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ABSTRACT 

In the present article, radiation effect on mixed convection boundary layer flow of a viscoelastic fluid over a 
horizontal circular cylinder with constant heat flux has been numerically analyzed. The governing boundary 
layer equations are transformed to dimensionless nonlinear partial differential equations. The equations are 
solved numerically by using Keller-box method. The computed results are in excellent agreement with the 
previous studies. Skin friction coefficient and Nusselt number are emphasized specifically. These quantities 
are displayed against the curvature parameter. The effects of pertinent parameters involved in the problem 
namely effective Prandtl number and mixed convection parameter on skin friction coefficient and Nusselt 
number are shown through graphs and table. Boundary layer separation points are also calculated with and 
without radiation and a comparison is shown. The presence of radiation helps to decrease or increase the skin 
friction coefficient for the negative or positive values of the mixed convection parameter accordingly. The 

decrease in value of effective Prandtl number helps to increase the value of skin friction coefficient and 
Nusselt number for viscoelastic fluids. 

Keywords: Mixed convection; Boundary layer flow; Thermal radiation; Effective Prandtl number; Numerical 
solution.

1. INTRODUCTION

Mixed convection flows over horizontal circular 
cylinders are very important in the circumstances 
often encountered in the cases of geothermal power 
generation and drilling operation when the free 
stream velocity and induced buoyancy velocity are 
of comparable order. It becomes one of the most 
important problems due to its fundamental nature as 
well as many engineering applications. A literature 
survey reveals that Merkin (1977) was the first one 
who gave comprehensive analysis of mixed 
convection boundary layer flow over a horizontal 
circular cylinder. He investigated boundary layer 
separation point along surface of the cylinder. Later 
on Badr (1983) studied mixed convection heat 
transfer from an isothermal horizontal circular 
cylinder and Nazar et al. (2004) studied mixed 
convection boundary layer flow from a horizontal 
circular cylinder with constant surface heat flux. 
Recently, Bhuiyan et al. (2014) analyzed Joule 
heating effects on MHD natural convection flows in 
presence of pressure stress work and viscous 

dissipation from a horizontal circular cylinder.  

In recent years, the flow of viscoelastic fluids has 
gained considerable interest due to its applications 
in engineering and several manufacturing processes 
e.g., petroleum drilling, manufacturing of food,
paper, paints, coating, inks and jet fuels etc. The
viscoelastic fluid is of second grade nature. A
comprehensive discussion on second and third order
fluid was done by Dunn and Rajagopal (1995).
Ariel (1995), Rajagopal et al. (1986) and Rajagopal
(1986) also studied viscoelastic fluids in different
geometries. It is very necessary to mention the work
done by Cortell (2006), Abel et al. (2002), Hayat et
al. (2008) and Sajid et al. (2010) on second grade
fluids. Anwar et al. (2008) investigated the steady
mixed convection boundary layer flow of a
viscoelastic fluid over a horizontal circular cylinder
with constant surface temperature.

