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ABSTRACT 

The present work inspects the entropy generation on radiative heat transfer in the flow of variable thermal 
conductivity optically thin viscous Cu–water nanofluid with an external magnetic field through a parallel 
isothermal plate channel. Our approach uses the power series from the governing non-linear differential 
equations for small values of thermal conductivity variation parameter which are then analysed by various 
generalizations of Hermite- Padé approximation method. The influences of the pertinent flow parameters on 
velocity, temperature, thermal conductivity criticality conditions and entropy generation are discussed 
quantitatively both numerically and graphically. A stability analysis has been performed for the rate of heat 
transfer which signifies that the lower solution branch is stable and physically acceptable, whereas the upper 
solution branch is unstable. 

Keywords: Channel flow; Thermal radiation; Variable thermal conductivity; Nanofluid; Irreversibility 
analysis; Bifurcation. 

NOMENCLATURE 

B0 magnetic induction 
b dimensional length of the channel  
Br Brinkman number 
Cp specific heat of fluid at constant pressure  
g gravitational acceleration  
Gr Grashof number 
H Hartmann number 
N dimensionless pressure gradient  
Nu local Nusselt number
p  dimensional pressure  

P dimensionless pressure      
R Radiation parameter 
T0 ambient temperature   

T dimensional temperature

Ta temperature of upper heated plate   
u  dimensionless velocity 
v  velocity component along the y axes 

  thermal conductivity variation parameter 
  thermal expansion coefficient  

  nanoparticle volume fraction  
  dimensionless channel width 
  thermal conductivity of the fluid   
  dynamic viscosity of the fluid  
  kinematic viscosity of the fluid
 dimensionless temperature
  density of the fluid 
  electrical conductivity 

1. INTRODUCTION

Enhancing the heat transfer performance is essential 
in many industrial and engineering applications, 
such as heat exchangers, chemical processing 
equipment, electronic equipment cooling and so on. 
Heat transfer acts a significant role in many fields 
where the heating and cooling processes involved. 
Any substance with a temperature above absolute 

zero transfers heat in the form of radiation. Thermal 
radiation always exits and can strongly interact with 
convection in many situations of engineering 
interest. However, radiative heat transfer has a key 
impact in high temperature regime. Many 
technological processes occur at high temperature 
and good working knowledge of radiative heat 
transfer plays an instrumental role in designing the 
relevant equipment. In Cogley et al. (1968), the 
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differential approximation for radiative heat transfer 
in a nonlinear equation for gray gas near 
equilibrium was proposed. The thermal 
conductivity of the fluid had been assumed to be 
constant in many studies. However, it is known that 
this physical property may change significantly 
with temperature. For a liquid, it has been found 
that the thermal conductivity  varies with 
temperature in an approximately linear manner in 
the range from 0 to 4000F, as Kay (1966). Yasir et 
al (2011) analyzed the effects of variable viscosity 
and thermal conductivity on the flow and heat 
transfer in a laminar liquid film on a horizontal 
stretching sheet. Pinarbasi et al. (2011) investigates 
the effect of variable viscosity and thermal 
conductivity of a non-isothermal, incompressible 
Newtonian fluid flowing under the effect of a 
constant pressure gradient at constant temperatures 
in plane Poiseuille flow using Chebyshev 
pseudospectral method. Sadık et al. (2011) studied 
the effect of variable thermal conductivity and 
viscosity on single phase convective heat transfer in 
slip flow.  

In the past few years, several simple flow problems 
associated with classical hydrodynamics have 
received new attention within the more general 
context of magnetohydrodynamics (MHD). A 
survey of MHD studies in the technological fields 
can be found in Moreau (1990). The small 
disturbance stability of MHD plane-Poiseuille flow 
was investigated by Makinde and Motsa (2001). 
Makinde (2003) analyzed magnetohydrodynamic 
stability of Plane Poiseuille flow using multideck 
asymptotic technique. It is observed in his analysis 
that the magnetic field has a stabilizing effect on the 
flow and that this stability increases with an 
increase in Hartmann number. Patra et al. (2014) 
examined radiation effect on MHD fully developed 
mixed convection in a vertical channel with 
asymmetric heating where they observed that an 
increase in radiation parameter leads to a decrease 
in the fluid temperature in the channel.  

