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ABSTRACT 

A characteristic-based approach is developed for thermo-flow with finite volume methodology (FVM) in 
which multidimensional characteristic (MC) scheme is applied for convective fluxes. Artificial 
compressibility (AC) is used, and as a result governing equations take the hyperbolic nature. To obtain 
compatibility equations and pseudo characteristics, energy equation is taken into account in the MC scheme. 
With MC scheme for convective fluxes, no artificial viscosity is required even at high Reynolds numbers. As 
benchmarks, forced convection between parallel plates and forced and mixed convection in a cavity are 
examined for a wide range of Reynolds, Grashof and Prandtl numbers. First-order MC and second-order 
averaging schemes are used for simulate them. Results show the better performance of MC scheme in force 
convection as well as mixed convection. Results confirm the robustness of MC scheme in terms of accuracy 
and convergence, and are in good agreement with the standard benchmark solutions in the literature. 

Keywords: Multidimensional characteristics; Navier-stokes equations; Artificial compressibility; Mixed 
convection; Finite volume method. 

NOMENCLATURE 

cp 
Ec 
g 
Gr 
k 
Nu 
p 
Pr 
Re 
T 
t 
u, v 

specific heat capacity 
Eckert number 
gravitational acceleration 
Grashof number 
thermal conductivity 
local Nusselt number 
pressure 
Prandtl number 
Reynolds number 
temperature 
time 
x–y velocity components 

x, y Cartesian coordinates 

β 
βe
x 
μ 
υ 
ρ 

artificial compressibility coefficient 
thermal expansion coefficient 
coefficient of viscosity 
kinematic viscosity 
density of the fluid 

Subscripts 

ref reference 

1. INTRODUCTION

Many numerical approaches for incompressible 
flows are mainly based on the pressure 
corrections. Artificial compressibility (AC) of 
Chorin (Chorin 1997) is an alternative among the 
others. Where, by the aid of pseudo-time 
derivative, the continuity and momentum 
equations are coupled. Consequently, the 
hyperbolized governing equations admit the 
compressible flow schemes. Flux modeling in 
FVM has been a challenging issue up to now. In 

the meantime, the flux averaging has served in a 
vast part of applications, but its main defect (poor 
stability) is still remaining. Characteristic-based 
schemes have been developed to overcome this 
problem. Tamamidis et al (Tamamidis, Zhang et 
al. 1996) compared the pressure-based and 
artificial compressibility methods for calculating 
laminar steady, incompressible viscous flows. 
The most attractive feature of the AC is its faster 
convergence. The AC requires one adjustable 
parameter for convergence control. While the 
pressure based method typically requires two 
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under relaxation factors. The characteristic based 
(CB) method was extended for two-dimensional 
modified incompressible flows by Drikakis et 
al.(Drikakis, Govatsos et al. 1994). They applied 
CB method for convective fluxes within the FV 
framework. The normal component of convective 
fluxes was used as well to 3D flow. Shakir et al. 
(Shakir, Mohammed et al. 2011) discretized the 
governing equations by upwind differencing, and 
used by SIMPLE method on staggered grid. 
Tmartnhad (Tmartnhad, El Alami et al. 2008) 
carried out a numerical study of mixed 
convection in a trapezoidal cavity. The Navier–
Stokes equations were solved using SIMPLEC. 
Ohwada et al. (Ohwada, Asinari et al. 2011) 
compared the AC and the lattice Boltzmann  
methods(LBM). The robustness of the AC was 
enhanced by introducing a new dissipation term. 
Their results confirmed that the fortified AC is 
more robust as well as accurate than the LBM. 
Gasemi and Razavi (Ghasemi and Razavi 2010) 
developed thermal finite volume LBM. The 
upwind biasing factors based on pressure and 
temperature, were used as flux corrector in the 
thermo-hydrodynamic lattice Boltzmann 
equations. Haeri and Shrimpton (Haeri and 
Shrimpton 2013) used an implicit fictitious 
domain method where the entire domain was 
assumed to be incompressible. They used the 
SIMPLE algorithm with a collocated grid for free 
and forced convections. Srinivasa and Eswara 
(Srinivasa and Eswara 2013) simulated unsteady 
free convection over an isothermal truncated 
cone with variable viscosity and Prandtl number. 
An implicit finite-difference scheme along with 
quasilinearization was used for solving coupled 
thermo-flow equations. Raji et al. (Raji, 
Hasnaoui et al. 2012) utilized SIMPLER for free 
convection in a square cavity. The convective 
fluxes were evaluated by hybrid scheme in which 
the central differences are replaced by first-order 
upwind scheme. Selimefendigil and Öztop 
(Selimefendigil and Öztop 2014) performed 
numerical investigation of pulsating mixed 
convection in a multiply vented cavity for a range 
of Reynolds, Grashof, and Strouhal numbers. The 
convective fluxes in momentum and energy 
equations were solved by QUICK, and SIMPLE 
was used for velocity-pressure coupling. 
Sivasankaran et al. (Sivasankaran, Sivakumar et 
al. 2013) carried out numerical analysis on mixed 
convection in an inclined square cavity with 
different sizes and heater locations. The first-
order upwind and second-order central schemes 
were used for the convective and diffusion 
fluxes, respectively. Billah et al. (Billah, Rahman 
et al. 2011) analyzed mixed convection heat 
transfer in a lid-driven cavity and a heated 
circular hollow cylinder positioned at the center 
of the cavity. A Galerkin weighted residual finite 
element method was adopted to solve the 
governing equations. Santos et al. (dos Santos, 
Piccoli et al. 2011) performed large eddy 
simulation of mixed convection in transient, 
laminar, and turbulent flows in cavities. The 
Smagorinsky model was employed for the sub-
grid treatment. The simulations were based on 