The study of convective heat transfer with thermal 
radiation has great importance especially in the 
processes involving high temperature such as gas 
turbines, nuclear power plants and thermal energy 
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storage etc. Hossain and Thakar (1996) discussed 
the thermal radiation effects using the Rosseland 
diffusion approximation on mixed convection along 
vertical plate with uniform free stream velocity and 
surface temperature. Hossain et al. (1999) 
investigated the thermal radiation of a gray fluid 
which is emitting and absorbing radiation in a non-
scattering medium. Raptis et al. (2004) discussed 
radiative flow in the presence of a magnetic field. 
Hayat et al. (2007) studied the influence of thermal 
radiation on MHD flow of a second grade fluid. 
Sajid and Hayat (2008) investigated the influence of 
thermal radiation on the boundary layer flow due to 
an exponentially stretching sheet. Mukhopadhyay 
(2009) discussed the effect of radiation and variable 
fluid viscosity on flow and heat transfer along a 
symmetric wedge. Prasad et al. (2013) considered 
the problem of MHD flow and heat transfer in a 
power law liquid film at a porous surface in 
presence of thermal radiation. Boundary layer flow 
and heat transfer over a permeable exponentially 
shrinking sheet in presence of thermal radiation was 
investigated by Sharma et al. (2014) by taking 
partial slip conditions into account. Shit and Majee 
(2014) considered hydromagnetic flow over an 
inclined non-linear stretching sheet with variable 
viscosity in presence of thermal radiation and 
chemical reaction. Thermal dispersion-radiation and 
melting effects on mixed convection flow from 
vertical plate embedded in non-Newtonian fluid 
saturated non-Darcy porous medium was 
investigated by Prasad et al. (2014). Very recently, 
Choudhury and Das (2014) studied viscoelastic 
MHD free convective flow through porous media in 
presence of radiation and chemical reaction with 
heat transfer. Radiation effect on natural convection 
laminar flow from a horizontal circular cylinder was 
by Molla et al. (2011). He investigated that due to 
increase in radiation velocity and thermal boundary 
layer thickness increases. From the available 
literature, it appears that radiation effects on mixed 
convection flow of a viscoelastic fluids over a 
horizontal circular cylinder with constant heat flux 
has not yet been considered in literature. 

In present study, we investigate the thermal 
radiation effects on mixed convection boundary 
layer of a viscoelastic fluid over a horizontal 
circular cylinder considering the Rosseland 
diffusion approximation which is extension of the 
work by Kasim et al. (2013). The governing 
equations are transformed into convenient forms 
which are solved numerically by an efficient finite 
difference scheme named Keller-box method. The 
results are compared with those reported by Nazar 
et al. (2004) by taking 0K   (Newtonian case) 
and Pr 1eff   (without radiation) and hence found 

excellently matched. 

2. MATHEMATICAL 
FORMULATION 

We consider the laminar, incompressible mixed 
convection flow of a viscoelastic fluid past a 
horizontal circular cylinder with constant heat flux  

 
Fig. 1. The physical model of the problem. 

in presence of heat radiation. The radius of circular 
cylinder be a  and it is maintained at a constant 

surface heat flux wq . The physical model is 

shown in Fig.1 . It is also assumed that the cylinder 
is kept in a flow of constant free stream velocity 
1
2
U  (Merkin (1977) which is vertically upward so 

that the free stream velocity for the boundary layer 

is  ( ) sin x
e a

u x U .and a constant free stream 

temperature be 
T . Here 0wq   and 0wq   

correspond to assisting flow and opposing flow 
cases respectively. The length of circular cylinder is 
considered long enough to neglect end point effects 
so that the flow field is assumed two dimensional. 
With these assumptions and Boussinesq and 
boundary layer approximations, the basic equations 
governing the flow are 
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where x  and y  are the Cartesian coordinates 

measured along and normal to the surface of the 

cylinder respectively. Here x  is measured from the 

lower stagnation point of the cylinder, u  and v  are 

components of velocity in the x  and y  directions 

respectively,   is kinematic viscosity,   is 

density of the fluid, T  is temperature, pC  is the 
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specific heat at constant pressure, k  is thermal 

conductivity of the fluid and 0k  is the viscoelastic 

material parameter. The third term on the right hand 
side of Eq. (2)  represents the viscoelastic behavior 

of the fluid. The case 0 0k   corresponds to 

Newtonian fluid, g  is acceleration due to gravity, 

rq  is radiative heat flux,   is thermal expansion 

coefficient. The negative sign with the second term 
on right hand side of the Eq. (3)  shows net 
radiative heat flux leaving the control volume. To 
fulfill thermodynamics requirements as suggested 
by Dunn and Rajagopal (1995) , 0k  is considered 

positive. The radiative heat flux rq  is simplified by 

the Rosseland diffusion approximation [see S. 
Rosseland (1936) and Magyari and Pantokratoras 
(2011)] as 

44

3r
R

T
q

a y

 
 