Kwak and Kim (2005) showed that heat transfer 
efficiency can be improved by increasing the 
thermal conductivity of the working fluid. Due to 
heat transfer mostly used fluids such as water, 
ethylene glycol, and engine oil have relatively low 
thermal conductivities compared to the thermal 
conductivity of solids. High thermal conductivity of 
solids can be used to increase the thermal 
conductivity of a fluid by adding small solid 
particles to that fluid. The feasibility of the usage of 
such suspensions of solid particles with sizes on the 
order of millimeters or micrometers was 
investigated by various researchers and significant 
advantages were observed in Khanafer et al. (2003). 
Recent advances in nanotechnology have allowed 
authors to study the next generation heat transfer 
nanofluids, a term first introduced by Choi (1995). 
Nanofluids are engineered dilute colloidal 
dispersions of nano-sized (less than 100 nm) 
particles in a base fluid as Das et al. (2007). 
Nanoparticles have unique chemical and physical 
properties in Oztop and Abu-Nada (2008) and have 
better thermal conductivity and radiative heat 

transfer compared to the base fluid only.  

For any thermal system, as the entropy generation 
increases, the energy decreases. Thus, to enhance 
the efficiency of the system, the rate of entropy 
generation must be effectively controlled. The idea 
of thermodynamic irreversibility is central to the 
understanding of entropy. Everyone has an intuitive 
knowledge of irreversibility. The second law of 
thermodynamics states that all real processes are 
irreversible. Entropy generation provides a measure 
of the amount of irreversibility associated with real 
process. Bejan (1996) studied the entropy-
generation for forced convective heat transfer due to 
temperature gradient and viscosity effects in a fluid. 
Bejan (1979) also presented various reasons for 
entropy-generation in applied thermal engineering 
where the generation of entropy destroys the 
available work of a system. The effect of thermal 
radiation and variable viscosity on entropy 
generation rate in the flow of optically thin fluid 
through channel was analysed by Makinde (2009) 
using Hermite–Padé approximation method.  Mah 
et al. (2012) studied the entropy generation 
characteristics in a fully-developed forced 
convection flow of Al2O3–water nanofluid in a 
circular micro-channel. The results showed that 
when viscous dissipation effects are taken into 
account, the addition of nanoparticles increases the 
entropy generation rate and reduces the heat transfer 
effect since the greater thermal conductivity and 
viscosity of the nanofluid enhances both the heat 
transfer irreversibility and the fluid friction 
irreversibility. Chen et al. (2014) studied heat 
transfer and entropy generation in fully-developed 
mixed convection nanofluid flow in vertical 
channel. They analysed the effects of viscous 
dissipation on the entropy generation within vertical 
asymmetrically heated channels containing mixed 
convection flow.  

However, the thermal boundary layer equation for 
variable thermal conductivity fluids in the presence 
of thermal radiation construct a nonlinear problem 
and the solution behavior will present an imminent 
into complex physical process of thermal instability 
in the system. Moreover, the models on classical 
semi-analytical methods have experienced a revival, 
in connection with the scheme of new hybrid 
numerical-analytical techniques for nonlinear 
differential equations, such as Hermite–Padé 
approximation method.  

Taking into account the significance of variable 
thermal conductivity and thermal radiation effect on 
entropy generation rate in the flow of MHD 
conducting viscous nanofluid through a channel 
with non-uniform wall temperature is studied 
applying Hermite- Padé approximation. A stability 
analysis is also performed to show the physically 
realizable in practice of local Nusselt number due to 
thermal conductivity criticality. Results of the 
velocity, temperature, volumetric entropy 
generation rate and Bejan number for various values 
of the involved parameters are presented 
graphically.    
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2. MATHEMATICAL 
FORMULATION 

Consider the steady, incompressible and laminar 
variable thermal conductivity flow of Cupper –
water nanofluid in a parallel-plate channel. A two-
dimensional Cartesian coordinate system is used 
and the flow is chosen along the x-direction under 
constant pressure gradient.  

