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ABSTRACT 

The linear stability of two axially superposed immiscible fluids between two rotating coaxial cylinders is 
studied. The fluids are assumed to have equal density but different viscosities. The effect of viscosity ratio of 
the two fluids on the condition for onset of instability is studied. The critical Taylor number in the less 
viscous fluid for onset of instability is obtained as a function of the viscosity ratio. The two limiting values of 
this curve correspond to critical Taylor numbers of the one fluid configuration with height of fluid column 
either equal to that of the less viscous fluid or equal to the sum of those for both liquids. It is found that the 
variation of the critical Taylor number with viscosity ratio is small when the heights of the fluid columns are 
large compared to the gap between the cylinders but is significant when the heights are comparable with the 
gap. The marginal state is found to be stationary. 

Keywords: Linear stability; Taylor Couette flow; Two fluid flow. 

NOMENCLATURE 

C1 constant 
C2 constant 
D differential operator 
D* differential operator 
d gap between two cylinders 
L length of each fluid column 
m viscosity ratio 
p pressure  
p’ perturbed pressure  
R1 inner cylinder radius 
R2 outer cylinder radius 
s growth rate 
Ta Taylor number 
Tac critical Taylor number 
t time 
u radial velocity  
u’ perturbed velocity in radial direction 

V velocity of unperturbed state 
v velocity vector 
v tangential velocity 
v’ perturbed velocity in tangential direction 
w axial velocity 

w’ perturbed velocity in axial direction 
ρ density of the fluid 
μ coefficient of viscosity of the fluid.  
Ω angular speed of the inner cylinder 
η radius ratio 
ν  kinematic viscosity 
χ' perturbed state of the interface  
ψ’ stream function   

subscripts  
1 fluid 1 
2 fluid 2 

1. INTRODUCTION

It is known that the flow between two rotating 
coaxial cylinders can be unstable to infinitesimal 
axisymmetric disturbances. For an inviscid fluid, 
instability occurs if the circulation decreases 
outward anywhere between the two cylinders 
(Chandrasekhar 1981; Rayleigh 1916). For a 
viscous fluid, instability occurs when a 

dimensionless quantity, now called the Taylor 
number, exceeds a critical value (Chandrasekhar 
1981; Taylor 1923). The Taylor-Couette flow of 
two immiscible fluids between two coaxial 
cylinders has been studied (Joseph et al. 1984; 
Joseph and Renardy 1993; Peng and Zhu 2010) and 
different flow patterns were found to develop. It 
was assumed that, in the unperturbed state, the two 
liquids were separated by a cylindrical interface. 
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The inner cylinder was set in rotation while the 
outer cylinder was kept stationary. Taylor vortices 
were seen to form, and in different parameter 
regimes a variety of interesting flow patterns were 
found to develop.  

In another study, the deformation of the interface 
between two immiscible fluids in a cylindrical 
container, with a rotating lid placed above the 
interface was investigated experimentally by 
Fujimoto and Takeda (2009), and with bottom wall 
rotating was numerically studied by Brady and 
Herrmann (2012). Fujimoto and Takeda (2009) 
observed that center of the interface rises as 
rotational speed is increased when upper fluid had 
higher viscosity. Whereas, Brady and Herrmann 
(2012) found that viscosity ratio plays a major role 
in defining the dynamics of the two fluids.  

The dynamics of two immiscible fluids between 
two rotating coaxial cylinders has been studied by 
Bonn et al. (2004). Where, in the unperturbed state, 
the interface between the two liquids was planar 
and perpendicular to the axis of the cylinders. In 
their experiment the two liquids were separated by a 
horizontal interface while the axis of the cylinders 
was vertical. It was observed that, when centrifugal 
instability sets in, the interface would climb the 
inner cylinder when the lower fluid had lower 
viscosity. 

No theoretical study of the stability of this 
configuration seems to have been reported. As a 
first step a linear stability analysis of this 
configuration has been carried out. This study also 
has practical importance, since such flow 
configurations are known to occur in 
emulsification. The manuscript is arranged as 
follows.  Derivation of the equations governing 
linear stability and the method used for numerical 
solution is described in Sec. 2, Sec.3 illustrate the 
results obtained using this formulation and Sec.4 
summarizes the findings. 

2. FORMULATION 

Two coaxial cylinders of radii R1 and R2 as shown 
in Fig. 1 have been considered. The space between 
the two cylinders contains two immiscible fluids. In 
the unperturbed state assuming that fluid 1 occupies 
the region 0 < z < L, R1 < r < R2 while fluid 2 
occupies the region -L < z < 0, R1 < r < R2, where a 
cylindrical coordinate system (r, θ, z) with the z-
axis along the axis of the cylinders has been used 
and the plane z = 0 to coincide with the unperturbed 
interface between the two fluids. The two fluids are 
assumed to have the same density but different 
coefficients of viscosity. The outer cylinder is 
assumed to be stationary while the inner cylinder 
rotates with angular speed Ω.   