                                                 (4) 

where   is the Stefan-Boltzmann constant, Ra  is 

the Rosseland mean absorption coefficient. For a 
boundary layer flow over a hot surface, Eq. (4)  of 
the net radiation heat flux absorbed in the fluid [see 
Magyari and Pantokratoras (2011)] reduces to  
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Using Eq. (5)  in Eq. (3)  we get  
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where effk
 
is effective thermal conductivity  and is 

defined as 

316
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Let us assumed that the fluid-phase temperature 
differences within the flow is sufficiently small as 
reported by Raptis et al. (2004) so that the 
linearization about the ambient temperature T  

reduces Eq. (5)  as 
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It is worth mentioning here that the use of the 
Rosseland diffusion approximation is valid in the 
interior of a medium but it is not employed near the 
boundaries. It is good only for an optically thick 
boundary layer. Since the expression in Eq. (8)  does 
not contain any term for the radiation from the 
boundary surface, therefore, is not valid to predict a 
complete description of this physical situation near the 
surface. In other words, the boundary surface effects 
are negligible in the interior of an optically thick 
boundary layer region, which is due to the fact that the 

radiation from the boundaries becomes very weak 
before reaching the interior [see Molla et al. (2011)]. 

 Since the governing equations for viscoelastic fluid 
are one order higher than those of Newtonian fluids, 
therefore we need an extra boundary condition 

/ 0u y    as ,y   as suggested by Garg and 
Rajagopal (1990) to solve partial differential Eqs. 
(1,2)  and (6)  numerically. The boundary 

conditions for the considered problem are given by 
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The non-dimensional variables are introduced as 
follows: 
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where Re /aU   is the Reynolds number. After 

substituting Eq. (10),  Eqs. (1,2)  and (6)  go over 

in 
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where K  is the dimensionless viscoelastic 
parameter,   is the constant mixed convection 

parameter,
 

Pr
1

Pr
r

eff N  is the effective Prandtl 

number, rN  being radiation parameter [see 

Magyari and Pantokratoras (2011)] and Pr  is 
Prandtl number which are defined as  
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with 4 2/w effGr g q a k   being the Grashof 

number. The mixed convection parameter   in 
terms of Gr  indicates that 0   corresponds to 

aiding flow ( 0)wq  , 0   corresponds to 

opposing flow ( 0)wq   and 0   corresponds 

forced convection case of the problem. For 0K  , 
we get the case for viscous (Newtonian) fluids. The 
boundary conditions (9)  becomes 
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To solve Eqs. (11 13)  subject to the boundary 

conditions (15) , we assume that ( ) sineu x x  as 

given by Merkin (1977) and introduce the following 
variables: 

( , ), ( , )xF x y x y                                    (16) 

where   and F  are the dimensional and 
dimensionless stream functions respectively such 
that 
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Use of Eqs. (16,17)  in Eqs. (12,13)  gives 
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 where prime denotes differentiation with respect to 
y . 

The physical quantities of principle interest are the 
shearing stress and the rate of heat transfer in terms 
of the skin-friction coefficient fC  and the Nusselt 

number Nu  respectively. For the present problem, 
these are given as 
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where w  and wq  are the wall shear stress and 

surface heat flux respectively which are defined by 
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Use of Eqs. (9,16) reduces Eq. (21) to 
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At the lower stagnation point of the cylinder i.e. at 
0x  , the partial differential Eqs. (18,19) reduce 

to the form 
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where prime denotes differentiation with 
respect to .y  The skin friction coefficient  fC  

and the Nusselt number Nu  reduce to 

1
(0), .