The top and bottom wall temperatures are non-
uniform under radiative heat transfer and an 
externally homogeneous magnetic field is applied 
vertically to the top wall. The equations of 
continuity, momentum and energy considering 
viscous dissipation and buoyancy force for the 
problem are 
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Since the velocity is only along x-direction and 
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The boundary conditions are: 
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The corresponding dynamic viscosity, effective 
density, effective thermal conductivity and heat 
capacity of the nanofluid by Sreenivasulu and 
Reddy (2015) are    
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where  is the solid volume fraction of 
nanoparticle. 

The effective electrical conductivity of nanofluid 
was presented by Sheikholeslami (2012) as:  
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where U is the mean velocity. 

The non-dimensional form of the Eqs (5)-(6) are 
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Eqs (10)-(11) will be solved using both power 
series and Hermite- Padé approximation method. 

3. SERIES ANALYSIS 

The following power series expansions are 
considered in terms of the parameter  as equation 
(11) is non-linear for temperature field 
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The obtained power series solutions are valid for 
very small values of . Therefore, the series are 

analysed applying Hermite- Padé approximation 
method, as demonstrated in the following section. 
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4. HERMITE-PADÉ APPROXIMANTS 

The idea of thermal conductivity criticality or non-
existence of steady-state solution to nonlinear 
thermal boundary layer equations for certain 
parameter values, is extremely important from 
physical point of view. This typifies the thermal 
stability conditions of the materials under 
consideration and the onset of thermal runaway 
characteristics. To compute the criticality 
conditions in the system, we shall employ a very 
efficient solution method, known as Hermite-Padé 
approximants, which was first introduced by Padé 
(1892) and Hermite (1893). 

We say that a function is an approximant for the 
series 
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if it shares with S the same first few series 

coefficients at 1 . Thus, the simplest 

approximants are the partial sums of the series S . 
When the series converges rapidly, such polynomial 
approximants can provide good approximations of 
the sum.  

In the Padé method, the approximant is sought in 
the class of rational functions. When applied to the 
Nth partial sum of the series (15), it involves the 

construction of two polynomials in , say )0(
NP and 

)1(
NP , such that NPP NN  1degdeg )1()0( and   

)()1()0( N
NN OPSP    as 1                    (16) 

The rational approximant NS  is then defined by  
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We emphasize that only the first N coefficients ns  

of the series S are required in order to construct the 
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NP The second equation in (16) can be expressed 

as a linear system of equations for the unknown 
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coefficients of the polynomials .)(l
NP In order to 

obtain a unique solution, one must normalize in 
some way; for example by setting  

1)0()0( NP    

The first equation in (16) then simply ensures that 
the matrix associated with the system is square. The 
poles of NS  are the zeros of the polynomial 

)0(
NP and the hope is that one of these zeros, say 

,,Nc tends to the location, say ,c of the dominant 

singularity of S as N increases. In practice, one finds 
that the method is most accurate when the dominant 
singularity of S is a pole. 

The principle underlying any approximant method 
is that the problem to which it is applied is replaced 
by a more tractable problem involving polynomial 
coefficients. Given a particular problem, the ideal 
approximant method replaces it by one that is rich 
enough to reproduce the essential features of the 
true solution, but simple enough that these features 
can be deduced easily once the polynomial 
coefficients are known. 
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For functions with logarithmic or algebraic 
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method. For instance, suppose that 
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where the numbers NNN SS ,,1,,0 and Nc, can be 

deduced easily from the polynomials )(l
NP . Thus, if 

the assumption (20) is valid, then these numbers can 
provide good approximations of the true singularity 
parameters ,1,0 SS and c for N sufficiently large.  

Alternatively, one may use 

,1,1)( dlSDS ll      

where D denotes differentiation with respect to , 
and define a differential approximant NS of S by 

.0.............. )(2)1(1)0(   d
NN

d
NN

d
N PSDPSDP  

 (23) 

In order to characterize the approximant 

NS completely, one must choose the degree of each 

of the polynomials )(l
NP in (18). A popular strategy 

is to take 

,deg.....deg )()0( d
NN PP   d fixed and .N  

(24) 

In the case of algebraic approximants, we take 
)(l

NP so that 

Nd
N

d
N

d
N SSPSPSP )]0()([.............. )(1)1()0(   

 for ........,,1,0 dN   

In the case differential approximants, we set, for  
........,,1,0 dN    









,if1

,if0)(

Ndl

Ndl
P l

N  

and let )(l
NP for Ndl   be constants such that 

(19) holds. Such constants can be calculated by 
solving a simple linear system of equations. 

