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ABSTRACT 

In this work, for the first time, a double multi-relaxation-time lattice Boltzmann method (2-MRT-LBM) is 
proposed to simulate MHD natural convection of nanofluid in a two-dimensional square cavity. The cavity is 
filled with TiO2-water nanofluid and is get under a uniform magnetic field at different angles Ԅ with respect 
to horizontal plane. The proposed numerical scheme is solved the flow field and the temperature field using 
MRT-D2Q9 and MRT-D2Q5 lattice model, respectively. So, the main objective of this work is to show the 
effectiveness of this model to predict the effects of pertinent parameters such as the Rayleigh number        
(103 < Ra < 107), the solid volume fraction (0 % <  < 5 %), the Hartmann number (0 < Ha < 60) and the 
magnetic field angle (0 < Ԅ < 90) on the flow field and temperature field and the heat transfer performance of 
the cavity. The obtained results indicate that the proposed method is a powerful approach to simulate the 
MHD natural convection of nanofluids in a square cavity. Also the numerical results show that for Ra = 105 
and for the range of Hartmann number of this study, the heat transfer and fluid flow depend strongly upon the 
direction of magnetic field. Furthermore, the magnetic field influence on the effect of nanoparticles on the 
heat transfer enhancement is not significant.  

Keywords: Magnetic field; Cavity; Natural convection; 2-MRT-LBM.  

NOMENCLATURE 

B magnetic field strength u, v velocity components in x, y direction 
c magnitude of lattice streaming vectors  x, y cartesian coordinates 
ci lattice streaming vector in i direction 
Cp specific heat α thermal diffusivity 
F external force  volume expansion coefficient 
fi density distribution function t time step 
fi

eq equilibrium density distribution function x lattice spacing 
g gravitational acceleration µ dynamic viscosity of fluid 
gi temperature distribution function Ω collision operator 
gi

eq equilibrium temperature distribution   solid volume fraction 
function Ԅ magnetic field angle 

Ha Hartmann number  electrical conductivity 
k thermal conductivity  density of fluid 
L length of the cavity τ relaxation time 
n lattice number i weighted factor in i direction 
M transformation matrix  kinematic viscosity
m moment Subscripts and Superscripts
Ma Mach number avg average 
Nu local Nusselt number c cold 
Nuavg average Nusselt number eq equilibrium 
p pressure f fluid (pure water) 
Pr Prandtl number h hot
Ra Rayleigh number  i lattice streaming vector direction  
T temperature nf nanofluid
t time s nanoparticle
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1. INTRODUCTION 

The problem of natural convection of electrically 
conducting fluids in the presence of magnetic field 
is one of the major interesting research subjects due 
to its widely engineering applications. For example, 
the effect of convection plays an important role in 
growing crystal from the melt because it can 
account for both heat and mass transfers in the 
liquid phase. These unavoidable hydrodynamic 
movements in crystal growth can be decreased with 
the help of a magnetic field (Vives and Perry, 1987; 
Utech and Flemmings, 1996). 

The study of magnetic field has important 
applications in medicine, physics and engineering. 
Many industrial types of equipment, such as MHD 
generators, pumps, bearings and boundary layer 
control, are influenced by the interaction between 
the electrically conducting fluid and magnetic field. 
The behavior of the flow strongly depends on 
orientation and intensity of the applied magnetic 
field. The exerted magnetic field manipulates the 
suspended particles and rearranges their 
concentration in the fluid which strongly changes 
heat transfer characteristics of the flow. For this 
reason, many researchers have considered the 
magnetic field effects on the fluid flow field in 
different geometries (Aminossadati et al., 2011; 
Mahmoudi et al., 2012; and Rashidi et al., 2013).      

The MHD natural convection has been studied by 
many researchers using experimental, analytical and 
numerical methods. Okada and Ozoe (1992) carried 
out the experiments using molten gallium with 
Prandtl number of 0.024 in a cubical cavity heated 
from one side wall and cooled from the opposite 
wall with all other walls are insulated in the 
presence of different magnetic field direction, and 
found that the external magnetic field in the vertical 
direction was more effective than the magnetic field 
applied parallel to the heated vertical wall. Garandet 
et al. (1992) presented an analytical solution to 
model the effect of a transverse magnetic field on 
natural convection in a two dimensional cavity. 
Rudraiah et al. (1995) numerically studied the 
natural convection of an electrically conducting 
fluid in a rectangular cavity in the presence of a 
magnetic field. They have concluded that the 
average Nusselt number decreases with an increase 
in the Hartmann number and the Nusselt number 
approaches one under a strong magnetic field. 
Pirmohammadi and Ghassemi (2009) numerically 
studied the effect of a magnetic field on natural 
convection heat transfer inside a tilted square 
enclosure. They found that for a given inclination 
angle, as the value of Hartmann number increases, 
the convective heat transfer reduces. Furthermore, 
they achieved that at Ra=104, value of Nusselt 
number depends strongly upon the inclination angle 
for relatively small values of Hartmann number. 
Moreover, they demonstrated that at Ra = 105, φ = 
0° and Ha = 70 isotherms are vertical and therefore 
the main heat transfer mechanism is conduction. 
Sathiyamoorthy and Chamkha (2010) used different 
thermal boundary conditions to examine the steady 
laminar two-dimensional natural convection in the 

presence of inclined magnetic field in a square 
enclosure filled with a liquid gallium. They have 
concluded that the heat transfer decreases with an 
increase of the magnetic field and that the vertically 
and horizontally applied magnetic fields influence 
the heat transfer differently. 