(0)fC xf Nu


                                (27) 

3. NUMERICAL METHOD 

A very useful and an accurate implicit finite 
difference method (Keller-box method) is employed 
to solve the nonlinear system of partial differential 
equations (18, 19) subject to the boundary 
conditions (20) and ordinary differential equations 
(24, 25) subject to the boundary conditions (26) 
which is very well explained by Cebeci and 
Bradshaw (1984) and Salleh et al. (2011). It is 
described briefly in the following steps: 

 the partial differential equations as well as 
ordinary differential equations are expressed in 
form of first order equations in  ,y  which are 

then written in finite difference form by 
approximating the functions and their 
derivatives in form of mean value and central 
differences respectively in both coordinate 
directions, 

 the resulting non-linear finite difference 
equations are linearized by Newton's method, 

 these linearized equations are solved by using 
block-tridiagonal method, for a given value of 
the iterative procedure is stopped when the 
difference in values in consecutive iteration is 
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less than 
1510 . The step size y  in y  as 

well as the edge of the boundary layer y  is 

adjusted for different values of the parameters 
like , K  and Preff  to maintain accuracy in 

the results. Therefore, the step size 0.02y   

and 0.01x   has been taken in present 
numerical study. 

4. RESULT AND DISCUSSION 

To analyze completely the radiation effect on the 
mixed convection boundary layer flow of a 
viscoelastic fluid with heat flux over a circular 
cylinder results for the skin friction coefficient fC  

and Nusselt number Nu  are obtained for some 
values of the mixed convection parameter  , 
viscoelastic parameter K  and effective Prandtl 
number

 
Preff . The comparison of the skin friction 

coefficient fC  and the Nusselt number Nu  for a 

Newtonian fluid ( 0K  ) as a limiting case with 
those reported by Nazar et al. (2004) is illustrated in 
Figs. 2 and 3 . Open circles represent solution 
reported by Nazar et al. (2004) and dashed curves 
are our reproduced results. The  

 
Fig. 2. Comparison of skin friction coefficient 

fC  against the curvature parameter x  for 

0K  (Newtonian fluid) and for various values 

of  . 

 

 
Fig. 3. Comparison of Nusselt number Nu  

against the curvature parameter x  for 0K   

(Newtonian fluid) and for various values of  . 

comparison shows an excellent agreement of our 
results with those reported by Nazar et al. Also the 
Figs. show the effect of radiation on the skin 
friction coefficient fC  and the Nusselt number 

.Nu  In this article, Pr 1eff   shows results without 

radiation and Pr 0.6eff   gives results in presence 

of radiation. 

 

 
Fig. 4. Variation of skin friction coefficient fC

against the curvature parameter x  for 0.2K   
(viscoelastic fluid) and various values of  . 

 

 
Fig. 5. Variation of Nusselt Number Nu  against 

the curvature parameter x  for 0.2K   
(viscoelastic fluid) and various values of  . 

 It is further seen that for 0,   decrease in skin 

friction is observed but for 0,   increase in it has 
been noticed due to the radiation while increase in 
Nusselt number has been observed due to the 
radiation effects. The curves in Figs. 2  and 3  
show that the positive value of mixed convection 
parameter   induces a supporting pressure gradient 
which results into an increase in skin friction 
coefficient fC  and Nusselt number Nu . For the 

case, 0,K   increasing   delays boundary layer 
separation from the cylinder and can be suppressed 
entirely in the range 0 x    by increasing 

( 0)   sufficiently. Figures 4  and 5  are graphs of 

the skin friction coefficient fC  and the Nusselt 

number Nu  against viscoelastic parameter 
0.2K  . The curves are drawn for different values 

of mixed convection parameter 0.2,0,1,2    in 
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absence ( Pr 1eff  ) as well as in presence (

Pr 0.6eff  ) of the radiation. It is importantly 

noticed that presence of radiation ( Pr 0.6eff  ) 

reduces the skin friction for 0   but for 0   
the radiation effect increases the skin friction. The 
figures also show that there is a critical value of 

0   depending upon the viscoelastic parameter 

K  below which a boundary layer solution is not 
possible. The similar effects were reported 
 

Fig. 6. Effect of radiation on skin friction 
coefficient fC  for different values of Preff  

when 0.2K   and 0.2  . 