Drazin and Tourigny (1996) proposed a different 
strategy for constructing algebraic approximants in 
which one takes 

lP l
N )(deg  for dl 0  and 

)3(
2

 d
d

N as .d                                     (25) 

Generically, the singularities Nc,  of 

NS correspond to zeroes of the leading coefficient. 

Hence 

.0)( ,
)0( NcNP   

 If the singularity is of algebraic type, then the 
exponent   may be approximated by  

 
 NcN

NcN
N

DP

P
d

,
)0(

,
)1(

2



  .                         (26) 

Khan (2002) introduced High-order differential 
approximant (HODA) as a special type of 
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differential approximants. 

5. ENTROPY GENERATION 

Flow properties inside a channel with isothermal 
walls in the presence of thermal radiation and MHD 
effect are irreversible. The exchange of energy and 
momentum, within the fluid and at solid boundaries 
causes inequilibrium conditions which leads to 
continuous entropy generation. Following Bejan 
(1996) the volumetric entropy generation rate is 
given as 

2

0

2

2

0























 

yd

ud

Tyd

Td

T
E nf

G


                      (27) 

Where the first term on the right side of equation 
(27) is the irreversibility due to heat transfer and the 
second term is the irreversibility due to viscous 
dissipation. The entropy generation number can be 
expressed in dimensionless form as 

 
2

5.2

2

2

0

22

0

)1()( 






















 dy

duBr

dy

d

TT

EbT
N

a

G
S 




  (28)  

Where 
0

0 )(

T

TTa 
 is the temperature difference 

parameter and 
2

1 









dy

d
N


,  

2

5.22 )1( 










dy

duBr
N


 

In general, the entropy generation number sN given in 

Eq. (28) provides a useful means of producing entropy 
generation profiles. However, it gives no indication as 
to the relative contributions of the fluid heat transfer 
and fluid friction effects. Thus, the parameter, Bejan 
number Be is commonly used in its place. 

The Bejan number is given as  
SN

N
Be 1  

It is noteworthy that the Bejan number ranges from 
0 to 1 and 0Be is the limit where the 
irreversibility is dominated by fluid friction effects. 

1Be is the limit where the irreversibility due to 
heat transfer dominates the flow system because of 
finite temperature differences. The contributions of 
heat transfer and fluid friction to entropy generation 

are equal when 2
1Be . 

6. RESULTS AND DISCUSSION 

In this paper we focus on the combined effect of 
thermal radiation and temperature dependent 
variable thermal conductivity on the entropy 
generation of MHD nanofluid flow in channel. The 
minimum entropy conditions provide the possibility 
of achieving the maximum available work. The 
densities of the base fluid and Cu-nanoparticles are 

respectively 998.1 ( 3kg/m ), 8933( 3kg/m ). It is 
essential to note here that Eq. (13) can be used to 
approximate the series for the wall heat flux 
parameter in terms of Nusselt number 

dy
dNu   at .1y  

In the present study, the nanoparticle volume 
fraction is specified in the range of 

%,10%0  where a value of 0 indicates the 
pure base fluid. In addition, the thermal 
conductivity variation parameter is assigned in the 
range of 9.01.0   , the radiation parameter 

100  R , the Brinkman number 501  Br , the 
Hartmann number 40  H . The Grashof number 
and dimensionless pressure gradient kept fixed at 

.1,1  NGr  

6.1   Stability Analysis 

Table 1 represents that the critical values of thermal 
conductivity variation parameter c increase with a 

positive increase in the values of radiation parameter 
R and the values of c indicates that c is a branch 

point. Therefore, it is significant to notice from the 
table that as the radiation effect enhances, the 
progress of thermal runaway reduces and the thermal 
stability in the system improves. While the negative 
values of radiation parameter may lessen the 
magnitude of the criticality parameter and accelerate 
thermal runaway in the system. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Geometry of the problem. 
 