Most of the studies on the natural convection in 
cavities with the magnetic effects have considered 
the electrically conducting fluid with a low thermal 
conductivity. This, in turn, limits the enhancement 
of heat transfer in the cavity particularly in the 
presence of the magnetic field. Nanofluids with 
enhanced thermal characteristics have widely been 
examined to improve the heat transfer performance 
of many engineering applications (Hosseini et al., 
2014, Ahmed and Eslamian, 2015). Khanafer et al. 
(2003) numerically investigated the heat transfer 
enhancement in a two-dimensional cavity utilizing 
nanofluids for various pertinent parameters. They 
tested different models for nanofluid density, 
viscosity, and thermal expansion coefficients. It was 
found that the suspended nanoparticles substantially 
increase the heat transfer rate at any given Grashof 
numbers. Natural convection heat transfer of 
nanofluids in a square cavity, heated isothermally 
from the vertical sides, has been studied 
numerically by Ho et al. (2008). They investigated 
the effect of various formulas for the effective 
thermal conductivity and dynamic viscosity of 
Al2O3-water nanofluid on the heat transfer 
characteristics and showed that the uncertainties 
associated with different models adopted to model 
the nanofluids have a great effect on the natural 
convection heat transfer characteristics in the 
cavity. Santra et al. (2008) showed that heat transfer 
decline with increase of cupper volume fraction in 
water for any Rayleigh numbers. Ghasemi et al. 
(2011) attempted magnetic field effect on natural 
convection in a nanofluid-filled square cavity. They 
have concluded that the heat transfer rate increases 
with an increase of the Rayleigh number but it 
decreases with an increase of the Hartmann number. 
Also exhibited that increase of the solid volume 
fraction may result in enhancement or deterioration 
of the heat transfer performance depending on the 
value of Hartmann and Rayleigh numbers. 

The lattice Boltzmann method (LBM) is a powerful 
numerical technique based on kinetic theory for 
simulating fluid flows and modeling the physics in 
fluids and nanofluids (Succi, 2001; Yu et al., 2003; 
Karimipour et al., 2015). In comparison with the 
conventional CFD methods, the advantages of LBM 
include simple calculation procedure, simple and 
efficient implementation for parallel computation, 
easy and strong handling of complex geometries, 
and others. Kefayati et al. (2011) studied the effect 
of SiO2-water nanofluid for heat transfer 
improvement in tall enclosures by lattice Boltzmann 
method. They obtained that the average Nusselt 
number increases with volume fraction for the 
whole range of Rayleigh numbers and the aspect 
ratios. They also showed that the effect of 
nanoparticles on heat transfer enhances as the 
enclosure aspect ratio increases. Magnetic field 
effect on natural convection heat transfer in an 
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inclined L-shape cavity filled with nanofluid was 
studied by Sheikholeslami et al. (2013). They found 
that enhancement in heat transfer has reverse 
relationship with Hartmann number and Rayleigh 
number.  

Four kinds of thermal lattice Boltzmann equation 
models have been implemented: the passive scalar 
approach, the multispeed approach (MS), the hybrid 
approach, and the double population distribution 
function (DDF) approach. Most works based on the 
DDF approach to model convective flows utilizes 
the Lattice Boltzmann Bhatnagar-Gross-Krook 
(LBGK) method, which is approximated by a 
relaxation process with a single relaxation time 
(SRT). Because of its extreme simplicity, the 
LBGK method has become the most popular lattice 
Boltzmann model in spite of its well-known 
deficiencies. However, this simplicity comes at the 
expense of numerical instability (Lallemand and 
Luo, 2000) and inaccuracy in implementing 
boundary conditions (Ginzburg and D’Humieres, 
2003), at least with regards the multispeed approach 
(He et al., 1998; D’Orazio et al., 2003). These 
deficiencies in the BGK models can be easily 
addressed by using the multiple relaxation-time 
models introduced by D’Humieres (1992). Because 
of their advantages compared to the BGK method, 
the multi-relaxation-time lattice Boltzmann (MRT-
LB) models have been successfully applied to a 
variety of isothermal and non-isothermal flows (Du 
et al., 2006; Niu et al., 2006; Zheng et al., 2008; 
Rahmati et al., 2009).  