the finite elements. Rehena Nasrin and Abdul 
Alim (Rehena Nasrin and Alim 2014) simulated 
forced convection in solar pipes. They solved 
governing partial equations using the finite 
element simulation with galerkin's weighted 
residual techniques. Ahmad Reza Rahmati 

et al (Ahmad Reza Rahmati, M. Ashrafizaadeh et 
al. 2014) simulated lid-driven cavity flow. They 
used the Multi-Relaxation-Time Lattice Boltzmann 
(MRT-LB) model for large-eddy simulation (LES) 
of turbulent thermally driven flows on non-uniform 
grids. The simulation results showed that lattice 
Boltzmann method is capable to simulate turbulent 
convection flow problems at high Rayleigh 
numbers. 

Here, the MC method is developed for 
incompressible flow with heat transfer and 
mathematical structures of 2D characteristics for 
incompressible termo-flow equations in conjunction 
with AC are derived. By the aid of derived 
compatibility relations, a scheme for incompressible 
flow with heat transfer was presented. The new 
scheme is applied for flow between parallel plates 
and lid-driven cavity flow for a wide range of 
Reynolds, Grashof, and Prandtl numbers, in order to 
show its ability. 

2. GOVERNING EQUATIONS 

The governing equations for incompressible 
thermo-flow can be expressed as   

 ( - ) - ( )  ,dA dy dx dA
t
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(1)  

It is noted that the above system has been modified 
by AC, and nondimensionalized by the following 
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parameters. For facility the " *" has been omitted. 

* * * *

* *
2

,  ,  , ,

-
,  ,

ref ref ref ref

ref
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yu v x
u v x y
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
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
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3. MC SCHEME DERIVATION 

The time axis is considered to be normal to the 
physical plane. Therefore, the pseudo-velocity 
vector is defined as u v  V i j k , where k is the 

unit vector along the time axis. The path traced  out  
by  a fluid  particle  in  "x, y, t"  space  is named the  
pseudo-pathline, The projection of  the pseudo-
pathline  on the physical plane is the particle 
pathline. To determine the characteristics and 
compatibility equations, governing equations are 
multiplied by the unknown parameters, 1  to 4 , 

and summed. Thus, one has 

1 2 . 3 .
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where 1 2 3, , ,    and 4 are unknown constants. 

The vectors with components which are the 
coefficients of the partial derivatives in Eq. (3) are 
defined as following 
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                (4) 

Therefore, Eq. (3) may be transformed to read 

1 2 3 4 0,w w w wd p d u d v d T                          (5) 

where 1wd p  defines the derivative of "p" along 

"W1", etc. Hence Eq. (5) is being the compatibility 
equation of 2D incompressible thermo-flow. Now, 
the normal vector of characteristic surface is 
defined as 

,x y tn n n  N i j k                                          (6) 

where 2 2 1.x yn n   Unknown constants must be 

chosen such that the W vectors to lie on the same 
surface that is called characteristic surface. The 
relation to satisfy this issue reads 