However, in presence of nanofluid ( %5 ), both 

the rate of heat transfer Nu and c enhances as R 

increases. This implies that the heat transfer 
performance is higher in nanofluid than base fluid. 
Finally the values of c in Table 1 give an idea 

about the onset of thermal instability and its nature 
numerically. A segment of bifurcation diagram for 
different values of d in the ),( Nu plane is noticed 

in Fig. 2(a) using Drazin-Tourigny Approximants. 
It is interesting to notice that there are two solution 
branches (I and II) of Nusselt number when 

,c  one solution when ,c  and no solution 

when ,c  where c is the critical value of 

 for which the solution exists. The stability 
analysis indicates that the lower solution branch (II) 
is stable and physically realizable. For different 
values of d, the upper solution branch (I) is unstable  

y

x  ·
U

g  )( yu

0B

00 TTu   

aTTu  0

by   

by   



M. d. S. Alam et al. / JAFM, Vol. 9, No. 3, pp. 1123-1134, 2016.  
 

1129 

Table 1 Numerical calculations showing thermal conductivity criticality for different parameter values 
using High-order Differential Approximants at 1,1,1,1  NHGrBr . 

R    c  c  Nu 

0.5 0 -0.72295638183 0.489985004 -0.1897709072 

1 0 -0.53565727924 0.464278610 0.1864302964 

2 
0 -0.37733219733 

0.449667446 
0.5561558067 

5 
0 -0.21641937233 

0.456544910 
1.130723424 

2 
0.05 -0.37328441444 

0.449147585 
0.6115499181 

5 
0.05 -0.21567016329 

0.453808805 
1.154478277 

 

 

 
(a) 

 
(b) 

Fig. 2. Approximate bifurcation diagrams of   

in the ))1(,( Nu  plane (a) for different d and 

(b) for different R obtained by Drazin-Tourigny 
method (1996) for ,1,1  GrN  

3,1,1,1  dRHBr . 
 

and physically unacceptable as shown in Fig. 2(a). 
Figure 2(b) represents the effect of radiation 
parameter R on the bifurcation diagram in the way 
that the bifurcating point increases as R increases 
uniformly and produces more instability to the 
upper solution branch (I). The numerical values in 
Table 1 are also consistent with the lower solution 

branch of Nu as R increases for negative values 
of in Fig. 2(b). Moreover, the local rate of heat 
transfer decreases very slowly in lower solution (II) 
as R increases due to radiative heat loss for positive 
increase of . 
 

 
Fig. 3. Velocity profile for different values 

of  at 1,1,1,1,1  HBrGrNR . 

 

6.2 Effect of Thermal Conductivity 
Variation Parameter 

Figures 3-6 represent the effects of thermal 
conductivity variation parameter on velocity 
profiles, temperature distribution, entropy 
generation rate sN and distribution of Bejan 

number Be respectively. It is observed in Fig. 3 that 
increasing value of   results in slow increment in 
fluid velocity and for nanofluid there is a significant 
improvement in fluid motion approximately by 

%20 along the centerline region as  increases. As 

the thermal conductivity increases, the heat is more 
readily transferred particularly in nanofluid which 
leads to enhancement of fluid velocity within the 
centerline. A decrease in the fluid temperature 
around the central region of the channel is observed 
in Fig.4 due to the escalating values of .  The 
increases of thermal conductivity variation 
parameter produce more heat transfer within the 
channel centerline region and reduce dimensionless 
temperature distribution. Furthermore, due to the 
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higher thermal conductivity coefficient of the 
nanofluid, the heat is more keenly transferred.  

 
Fig.4. Temperature profile for different values of 

 at .5.0,1,1,1,1  RBrGrNH  

Generally, the value of 2N i.e., the entropy 

generated by fluid friction is larger than that of 

1N i.e., the entropy produced by fluid heat transfer. 

As a result, SN  is contributed mainly by 

2N throughout the entire flow field. However, in 

the areas of the flow field characterized by a faster 
flow rate, the velocity gradient is reduced, and thus 

2N also reduces. In the present parallel channel, 

SN gradually reduces to zero at 5.0y as shown 

in Fig.5. In this particular region of the flow field, 
fluid friction effects play only a minor role, and 
thus SN  is contributed mainly by 1N . 

 
Fig. 5. Entropy generation rate for different 

values of : .1,1,1,1,1  RHBrGrN  
 

Figure 5 illustrates the entropy generation rate 
when is increasing and other parameters remain 
constant. The entropy production number SN  

closely similar from lower wall to centerline and 
then to the upper wall for lesser values of , but for 

rising values , SN increases rapidly in base fluid 

and further in nanofluid in the region above the 
centerline to the hot wall. However, in the region 

below the centerline to the cold wall SN decreases 

as increases, because the dominant effect of heat 
transfer occurs at the upper hot wall. 