Thus, the present study aims at presenting a novel 
passive scalar approach leaning on the multi-
relaxation-time lattice Boltzmann method (MRT-
LBM) with D2Q9 lattice model for solving the flow 
field and the MRT-LBM with D2Q5 lattice model 
for temperature field to simulate the natural 
convection of TiO2-water nanofluid in a square 
cavity under different directions of magnetic field. 
The results of 2-MRT-LBM are validated with 
previous numerical investigations and effects of all 
parameters (Rayleigh number, volume fraction, 
Hartmann number and magnetic field angle) on 
flow field and temperature distribution are also 
considered.  

2. GOVERNING EQUATIONS 

2.1. D2Q9-MRT-LBM Model for 
Simulation of Flow Field  

For a MRT-LB model, a set of density distribution 
functions {fi (x, t)} is defined on each lattice node x. 
The collision step is executed in the moment space 

 while the streaming step is performed in the 
velocity space .  

The equation which is used for solving the flow 
field is given by the following formula: 

1

( , ) ( , )

[ ( , ) ( , ) ] ( , ) ,

i i

eq
i ii

f t t t f t

M S m t m t t

     

  

ix c x

x x F x
  (1) 

where ( , )im tx  and ( , )eq
im tx  are vectors of 

moments,
 0 1 2 8( , , ,..., )Tm m m m m . The 

superscript T denotes transpose vector. Also, the 
force term in eq. (1) is the external force term and is 
defined as follow:  

,x yF FF = i j  

 23 (( sin cos ) ( sin )) ,x iF A v u               (2) 

 23 ( ( ) (( sin cos ) ( cos )) ,y i mF g T T A v v           

where A is defined by:  

2

2
,

Ha
A

n


                                                             (3) 

and Hartmann number is defined as 

/Ha LB   . In this definition σ is electrical 

conductivity, B is the magnitude of the magnetic 
field, n is the lattice number and � is the direction 
of magnetic field. 

The mapping between discrete velocity space and 
moment space is achieved by the transformation 
matrix M which maps the vector ( , )if tx  to the 

vector ( , )im tx :  

m M f and 1 .f M m                      (4)  

In the present work, we use the D2Q9 model (see 
Fig. 1), and the nine discrete velocities are given by:  

(0,0) , 0

(cos[( 1) / 2],sin[( 1) / 2]) , 1 4,

2(cos[(2 9) / 4],sin[(2 9) / 4]) , 5 8

i

i i c i

i i c i

 

 

 


    
    

ic  

 (5) 

where /c x t    is the particle velocity and the 
lattice spacing x  is set to equal 1, as is the time 
step t ( 1x t    ).  

The matrix M for D2Q9 lattice model is:  

1 1 1 1 1 1 1 1 1

4 1 1 1 1 2 2 2 2

4 2 2 2 2 1 1 1 1

0 1 0 1 0 1 1 1 1

,0 2 0 2 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 2 0 2 1 1 1 1

0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1

M

 
      
    
    
    
 

   
   
 

  
   

           (6) 

the row vectors of M are mutually orthogonal, i.e., 
TMM is a diagonal matrix non-normalized. This 

allows to easily computing 1M   according to:  

1 1( ) .T TM M M M                                          (7)  

The nine moments for the D2Q9 model are:  

( , , , , , , , , ) ,T
x x y y xx yym e j q j q p p                (8) 

where 
0m  is the fluid density, 

1m e  is related 
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to the energy, 
2m   is related to the energy 

square,
 3,5 ,x ym j  are components of the 

momentum ( , ) ( , )x yj j u v  , 
4,6 ,x ym q are 

related to components of the energy flux and 

7,8 ,xx xym p  are related to the components of the 

symmetric and traceless strain rate tensor.  
 

      
D2Q5                            D2Q9 
Fig. 1. D2Q5 and D2Q9 models. 

 

The nine equilibrium moments of D2Q9 model are:  

2 2
1 2 3( ),eq eq

x ym e j j      

2 2
2 3( ),eq eq

x ym j j      

4 ,eq eq
x xm q j    

6 ,eq eq
y ym q j                                                    (9) 

2 2
7 ( ),eq eq

xx x ym p j j    

8 .eq eq
xy x ym p j j                                                  

with the above equilibrium moments, the sound 
speed of the lattice is

 

1/ 3sc  . 

The diagonal matrix S is given by: 

3 5 7 8(1.0,1.4,1.4, ,1.2, ,1.2, , ),S diag s s s s        (10) 

where (0,2)is   for the non-conserved moments. 

The choice of the relaxation parameters si can be 
determined by a linear stability analysis (Lallemand 
and Luo, 2000). s3 and s5 are arbitrary and can be 
set to unity. s7,s8 are chosen as the following:  

7 8 2 / (1 6 ),s s                                                  (11)  

which  is the kinematic viscosity of the fluid. 

