1.00000 
0.5 -0.9799 -0.97994 
0.0 -0.9576 -0.95764 

 
Table 2 Comparison of the values of (0)  for 

various values of m in the case of 
0 tb NNNr  

Pr  m  
Rana and 
Bhargava 

(2012) 

Zaimi et. al 
(2014) 

Present result 

1 0.2 0.6113 0.61131 0.611310 
 0.5 0.5967 0.5668 0.596687 
 1.5 0.5768 0.57686 0.576869 
 2.0 --- 0.57245 0.5724553 
 3.0 0.5672 0.56719 0.5724553 
 4.0 --- 0.56415 0.5641562 
 8.0 --- 0.55897 0.5589740 
 10.0 0.5578 0.55783 0.5578319 
5 0.1 --- 1.61805 1.6180573 
 0.2 1.591 1.60757 1.6075742 
 0.3 --- 1.59919 1.5991913 
 0.5 1.5839 1.58658 1.5865846 
 0.8 --- 1.57E+00 1.5738902 
 1.0 --- 1.57E+00 1.5678702 
 1.5 1.5496 1.55751 1.5575188 
 2.0 --- 1.55093 1.5509317 
 2.5 --- 1.54636 1.5463670 
 3.0 1.5372 1.54271 1.5430156 
 10.0 1.526 1.52877 1.5287732 

 
Figures 4 and 5 illustrate the influence of the 
Casson fluid parameter   on the velocity and 
temperature profiles respectively. One note that the 
velocity increases with the increase in values of   

for  ( 1 ) and it decreases with  for  ( 1 ). 
Consequently, the velocity boundary layer thickness 
reduces for both values of  .The effect of Casson 
parameter on the temperature profiles is depicted in 
figure 5 and noticed that at a point temperature 
increases with increasing of  . 

 

 
Fig. 2. Velocity profile for  with 

2,3Pr,2,2,5.0  Nrm . 

 

 
Fig. 3. Temperature profile for  with 

2,3Pr,2,2,5.0  Nrm . 

 

 
Fig. 4. Velocity profile for  with 

2,3Pr,2,5.0  Nrm . 
 

Figure 6 exhibits the variation in the velocity 
profiles for different values of .This figure 
indicates that if increases the fluid 
velocity )(f  is increases for a fixed value 

of 1 . On the other hand when 1 , the fluid 
velocity decreases with the increase of . This is 
because for higher value of  the boundary layer 
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becomes thicker. The temperature profile for 
different values of  for a fixed value of  is 
plotted in figure 7. As it can be noticed, an increase 
in the wall thickness parameter results in an 
increase of the temperature of fluid. 
 

 
Fig. 5. Temperature profile for  with 

2,3Pr,2,5.1,5.0  Nrm . 

 

 
Fig. 6. Velocity profile for  with 

2,3Pr,2,2  Nrm . 

 

 
Fig. 7. Temperature profile for  with 

2,3Pr,2,5.1,2  Nrm . 
 

Figure 8 shows the effect of on the velocity profiles 
for the fixed values of other parameters. One can 
clearly observed that velocity increases with the 
decrease of and reverse effect can be found when. 
This indicates that the momentum boundary 
thickness becomes thinner as increases along the 
sheet. For a constant valued of temperature 
increases with the increase of as shown in figure 9. 
From equation (13), one knows that if the problem 
reduces to flat sheet problem. 

Figure 10 depicts the effect of Prandtl number 
Pr on temperature distributions for a fixed value of 
 . An increase in Prandtl number reduces the 
thermal boundary layer thickness. Prandtl number 
signifies the ratio of momentum diffusivity to 
thermal diffusivity. Fluids with lower Prandtl 
number will possess higher thermal conductivities 
so that heat can diffuse from the wall faster than for 
higher Pr fluids. Hence Prandtl number can be used 
to increase the rate of cooling in conducting flows. 
From figure 11, it is observed that an increase the 
value of thermal radiation parameter Nr produces a 
significant increase in the thickness of the thermal 
boundary layer, so the temperature distribution 
increases with increasing the value of Nr. 
 

 
Fig. 8. Velocity profile for m with 

2,3Pr,5.0,2  Nr . 

 

 
Fig. 9. Temperature profile for m with 

2,3Pr,5.0,5.1,2  Nr . 

 

 
Fig. 10. Temperature profile for Pr with 

2,2,5.0,2  Nrm . 
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Table 3 Skin friction coefficient )0(f   and Nusselt number )0(  for different values of 

mNr ,Pr,, and   

  Pr  Nr  m    5.0  5.1  

     )0(f   )0(   )0(f   )0(   

0.5 3 2 2 3 0.612784 0.820352 0.852615 1.040076 
1.0     0.582278 0.749220 0.820171 0.964867 
1.5     0.553279 0.683084 0.788808 0.893380 
0.5 2 2 2 3 0.612784 0.668615 0.852615 0.869990 

 3    0.612784 0.820352 0.852615 1.040076 
 4    0.612784 0.946463 0.852615 1.178240 

0.5 3 1 2 3 0.612784 1.025809 0.852615 1.264194 
  2   0.612784 0.820352 0.852615 1.040076 
  3   0.612784 0.701657 0.852615 0.907529 

0.5 3 2 -0.25 3 0.287866 1.013823 0.062329 1.082265 
   0  0.437557 0.929517 0.504290 1.063871 
   0.25  0.501850 0.888662 0.640387 1.054115 

0.5 3 2 2 0.5 0.415718 0.849439 0.575779 1.018303 
    1.5 0.551059 0.828760 0.765721 1.033967 
    3 0.612784 0.820352 0.852615 1.040076 

 

 
Fig. 11. Temperature profile for Nr with 

3Pr,2,5.0,2  m . 
 

One can note down that momentum equation and 
heat transfer equation are mutually coupled and the 
skin friction and Nusselt number coefficient are 
very important in engineering applications. 
Therefore the values of )0(f  and )0(  are 
presented in Table 3 for various values of governing 
parameters at 1 and 1 . It can be seen from 
the table that the effect of increasing the values 
of is to increase the skin friction, whereas 

,m are decreases. Similarly the increasing values 

of  ,,, mNr  is to increase the Nusselt number but 

the opposite effect can be seen in Pr . Also one can 
observe that there is no change in the skin friction 
when Pr  and Nr  varies. 

6. CONCLUSIONS 

The main results of present investigation can be 
listed below. 

 Velocity boundary layer thickness decreases 
with increasing velocity ratio parameter. 

 An increase in the Casson parameter decreases 
the velocity field and increases the temperature 
field. 

 Larger values of wall thickness parameter 
increase the velocity and temperature boundary 
layer thicknesses. 

 Velocity decreases and temperature increases 
with the increase of velocity power index.  

 Increase of Prandtl number reduces the thermal 
boundary layer thickness. 

 Temperature increases with increasing values of 
the radiation parameter. This phenomenon is 
approved to a higher effective thermal 
diffusivity. 
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