 

 
Fig. 7. Effect of radiation on Nusselt Number 

Nu  for different values of Preff  when 0.2K   

and 0.2   

by Merkin (1977) for the Newtonian case, the reason 

is that for sufficiently cooled cylinder 0  , the 

natural convection would start at upper stagnation 

point ( )x   and the flow of stream upwards cannot 

overcome the motion of fluid next to cylinder in 
downwards direction under the action of buoyancy 
forces that oppose the development boundary layer. 

Figures 6 and 7  show the effect of radiation for 

0.2 and 0.2.K    It is noticed that the decrease in 

value of effective Prandtl number Preff  leads to 

increase in values of skin friction coefficient fC  and 

decrease in the value of Nusselt number Nu . It is 

due to radiation, surface temperature increases which 
results in increase of the flow rate. Table 1 shows the 

numerical value of the skin friction coefficient fC  

and the Nusselt number Nu  for 0.5   and 

0.5K   for the different values of Preff . The Table 

illustrates that the values of skin friction coefficient 
and the Nusselt number increase with the decrease in

Pr (1,0.6,0.3,0.1)eff . In Fig. 8 , the variation of 

boundary layer separation point sx  with mixed 

convection parameter   is shown for  Pr 1,0.6eff   

and 0.2K  . The dotted curve shows the behavior of 

separation point for Pr 1eff   (without radiation), and 

solid curve gives its behavior for Pr 0.6eff   (with 

radiation). It is pointed out that in both cases; there 

exists a specific value of 0( 0)    below which 

boundary layer does not exist. It also appears that 

presence of radiation increases the critical value 0 . 

 
Fig. 8. Variation of boundary layer separation 

point sx  with   for 0.2K  . 

5. CONCLUSION 

The influence of radiation on mixed convection 
boundary layer flow of a viscoelastic fluid past a 
horizontal circular cylinder with constant heat flux 
has been studied. The boundary layer equations 
governing the flow and heat transfer are 
transformed to non-dimensional, nonlinear system 
of partial differential equations which are then 
solved numerically by a highly accurate implicit 
finite difference scheme (Keller-box method). We 
observed the effect of effective Prandtl number 
Preff  on flow and heat transfer rate as well as the 

boundary layer separation point sx  from the 

surface of the cylinder. The present investigation 
helps to conclude that: 

 the presence of radiation increases the skin 
friction fC  for heated cylinder ( 0)   case, 

but it decreases the skin friction for the cooled 
cylinder ( 0)   case 

 the radiation increases the Nusselt number Nu  

in both cases ( 0, 0)    

 a decrease in the value of effective Prandtl 
number Preff , leads to increase in the value of 

both skin friction fC  and Nusselt number Nu  

 the decrease in value of effective Prandtl  
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Table 1 Values of skin friction coefficient fC  and Nusselt number Nu  for various values of Pr 1eff   

(without radiation), 0.6,0.3  and 0.1  (with radiation) 0.5  , 0.5K   

x Preff=1 Preff=0.6 Preff=0.3 Preff=0.1 

 Cf Nu Cf Nu Cf Nu Cf Nu 

0 0 0.55793 0 0.46499 0 0.36160 0 0.24026 

0.2 0.23878 0.55674 0.25419 0.46406 0.28022 0.36095 0.33580 0.23989 

0.4 0.46582 0.55316 0.49682 0.46128 0.54907 0.35900 0.66040 0.23879 

0.6 0.67007 0.54720 0.71700 0.45666 0.79585 0.35576 0.96322 0.23698 

0.8 0.97318 0.52816 0.90513 0.45022 1.0111 0.35126 1.2349 023447 

1.0 1.0589 0.51508 1.0536 0.44198 1.1874 0.34554 1.4677 0.23129 

1.2 1.0814 0.55930 1.1571 0.43199 1.3193 0.33865 1.6561 0.22749 

1.4 1.0964 0.49967 1.2132 0.42029 1.4044 0.33065 1.7969 0.22311 

1.6 - - 1.2226 0.40697 1.4428 0.32163 1.8893 0.21821 

 
number Preff  results in delay of boundary layer 

separation point sx  
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