It should be mentioned here it is possible to recover 
the SRT-LBM by setting s1 = s2 = s4 = s6 = s7 = s8 = 
1/τ . 

2.2 D2Q5-MRT-LBM Model for  
Simulation of Temperature Field  

The energy conservation is modeled by an evolution 
equation. The distribution functions, noted g, obey 
to the following equation: 

( , ) ( , )

( , ) ( , ) ,

i i

eq
i i

g t t t g t

g t g t

     

   

ix c x

x x

                  (12) 

For the D2Q5 model (Fig. 1.), the corresponding 

lattice has five discrete velocities, and reads: 

(0,0) , 0
,

(cos[( 1) / 2],sin[( 1) / 2]) , 0 4

i

i i c i 


     
ic     

  (13) 

Ω represents the collision operator 1M SM  , and 
the transformation matrix is given by:  

1 1 1 1 1

0 1 0 1 0

,0 0 1 0 1

4 1 1 1 1

0 1 1 1 1

M

 
  
  
  
   

                                  (14) 

Matrix M is invertible and orthogonal. The 
temperature T is the only conserved quantity and 
can be computed by: 

4

0

.i
i

T g


                                                             (15) 

The equilibrium moments, meq corresponding to the 
distribution functions g, can be written as: 

0 1 2 3 4, , , , 0,eq eq eq eq eqm T m uT m vT m aT m        

 (16)  

Which a is a constant. The diagonal relaxation 
matrix S  is given by: 

1 2 3 4(1, , , , ),S diag s s s s                                      (17) 

The choice of si is discussed in details in Wang et 
al., (2013). In this work, si is chosen as the 
following:  

1 2

1 1 1 1 3
,

2 2 6s s
          

 

3 4

1 1 1 1 1
,

2 2 6s s
                                                 (18)  

The above parameters lead to the thermal 
diffusivity:  

3(4 )
,

60

a 
                                                       (19) 

where the constant a must be maintained a < 1 in 
order to avoid numerical instability of the D2Q5 
model (Ginzburg et al., 2010; Wang et al., 2013).  

The corresponding form of the equilibrium for the 
distribution functions g is given by: 

(1 3 ),eq
i ig T  ic .u                                           (20) 

where 
0 0   and 

1 4 1 / 4    are D2Q5 lattice 

constants.  

2.3. The Classic Equations for MHD 
Natural Convection 

The incompressible Navier-stokes equations can be 
derived from this method using a Chapmann-
Enzkog multi-scale expansion. More details are 
presented in Du et al. (2006). From this expansion, 
the continuity equation, the momentum equations 
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and the energy equations for MHD natural 
convection are written as: 

0.
u v

x y

 
 

 
                                                         (21) 

2 2

2 2
.x

u u p u u
u v F

x y x x y
 

      
              

 

                                                                              (22)

 
2 2

2 2
.y

v v p v v
u v F

x y y x y
 

      
                

                                                                       

      (23) 

2 2

2 2
.

T T T T
u v

x y x y

    

       
                         (24) 

In the above equations Fx and Fy are the total body 
forces in x and y directions, respectively, and they 
are defined as follows: 

 
2

2
2

sin cos sin ,x

Ha
F v u

L

                           (25) 

 
2

2
2

( ) sin cos cos .y m

Ha
F g T T u v

L

                                                

.                                                                            (26) 
2.4. Boundary Conditions 

2.4.1. Boundary Conditions for Flow Field 

Bounce-back boundary conditions are applied on all 
solid boundaries, which mean that incoming 
boundary populations are equal to out-going 
populations after the collision. So, the following 
conditions are imposed:  

For the north boundary: 

4 2 7 5 8 6, , .f f f f f f                         (27) 

For the south boundary:  

2 4 6 8 5 7, , .f f f f f f                         (28) 

For the east boundary:  

3 1 6 8 7 5, , .f f f f f f                         (29) 

For the west boundary:  

1 3 5 7 8 6, , .f f f f f f                          (30) 

2.4.2. Boundary Conditions for 
Temperature Field 

The adiabatic boundary condition is used on the 
north and south of the boundaries. For the north 
boundary, the following conditions are imposed: 

, , 1 , 0,..., 4.i n i ng g i                               (31) 

For the south boundary:  

,0 ,1 , 0,..., 4.i ig g i                                 (32) 

In addition, for the east and west boundaries the 
following conditions are used (Wang et al., 2013): 

For the east boundary: 

3 1.g g                                                               (33) 

For the west boundary:  

1 3 2 3 .hg g T                                             (34) 

 

 
Fig. 2. Geometry and boundary conditions of the 

present study. 
 