0,    1, 2, 3, 4.j j N. W                               (7) 

Eq. (7) displays four equations with four unknowns. 
To have nontrivial solution i.e. (any σ is not zero) 
the determinant of coefficient matrix must be zero.  
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(8)  

which leads to 
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It should be noted that Eq. (9) has four real roots 
which are displayed as  

t x yn un vn   (double  root),   

21 
( ( ) 4 ).
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(10) 

The tangent vector to characteristic line is expressed 
as  .dx dy dt  L i  j k  Which is perpendicular to 

normal vector (N) then 0N. L . By substitution of 

Eq. (10) in the last relation, the following equations 
are obtained.  
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The first equation shows pseudo-pathline, and the 
second one demonstrates the characteristic surfaces. 
These are shown in Fig. 1.  

The cross-section of characteristic surfaces with the 
physical plane is obtained by numerical solution. 
For this purpose, one needs to define 

cos( ) , sin ( )x yn n   . Then the numerical 

solution of Eq. (11) becomes 
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where "x*" and "y*" denote the cone vertex as 
shown in Fig. 1,  which are obtained for ( 0 < θ < 
2π). The cone cross-section is displayed in Fig. 2 
for different values of "β". In the compressible 
flow, this cross-section is a circle. As   tends to 

larger values the cross-section could become circle. 
In this case,   is the pseudo speed of sound in the 

incompressible flow. 

 

 
Fig. 1. Characteristic surfaces and pseudo path 

line. 
 

 
Fig. 2. Cross-section of pseudo mach cone 

reforming in physical plane. 
 

The first "nt" is substituted by its value in Eq. (7) 
then 
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Above equation on its corresponding characteristic 

line which is demonstrated by Eq. (11), is changed 
into an ordinary differential equation (ODE) as 

0
dT
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 . Other compatibility equations have been 

obtained by the same procedure and are shown as 

For second compatibility equations one sets 
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Similarity for third and fourth compatibility 
equations one assigns 
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Unlike the first compatibility equation, the 
others do not recast into ODE. Therefore, one has to 
use 1D assumption to obtain the other compatibility 
equations. For this purpose, previous procedure has 
been carried out by considering 1D flow. Results 
are obtained as 
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4. FLUX COMPUTATION IN FVM 

The governing equations in discretized form read 
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(17)  
Two schemes are used for calculation of convective 
fluxes, the averaging and MC. In MC scheme 
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convective fluxes are calculated along the 
characteristics. After discretization of compatibility 
equations along their corresponding characteristic 
line one has 

2
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In MC, convective fluxes are calculated at time 
level (n+1); as a result this is semi implicit. By 

simultaneous solution of Eqs. (17), * * *, ,p u and T  

are obtained as 
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(19)  

Point "C" is on the same pseudo line with (*) point 
as displayed in Fig. 1. The projection of these points 
on the physical plane is shown in Fig. 3.  Points "D" 
and "E" are on the same characteristic lines with (*) 
point. These points are displayed in Fig. 4. 

 

 
Fig. 3. Pattern for calculation of convective 

fluxes for energy equation. 

 
Fig. 4. Pattern for calculation of other convective 

fluxes. 

 
There are two methods to obtain , ,p u and T at 

mentioned points. In first way, they are computed 
from cell center that these points stand on it, and 
second technique is interpolation between four cells 
surround these points. Here, first method has been 
used. In flux averaging scheme, convective fluxes 

are calculated as *
, 1,( ) / 2, , ,i j i j p u v       

and .T  

The viscous fluxes demand the computation of 
derivatives at cell faces. For this purpose, Eq. (20) 
on the secondary cell of Fig. 5 is used. The values 
of u, v and T in points "A" and "B" are found by 
averaging from the neighboring cells. 
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Fig. 5. Stencil for discretization of viscous fluxes. 