Figure 6 displays the distribution of the Bejan 
number (Be) versus the channel width for thermal 
conductivity variation parameter . It is noticed 
that Be has a value of less than 1 on either side of 
the channel since, as discussed previously, the 
velocity gradient is increased at the cold and hot 
sides of the channel, and hence SN  is contributed 

initially by 2N . In the central region of the flow 

field, Be increases to a maximum value of 1 due to 
the reduction in the velocity gradient and the 
corresponding increase in the contribution of 1N to 

the overall entropy generation. It is to be seen that 
heat transfer irreversibility dominates the flow 
process within the channel centerline region, while 
the little influence of fluid friction irreversibility 
can be observed at the walls. It is seen in Fig. 6 that 
from lower cold wall to centerline region Be 
decreases as increases and conversely from 
centerline region to upper hot wall Be increases 
as  increases. 

 
Fig. 6. Bejan number for different values of : 

.1,1,1,1,1  RHBrGrN  

6.3   Effect of Radiation Parameter 

The influences of radiation parameter on velocity 
profiles,  

temperature distribution, entropy generation rate 

sN and  

distribution of Bejan number Be are depicted in 
Figs.7-10. Figure 7 shows that the velocity slowly 
decreases as R increases and a decrement of nearly 

%12 in the velocity at centerline is seen in 

nanofluid when R increases due to radiation heat 
loss. The temperature decrease is further 
strengthened with rising values of the radiation 
parameter R for base fluid and nanofluid shown in 
Fig. 8. As R increases, the rate of heat loss 
accelerates around the center of the channel that 
generates reduction of the temperature profiles. As 
nanofluid exhibits higher rate of heat transfer, the 
reduction of the temperature profile becomes faster 
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in nanofluid as shown in Fig. 8. 

 
Fig. 7. Velocity profile for different values of R at 

,1,1,1,1  HBrGrN 1.0 . 

 

 
Fig. 8. Temperature profile for different values 

of R at .3.0,1,1,1,1  BrGrNH  
 

Figure 9 depicts the similar conjecture for SN  as 

 when R increases except the reduction of SN in 

nanofluid around the upper hot wall due to the 
lesser viscous dissipation effect. It is to be noted 
from Fig.10 that heat transfer irreversibility 
dominates the flow process within the channel 
centerline region, while the little influence of fluid 
friction irreversibility can be observed at the walls. 
It is also seen in Fig. 10 that from lower cold wall to 
centerline region Be decreases as R increases and 
conversely from centerline region to upper hot wall 
Be increases as R increases. 

6.4   Effect of Hartmann Number 

Figures 11-13 represent the flow characteristics 
with entropy generation due to the effect of 
Hartmann number. In Fig 11 it is depicted that the 
velocity decreases for the positive changes 
of H and a reduction of around %40 in centerline 

velocity is found for the variation of 0H  
to 4H . The variation of H leads to the variation 
of the Lorentz force due to magnetic field and the 

Lorentz force produces more resistance to the fluid 
velocity. 
 

 
Fig. 9. Entropy generation rate for different 

values of R at 
,1,1,1,1  HBrGrN 1.0 . 

 

 
Fig. 10. Bejan number for different values of R 

at ,1,1,1,1  HBrGrN 1.0 . 

 

 
Fig. 11. Velocity profile for different values of H 

at ,1,1,1,1  RBrGrN 1.0 . 
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It is seen from Fig. 12 that Hartmann number H 
acts to reduce the entropy generation rate 
uniformly and SN  is lowest within the channel 

centerline increases towards both the walls 
particularly more at the upper wall. Figure 13 
demonstrates that as Hartmann number H 
increases, the fluid friction irreversibility at the 
walls decreases significantly and further in 
nanofluid. The Lorentz force due to magnetic field 
produces more resistance to the fluid friction 
irreversibility and hence enhances the dominance 
effect of heat transfer irreversibility. 

 

 
Fig. 12. Entropy generation rate for different 

values of H at 1, 1,N Gr   1,Br   

1,R  1.0 . 