3. DESCRIPTION OF PROBLEM 

3.1. The Geometry Description  

The geometry of the present problem is shown in   
Fig. 2. It consists of a two-dimensional square 
cavity with the height of L. The cavity is bounded 
by two isothermal vertical walls at temperatures Th 
and Tc and by two horizontal adiabatic walls. The 
horizontal walls are assumed to be insulated, non 
conducting, and impermeable to mass transfer. The 
cavity is filled with a mixture of water and solid 
TiO2. The nanofluid in the cavity is Newtonian, 
incompressible, and laminar. Thermo-physical 
properties of the base fluid and the nanoparticles are 
given in Table 1. A uniform magnetic field (B) with 
a constant magnitude B is applied at inclined angle 
� from the horizontal plane. It is assumed that the 
induced magnetic field produced by the motion of 
an electrically conducting fluid is negligible 
compared to the applied magnetic field. 
Furthermore, it is assumed that the viscous 
dissipation and Joule heating are neglected. 
 

Table 1 Thermo-physical properties of water 
and nanoparticles (Abu-Nada et al., 2008) 

 Pr  
(kg/m3) 

Cp 
(J/kg 
K) 

k 
(W/m 

K) 
 (K-1) 

µ  
(W/m K) 

Water 6.2 997.1 4179 0.613 2110-5 0.001003 

TiO2 - 4250 686.2 8.9538 0.910-5 - 

 
3.2.  Method of Natural Convection 
Solution 

To ensure that the code works in near 
incompressible regime, the characteristic velocity 
(

0U g TL  ) regime must be small compared 
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with the fluid speed of sound. In this work, the 
characteristic velocity selected is 0.1 of sound 
speed. By fixing Rayleigh number, Prandtl number 
and Mach number, the viscosity and thermal 
diffusivity are calculated from definition of these. 

2 2 2Pr
.SMa n c

Ra
                                                 (35) 

Rayleigh and Prandtl numbers are defined as: 

3

2

Pr( )
,h cg L T T

Ra





 Pr .



                            (36) 

Furthermore speed of sound is constant 
( 1/ 3sc  ). Finally, the values of relaxation times 

for flow and temperature can be found by the 
obtained viscosity and thermal diffusivity. 

3.3. The Lattice Boltzmann Model for 
Nanofluid 

The thermo-physical properties of the nanofluid are 
assumed to be constant (Table 1) except for the 
density variation, which is approximated by the 
Boussinesq approximation. The effect of density at 
reference temperature is given by (Cheng, 2011): 

(1 ) ,nf f s                                              (37) 

whereas the heat capacitance of the nanofluid is 
(Cheng, 2011): 

( ) (1 )( ) ( ) ,p nf p f p sC C C                         (38) 

With φ being the volume fraction of the solid 
particles. The viscosity of the nanofluid containing 
a dilute suspension of small rigid spherical particles 
is given by Brinkman model (Khanafer et al., 2003) 
as: 

2.5
.

(1 )
f

nf







                                                  (39) 

The effective thermal conductivity of the nanofluid 
can be approximated by the Maxwell-Garnetts 
model where the nanoprticles is assumed to be the 
same and have spherical shapes (Khanafer et al., 
2003):  

2 2 ( )
.

2 ( )
s f f snf

f s f f s

k k k kk

k k k k k




  


  
                              (40) 

 
 

Fig. 3. Local Nusselt number on the hot wall for 
different uniform grids. 

 
 

Fig. 4. Enlarged region A in fig. 3. 

 

Nusselt number is one of the most important 
dimensionless parameters in describing the 
convective heat transfer. The local Nusselt number 
and the average value at the hot and cold walls are 
calculated as: 

,nf

f

k L T
Nu

k T x


 

 
                                          (41) 

0

1
.

L

avgNu Nu dy
L

                                             (42) 

ΔT is the temperature difference between the hot 
and cold walls. 
 

  
Fig. 5. Comparison of the Streamlines Between 

Numerical Results by Pirmohammadi and 
Ghasemi (2009) (—) and the present results 

(−  −  −) at Ra = 105, Ha = 70 and  = 45˚. 

 

   
Fig. 6. Comparison of the isotherms between 

numerical results by Pirmohammadi and 
Ghasemi (2009) (—) by Pirmohammadi and 
Ghasemi (2009) (—) and the present results 

(−  −  −) at Ra = 105, Ha = 50 and  = 90˚. 
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Fig. 7. Streamlines for different Rayleigh and Hartmann numbers (� = 0˚ and φ = 3 %). 

 
 

 

                           
 

                               
 

                              

Fig. 8. Isotherms for different Rayleigh and Hartmann numbers (� = 0˚ and φ = 3 %). 
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Table 2 The averaged Nusselt number on the hot 
wall in comparison with Ghasemi et al. (2011) 

4 %  = = 2 %   = 0 %    Ra no.

1.121  1.079  1.002  
Ghasemi 
et al. 