 
For time discretization, fifth-order Runge-Kutta  is 
utilized as following 
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1 1 3 1
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4 6

)
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p

F
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
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QQ Q
                  (21) 

The viscous dissipation term is neglected in energy 
equation for comparison purpose. At the walls, no-
slip condition is applied, and pressure is 
extrapolated from interior domain. At the inlet, 
velocities and temperatures are given and pressures 
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are extrapolated. At the outlet, pressure is known 
and velocities and temperatures are extrapolated. 
Both plates have constant temperatures, and are 
stationary. For flow in cavity up and down walls are 
at constant temperatures and left and right walls are 
adiabatic. The friction factor and Nusselt number 
are computed by the following relations.  
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5. NUMERICAL RESULTS AND 

DISCUSSION 

To show the scheme performance, two bench marks 
are simulated with first-order MC and second-order 
flux averaging schemes. Benchmark flows were 
solved for a wide range of parameters 
(10<Re<5000, 0<Gr<1E6, 0.7<Pr<70). The friction 
coefficient variation versus length at different 
Reynolds numbers is shown in Fig. 6. The 
developing length is increased by growing 
Reynolds number. The exit velocity is compared to 
the analytical solution in Fig. 7. In Table 1, exit 
Nusselt number is shown at outlet by two 
mentioned methods, and error is estimated by 
comparing them with the analytical solution. In 
fully developed flow between parallel plates by 
exact solution the Nusselt number is 7.56. 

 

 
Fig. 6. f * Re variations versus length at different 

Reynolds numbers. 
 

Nusselt number distribution for different Reynolds 
and Prandtl numbers are shown in Figs. 8 and 9. 
Developing heat length is increased by growing 
Reynolds and Prandtl numbers.  

Comparisons of convergence histories for flow 
between parallel plates and in cavity, for two 
mentioned schemes, are displayed in Figs. 10 and 
11. In both cases faster convergence for MC scheme 
has been achieved. 

 

 
Fig. 7. Verification of exit velocity profile with 

analytical solution at Re=100. 
 

Table 1 Evaluation of exit Nusselt numbers 

 Length 
Grid 
size 

Schemes Nu 
Error 
(%) 

Re=10 1.0 

40*80 
Ave 7.78425 2.97 

MC 7.76694 2.74 

40*40 
Ave 7.89848 4.75 

MC 7.87175 4.40 

Re=100 7.0 

40*20 
Ave 7.5553 0.20 

MC 7.57391 0.45 

100*20 
Ave 7.5592 0.25 

MC 7.56039 0.27 

Re=1000 60.0 

100*20 
Ave 7.47375 0.88 

MC 7.47859 0.81 

200*20 
Ave 7.52242 0.23 

MC 7.52652 0.18 

 

 
Fig. 8. Comparison of Nusselt number 

distributions for different Re at Pr=0.71. 
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Fig. 9. Comparison of Nusselt number 

distributions for different Pr at Re=100. 

 

 
Fig. 10. Comparison of convergence histories for 
flow between parallel plates (Re=100, Pr=0.71). 

 

 
Fig. 11. Comparison of convergence histories for 

the cavity flow (Re=3162, Gr=1E6, Pr=0.71. 

 
Stream lines and isotherms at Gr=0, Gr=1E6 and 
Pr=0.71 at different Reynolds numbers are shown 
and compared with that of Cheng and Liu [20] in 
Figs. 12-14, where good agreement is seen. Their 
results were obtained by fourth-order accurate 
compact form with 128*128 grids. In forced 
convection (Gr=0), by increasing Reynolds the 
secondary vortex that appears in the left and right 
bottom of cavity is being amplified and then 
another secondary vortex appears in the upper left. 

The Richardson number, 
2Re

Gr
Ri   provides a 

measure for the relative importance of the thermal 
natural convection to the lid-driven forced 
convection effect. At high Grashof numbers the free 
convection appears and becomes important. To vary 
Richardson number, Grashof number is fixed at 1E6 
while changing Reynolds number as Re = 316, 
1000, and 3162. This variation yields Ri = 10, 1, 
and 0.1 which covers the natural convection 
dominated to forced convection dominated regimes. 
For Ri >1, the stable temperature gradient 
slowdowns the fluid movements in the middle and 
bottom regions of the cavity, which leads to a 
vertical stratification of temperature distribution in 
these sections. Therefore, the heat transfer is mostly 
through conduction in these areas and convection is 
active in the upper part of the cavity. When Ri < 1, 
the effect of mechanically-driven top lid dominates 
the whole cavity and produces a primary vortex 
with four smaller secondary vortices. To clarify, the 
details are shown in Figs. 15-22. In these figures, 
velocities, temperatures, and local Nusselt numbers 
are displayed. Profiles of horizontal velocity along 
the vertical center lines and vertical velocity along 
the horizontal center lines for different Re, Gr 
numbers are shown in Figs. 15- 18. When Reynolds 
number increases, the velocity extermums become 
larger. By Grashof number growing, the free 
convection becomes more significant. It changes 
stream lines and vortex patterns. Temperature 
distributions along the vertical center line for 
different Grashof, Prandtl, and Reynolds numbers 
are demonstrated in Figs. 19 and 20. At high 
Grashof numbers, temperature variations are more 
uniform than the lower one. At low Grashof 
numbers, temperature gradient is steep on top and 
bottom than the center part of cavity. 