 

 
Fig. 13. Bejan number for different values of H 

at ,1,1,1,1  RBrGrN 1.0 . 

6.5  Effect of Nanoparticles solid volume fraction 

The control of nanoparticles volume fraction on 
flow field and entropy generation are presented in 
Figs. 14-16. 

In Fig.14, a uniform reduction in fluid velocity is 
observed as  increases. The equivalent thermal 
expansion coefficient of the nanofluid is less than 
that of base water. As a result, the buoyancy force 
acting on the nanofluid is also less than that acting 

on the pure water, and hence the dimensionless 
velocity is reduced. In addition, since the density 
and viscosity of the nanofluid are greater than those 
of base water, the velocity distribution within the 
channel is more uniform.  

 
Fig. 14. Velocity profile for different values of 

 at .1,1.0,1,1,1,1  RHBrGrN   
 

Figure 15 shows the effect of an increase in volume 
fraction of nanoparticles on entropy generation rate. 
A uniform reduction is observed at the walls 
to SN when  increases. Therefore, nanofluid is 

suitable to reduce the entropy generation rate and to 
enhance the efficiency of the system. The mounting 
values of   causes an identical increment of Be at 
the two walls symmetrically indicating governance 
effect of heat transfer irreversibility for nanofluid as 
shown in Fig.16.  

 

 

Fig.15. Entropy generation rate for different 
values of   at 1, 1, 1, 1,N Gr Br H     

0.1, 1.R    

6.6   Effect of Brinkman Number 

The dimensionless velocity distribution of the flow 
field has a direct effect on the dimensionless 
temperature distribution as the effects of viscous 
dissipation are taken into consideration in the 
present problem. It is noticed from Fig.17 that the 
fluid temperature increases with increasing 
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parametric values of viscous heating parameter Br 
but a minor reduction is seen in presence of 
nanoparticles. The velocity gradient of the pure 
working fluid is greater than that of the nanofluid 
due to the lower viscosity which results in more 
viscous dissipation effect. Furthermore, due to the 
higher thermal conductivity coefficient of the 
nanofluid, the heat is more intensely transferred. 
Hence, the dimensionless temperature of the 
nanofluid is less than that of the base fluid in Fig. 
17. 

 

 
Fig. 16. Bejan profiles for different values of   

at .1,1.0,1,1,1,1  RHBrGrN   

 

 

 
Fig. 17. Temperature profile for different values 

of Br at .1.0,1,1,1,1  RGrNH  
   

Thus thermal radiation and variable thermal 
conductivity play an imperative role to fluid friction 
and heat transfer irreversibility in modeling 
boundary layer flows with nanofluids through a 
channel. Physically the variation of thermal 
conductivity controls the rate of heat transfer. 
Moreover, the point of existence of two solution 
branches of which the lower one is physically 
acceptable, is determined by temperature dependent 
variable thermal conductivity. Finally, thermal 
radiation in presence of nanofluids has a key impact 
on the physical solution. 

7. CONCLUSIONS 

A numerical investigation is performed to the 
radiative heat transfer performance, temperature 
varied thermal conductivity effects and entropy 
generation characteristics of MHD Cu-water 
nanofluid flow through a channel with asymmetric 
heated wall applying Hermite-Padé approximants 
method. The dominating singularity behavior of the 
thermal conductivity variation parameter and the 
thermal stability conditions for two solution 
branches are analysed with the effect of Radiation 
parameter. An increase in the thermal conductivity 
variation parameter advances fluid velocity along 
centerline and reduces temperature distribution. 
Radiation parameter reduces both fluid velocity and 
temperature distribution due to faster heat loss. 
Increasing Hartmann number and nanoparticles 
solid volume fraction cause the reduction of fluid 
velocity near the centerline uniformly because of 
the acting of Lorentz force and reduction of 
buoyancy force respectively. For regions of the 
flow field at a greater velocity gradient, i.e., 
adjacent to the hot and cold walls, the total entropy 
generation rate is dominated by the effects of fluid 
friction. Conversely, in the regions of the flow field 
at a higher and more uniform velocity distribution, 
i.e., the central region of the channel, the total 
entropy generation rate is dominated by the effects 
of fluid heat transfer. 
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