(2011) 103  

1.131  1.079  1.028  
Present 

Study  

3.124  3.138  3.150  
Ghasemi 
et al. 

(2011)  105 

3.274  3.201  3.147  
Present 

Study  

17.449  17.197  16.929  
Ghasemi 
et al. 

(2011) 107  

17.249  17.033  16.722  
Present 

Study  

 
Finally, the following criterion to check for the 
steady-state solution was used: 

1 810 .n nError Max T T                           (43) 

4. CODE VALIDATION AND GRID 

INDEPENDENCE 

An extensive mesh testing procedure was conducted 
to guarantee a grid independent solution. Six 
different mesh combinations were explored for the 
case of Ra = 105, φ = 5 %, � = 0˚ and Ha = 30. The 
present code was tested for grid independence by 
calculating the local Nusselt number on the hot 
wall. It was found in Figs. 3 and 4 that a grid size of 
101101 ensures the grid independent solution for 
the present case. 

To check the accuracy of the present results, the 
present code is validated with Results of 
Pirmohammadi and Ghasemi (2009) and Ghasemi 
et al. (2011). As shown in Figs. 5 and 6, the 
streamlines and the isotherms have a good 
agreement with Pirmohammadi and Ghasemi 
(2009) work. Also, Table 2 show the results of 
MHD natural convection flow in an enclosed cavity 
filled by water-Al2O3 nanofluid which have been 
obtained by Ghasemi et al. (2011). As shown in this 
table, the obtained results of this work have a good 
agreement with Ghasemi et al. (2009) results. 

5. RESULTS AND DISCUSSION 

5.1. Effect of Hartmann and Rayleigh 
Numbers 

Figures 7 and 8 show the effect of Hartmann 
number for three values of the Rayleigh number 
(Ra=103, 105 and 107) and for horizontal magnetic 
field (Ԅ  = 0°) on the streamlines and isotherms, 
respectively. The cavity is filled with a water-TiO2 
nanofluid, which has a solid volume fraction of φ = 
3 %. The buoyancy-driven circulating flows within 

the cavity are evident for all values of the Rayleigh 
and Hartmann numbers. The strength of these 
circulations increases as the Rayleigh number 
increases and decreases as the Hartmann number 
increases. The results furthermore show for a low 
Rayleigh number, conduction is the dominant 
mechanism for heat transfer compared to the 
convection mechanism. However, by increasing the 
Rayleigh number the buoyancy forces increases and 
overcomes the viscous forces and the heat transfer 
is dominated by convection. The isotherms are 
affected by variations in the Hartmann number. 
These effects are more noticeable at Ra = 105, 
where an increase in the Hartmann number results 
in the isotherms changing they go from horizontal 
to vertical. This is an indication of weaker 
convection flows at higher Hartmann numbers. 

Figure 9 illustrates the influence of the Hartmann 
number on the y-component of velocity vector 
along the horizontal mid-span of the cavity at three 
values of the Rayleigh number (Ra = 103, 105,107) 
and for a solid volume fraction of φ = 3 % and for 
horizontal magnetic field (Ԅ = 0°). The maximum 
y-component of velocity vector increases when the 
Rayleigh number increases due to the strong 
buoyancy driven flows and it decreases when the 
Hartmann number increases due to the effect of 
magnetic field on the convective flows. The effect 
of Hartmann number on the y-component of 
velocity vector profile is more significant at Ra = 
105, where the convective flow field is not very 
strong and can be influenced by the magnetic field. 

Figure 10 shows the effect of the Hartmann number 
on the local Nusselt number along the hot wall of 
the cavity at three values of the Rayleigh number 
(Ra = 103, 105, 107) and for a solid volume fraction 
of φ = 3 %. The simulation result shown in this 
figure indicates that due to the strengthened buoyant 
flow, the local Nusselt number increases as the 
Rayleigh number increases and due to the 
suppression of the convective circulating flows by 
the stronger magnetic field, it decreases as the 
Hartmann number increases. Changing the 
Hartmann number has a more noticeable effect on 
the local Nusselt number at Ra = 105, where the 
buoyant flows are significantly affected by the 
magnetic field. This finding is similar to that of the 
previous results. 

Table 3 presents the effect of the Hartmann number on 
the average Nusselt number on the hot wall of the 
cavity at three values of Rayleigh number (Ra = 103, 
105 , 107 ) and for a solid volume fraction of φ = 3 % 
and for horizontal magnetic field (Ԅ = 0°). It is 
observed that the effect of Hartmann number is 
opposite to the effect of Rayleigh number. For all 
values of the Hartmann numbers, the results show that 
average Nusselt number increase as the Rayleigh 
number increases. This is due to the increasing 
strength of the buoyancy-driven flow within the cavity 
as the as the Rayleigh number increases. For all values 
of the Rayleigh numbers, with an increasing in the 
Hartmann number, the average Nusselt number 
decreases. As pointed in the previous results, changing 
the Hartmann number has a more noticeable effect on 
the local Nusselt number at Ra = 105.   
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                                     a) Ra = 103                                                                    b) Ra = 105 

 
                               

                                                                                  c) Ra = 107 

Fig. 9. Variation of y-component of velocity vector along the mid-span of the cavity for different 
Rayleigh numbers at φ = 3 % and � = 0. 