By Prandtl number growing, thermal boundary 
layer thickness becomes thinner and as a result 
temperature gradient gets sharper. The top and 
bottom Nusselt number distributions for different 
Reynolds, Grashof numbers are displayed in Figs. 
21 and 22. Nusselt number on top wall is larger than 
the one at down wall. This is because of steep 
temperature gradient at the top of cavity. The heat 
transfer rate of the top wall generally goes down in 
the trend of the lid motion due to the creation and 
development of thermal boundary layer over the 
surface. On the bottom wall, however, the variation 
of the local heat transfer rate is more complex, and 
demonstrates local extermum because of the act of 
the primary and secondary vortices, especially for 
the forced convection conquered flow. The results 
obtained by MC and Averaging are compared with 
that of Iwatsu et al. [21] through Figs 15-22. They 
solved the governing equations by resorting to a 
well-established finite difference numerical 
procedure. Amended version of the MAC method 
was applied. Results were obtained with 256*256 
grids. Good agreement for all test cases is observed 
and the results confirm the superiority of MC 
scheme in terms of convergence and accuracy. 
Results of Figs. 12-22 have been obtained with 
128*128 grids. Grid independence is displayed in 
Figs. 23 and 24 for two benchmarks 
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Cheng [20] MC Flux averaging 

  

Re=1000 

   

Re=3200 

  

Re=5000 

Fig. 12. Comparisons of stream lines at different Re, Gr=0. 
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Cheng [20] MC Flux averaging 

 

Re=316 

 

Re=1000 

Re=3162 

Fig. 13. Comparisons of stream lines at different Re, Gr=1E6, Pr=0.71. 
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Cheng [20] MC Flux averaging 

   

Re=316 

  

Re=1000 

  

Re=3162 

Fig. 14. Comparisons of isotherms at different Re, Gr=1E6, Pr=0.71. 

 

 
Fig. 15. Comparison of profiles for horizontal 

velocity along the vertical center lines at Gr=100, 
Pr=0.71. 

 
Fig. 16. Comparison of profiles for vertical 
velocity along the horizontal center lines at 

Gr=100, Pr=0.71. 
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Fig. 17. Comparison of profiles for horizontal 

velocity along the vertical center lines at Re=400, 
Pr=0.71. 

 

 
Fig. 18. Comparison of profiles for vertical 
velocity along the horizontal center lines at 

Re=400, Pr=0.71. 

 
Fig. 19. Comparison of temperature 

distributions along the vertical center line at 
Re=400, Pr=0.71. 

 

 
Fig. 20. Comparison of temperature 

distributions along the vertical center line at 
Re=1000, Gr=1E6. 

 
Fig. 21. Nusselt number distributions on the up 
and down wall (Re=400, Pr=0.71, and Gr=1E6). 

 

 
Fig. 22. Nusselt number distributions on the up 
and down wall (Re=400, Pr=0.71, and Gr=100). 

 

Fig. 23. Evaluation of grid independent of flow 
between parallel plates (Pr=0.71). 

 

 
Fig. 24. Evaluation of grid independent of cavity 

flow (Re=400 and Pr=0.71). 
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5. CONCLUSION 

A new scheme for solving incompressible Navier-
Stokes and energy equations is presented. The 
convective fluxes are modeled by flux averaging 
and multidimensional characteristic (MC) methods. 
First-order MC and second-order averaging 
schemes are utilized to simulate flow between 
parallel plates and in a cavity, for a wide range of 
Reynolds, Grashof, and Prandtl numbers. The new 
scheme benefits multidimensional characteristics, 
which have been derived for the first time for 
incompressible thermo-flow equations with artificial 
compressibility within the finite-volume framework 
to evaluate convective fluxes. Since MC applies 
characteristic compatibility equations, it presents 
stable solutions and without any artificial 
dissipation even at higher Reynolds numbers. Good 
agreement for all the test cases is observed, and 
results confirm the superiority of MC scheme in 
terms of convergence and accuracy. 
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