 

                                           
                           

                                 a) Ra = 103                                                                   b) Ra = 105 

   
                                                                              

                                                                                  c) Ra = 107 

Fig. 10. Local Nusselt number along the hot wall of the cavity for different Rayleigh numbers at 
φ = 3 % and Ԅ = 0. 
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Fig. 11. Streamlines for different Hartmann number and � for φ = 3 % and Ra = 105. 

 
 
 

             
 

             
Fig. 12. Isotherms for different Hartmann number and Ԅ for φ = 3 % and Ra = 105. 

 
 

Table 3 Average Nusselt number at φ = 3 % and 
Ԅ = 0 

Ha = 60 Ha = 30 Ha = 0  

1.102 1.105 1.207 Ra = 103 

1.944 3.287 4.975 Ra = 105 

14.336 16.818 17.396 Ra = 107 

 
Table 4 Average Nusselt number for Ha = 30 

and φ = 3 % 

Ԅ = 90˚ Ԅ = 60˚ Ԅ = 30˚ Ԅ = 0˚ Ra 

1.104 1.104 1.104 1.104 103 

17.133 16.982 16.661 16.434 107 

 

   5.2  Effect of the Magnetic Field Direction 

The change of the magnetic field direction causes 
the modification of the Lorentz force direction 
relative to the gradient temperature which controls 

the heat transfer rate.  

Figures 11 and 12 illustrate the influence of the 
direction of the magnetic field on the streamline and 
isotherm contours on nanofluid ( = 3 %) for two 
values of the Hartmann number (Ha = 30 and 60) 
and for Ra = 105. The effect of magnetic field angle 
on isotherms is almost negligible. It can be seen that 
the effect of inclination angles on the flow is 
considerable significant with an increase of 
magnetic fields. For all Hartmann number two 
horizontal eddies occur when Ԅ  = 90. With an 
increase in the Hartmann number and for Ha = 60 
and when Ԅ  is zero, the Lorentz force only acts in 
the y-direction. Considering the symmetry, the x-
component of velocity vector is dominant at the 
vertical centerline due to v = 0, which means the 
total speed is almost parallel to the magnetic field 
and therefore the magnetic force is close to zero. 
Because the magnetic force can reduce the effect of 
buoyancy, the total force at the vertical centerline is 
larger than that in the other areas. As the result, the 
conducting fluids are stretched more significant 
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near the vertical centerline. For all Hartmann 
number, with increasing in the magnetic field angle 
the Lorentz force reduce the x-component of 
velocity vector and the streamlines form the 
horizontal shape. 

Figure 13 exhibits the variation of the profile of y-
component of velocity vector along horizontal 
centerline (y = 0.5) with different angles. As 
explained in the previous, with an increasing in the 
magnetic field angle the magnetic field effect 
(Lorentz force) in the y-direction reduces and the y-
component of velocity vector increase.      

 

 
Fig. 13. Comparisons of v-velocity along the 

horizontal centerline for different magnetic field 
angles at Ra = 105 and Ha = 60 and φ = 3 %. 

 
Table 4 Average Nusselt number for Ha = 30 

and φ = 3 %. 

Ԅ = 90˚ Ԅ = 60˚ Ԅ = 30˚ Ԅ = 0˚ Ra 

1.104 1.104 1.104 1.104 103 

17.133 16.982 16.661 16.434 107 

 
Figure 14 shows the variation of local Nusselt 
number along the hot wall by varying the direction 
of magnetic field for Ra = 105, Ha = 30 and φ = 3 
%. With increasing the magnetic field angle from 0 
to 60, the local Nusselt number enhances. This 
mean that the Lorentz force decrease and so the 
local Nusselt number increases. With increasing the 
magnetic field angle from 60 to 90 the Lorentz 
force conquest the buoyancy force and the local 
Nusselt number decreases.  

Figure 15 shows the variation of average Nusselt 
number along the hot wall by varying the direction 
of magnetic field for Ra = 105, Ha = 30, 60 and φ = 
3 %. For Ha = 30 with increasing the magnetic field 
angle to 60 the average Nusselt number increase 
but for Ha = 60 due to increasing the Lorentz force, 
the enhancement on the average Nusselt number is 
from magnetic angle of 0 to 30 and with 
increasing Ԅ  to 90, the average Nusselt number 
decreases.  

 

 
 
Fig. 14. Variation of the local Nusselt number on 
the hot wall for Ra = 105, Ha = 30 and φ = 3 % 

for different Ԅ. 

 

 
 

Fig. 15. Variation of the average Nusselt number 
for Ra = 105, Ha = 30, 60 and φ = 3 % for 

different Ԅ. 
 
 

  
 

Fig. 16. Variation of the average Nusselt number 
with Hartmann number for different volume 

fraction and for Ԅ = 0° and Ra = 105. 

v 
/ U

0 

N
u

 

y/L 

N
u

av
g 

Ԅ 

Ha  

N
u

av
g 



A. R. Rahmati and A. Najjarnezami / JAFM, Vol. 9, No. 3, pp. 1201-1214, 2016.  
 

1212 

                  
 

                            a) Ha = 30, Ra = 105                                                            b) Ha = 60, Ra = 105 

Fig. 17. Variation of the average Nusselt number with magnetic field angle for different volume 
fraction and different Hartmann number. 

 

Table 4 presents the effects of magnetic field angle 
on the average Nusselt number on the hot wall of 
the cavity at two values of the Rayleigh number (Ra 
= 103, 107 ) and for a solid volume fraction of φ = 3 
% and for Ha = 30. At low Rayleigh numbers (Ra = 
103) the buoyancy-driven circulating flows is weak 
and the effect of magnetic field angle on the 
average Nusselt number is negligible. At high 
Rayleigh number (Ra = 107) with an increase in the 
magnetic field angle the effect of magnetic field 
decreases and the average Nusselt number increase.  

5.3.   Effect of Solid Volume Fraction 

Figure 16 illustrates the influence of the Hartmann 
number and solid volume fraction on the average 
Nusselt number at Ra = 105 and Ԅ = 0°. As shown 
in this figure, for all Hartmann number the average 
Nusselt number increases as solid volume fraction 
increases. It is obvious that the effect of the solid 
volume fraction on average Nusselt number 
declines with the enhancement of Hartmann 
number.  

Figures 17.a and 17.b present the influence of the 
direction of the magnetic field and solid volume 
fraction on the average Nusselt number at Ra =105 
and for several Hartmann number. As shown in this 
figures, for all Hartmann number, adding 
nanoparticles augments the average Nusselt number 
at the hot wall of the cavity. The magnetic field 
influence on the effect of nanoparticles on the 
average Nusselt number enhancement is not 
significant. 

6. CONCLUSION 

In this work, a double multi-relaxation-time lattice 
Boltzmann method is proposed to simulate MHD 
natural convection of TiO2-water nanofluid in a 
two-dimensional square cavity. The key point in 
this proposed model is the use of two sets of 
distribution functions. A MRT-D2Q9 and MRT-
D2Q5 lattice model are used to simulate the flow 
field and temperature field, respectively. 

In order to validate the proposed model, the 
obtained results of this work have been compared 

with previous numerical investigations. It was 
shown that the results predicted by the 2-MRT-LB 
method are in good agreement with other numerical 
results.  

The obtained numerical results show that the 2-
MRT-LB model is a powerful approach for 
simulating the MHD natural convection nanofluids 
in a two-dimensional square cavity and is able to 
study the effects of all parameter on the flow field 
and temperature field such as Rayleigh number, 
Hartmann number, magnetic field angle and solid 
volume fraction.  

Stronger flow circulations within the cavity and 
intensified isotherms near the vertical walls are 
evident at higher Rayleigh numbers and at lower 
Hartmann numbers for a fixed solid volume 
fraction. 

The y-velocity and temperature profiles along the 
horizontal mid-span of the cavity also show 
stronger flow fields within the cavity and higher 
temperature gradients near the vertical walls at 
higher Rayleigh numbers and lower Hartmann 
numbers. 

The profiles of the local Nusselt number along the 
hot wall and the average Nusselt number verify that 
when the Hartmann number increases, the heat 
transfer rate decreases. The rate of this decrease is a 
function of the Rayleigh number. The most 
significant influence of the Hartmann number on 
the heat transfer deterioration occurs at Ra = 105, 
where the buoyancy-driven flow starts to dominate 
the heat transfer mechanism. 

For all Hartmann numbers (Ha = 30, 60), with 
increasing in the magnetic field angle the Lorentz 
force reduce the u-velocity and the streamlines form 
the horizontal shape. 

With an increasing in the magnetic field angle the 
magnetic field effect in the y-direction reduces and 
the v-velocity increases. 

With increasing the magnetic field angle from 0 to 
60 local Nusselt number enhances and with 
increasing the magnetic field angle from 60 to 90 
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the Lorentz force conquest the buoyancy force and 
the local Nusselt number decreases.  

By adding nanoparticles to fluid, the average 
Nusselt number increases, and by increasing the 
volume fraction, this phenomenon becomes more 
sensible. The magnetic field effect on the effect of 
nanoparticles on the heat transfer enhancement is 
not significant.  
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