Present aim is to determine at what value of Ω 
instability sets in for infinitesimal disturbances. In 
the original experiment of Taylor (Taylor 1923) for 
one fluid as well as in the recent experiments of 
Bonn et al. (2004) for two superposed fluids, 
instability is observed to first set in as an 
axisymmetric mode. Accordingly, present analysis 

is restricted to axisymmetric disturbances. 
Assuming that the fluids are incompressible, the 
governing equations in both fluids are  

  2

p
t

 


      


v
v v v,                                 (1) 

0,  v                    (2) 

 

 
Fig. 1. Schematic figure of two fluid 

configuration. 
 

where v, p, ρ, and μ are the velocity, pressure, 
density and coefficient of viscosity of the fluid. 
When the outer cylinder is stationary and the inner 
cylinder rotates with angular speed Ω, a stationary 
solution of equations (1) and (2) is given by 
(Chandrasekhar, 1981) 

   2

1
, ,

C
V r C r p P r

r
 

     
 

e ev             (3) 

Where 

2 2

1

1 2 2 2

2 1

,
1

R
C

R R





 
   

 

2 2 2

1 2 1

2 2 2 2

2 1

,
1

R R R
C

R R 

 
 

 

1

2

,
R

R
                                                                  (4) 

and the pressure profile satisfies 

2

.
dP V

dr r


                   (5) 

Since this solution does not depend on μ it is valid 
in both fluids. To make the problem tractable the 
modification of the flow profile due to the end walls 
at z = ± L. Strictly this is valid provided we have 
end walls which allow differential rotation and have 
the same rotation profile as given by equation (3). 
Now considering a small axisymmetric perturbation 
from this steady flow described by 

( , , ) [ ( ) ( , , )] ( , , ) ,
r z

u r z t V r v r z t w r z t


     e e ev

( ) ( , , ).p P r p r z t                   (6) 

Substituting in equations (1) and (2) and linearizing 
in the perturbations yields 
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2 2

2 2 2

2 1 1
,

u V p
v u

t r r r r r r z

            
    

  
      

ν     (7) 

  2 2

2 2 2

1 1
,

v dV V
u v

t dr r r r r r z

   
      

   

 
 
 

ν        (8) 

2 2

2 2

1
,

w p
w

t z r r r z

     
    

    

  
      

ν            (9) 

0.
u u w

r r z

   
  

 
                (10) 

Assuming that in the perturbed state the interface is 
given by ( , )z r t  . The linearized kinematic 
boundary condition is 

w
t

 



 at z = 0.               (11) 

Continuity of velocity at the interface requires 

1 2
u u  , 

1 2
v v  , 

1 2
w w   at z = 0,    (12) 

where the subscripts 1 and 2 represent values in 
fluid 1 and fluid 2, respectively. Continuity of 
tangential components of stress requires 

1 1 2 2

1 2

u w u w

z r z r
 

      
  

   

      
   

  at  z = 0,    

 (13) 

1 2

1 2

v v

z z
 

  


 
  at   z = 0.              (14) 

Continuity of normal stress at the interface requires 

1 2

1 1 2 2
2 2

w w
p p

z z
 

  
     

 
     at     z = 0  (15) 

where the effect of surface tension at the interface 
between the two liquids has been neglected. 
Differentiating with respect to r and using equation 
(7) to eliminate pressure we obtain 

22 2

1

1 1 12 2 2

22 2

2

2 2 22 2 2

1 1
2

1 1
2

w
u

r r r r z r z

w
u

r r r r z r z

 

 

  
    

    

  
     

    

 
 
 

 
 
 

 

at   z = 0.                                              (16) 

The no slip boundary condition on the walls are 

0u v w        at   r = R1   and   R2  and   z = ±L
                                               (17) 

Obtaining u  and w  from a stream function 

( , , )r z t   by 

,u
z

 
 

  1
.w

r r



   


                              (18) 

Then equation (10) is identically satisfied. 

Eliminating p  between equations (7) and (9) and 
using equation (18) yields 

2
2 2

2 2

2
,

V v
DD DD

t z r z z
 

 

   
    

   

   
   
   

ν         (19) 

where the operator D and D* are defined as 

,D
r





 
1

.D
r r




 


               (20) 

Using equations (18) and (20), equation (8) can be 
written as 

  2

2
.

v dV V
DD v

t dr r z z




   
   

  

 
 
 

ν               (21) 

For the linear perturbations assuming normal modes 

with time dependence of the form 
ste . Further 

transforming to non-dimensional variables using 

,r rd  ,z zd  2

2
,s s

d


ν 2
(2 ),d     

2 ,v v
d

 
ν 3

2

2
,

d
 


 

 
 
 ν

               (22) 

where 
2 1

d R R   is the radial distance between 

the two cylinders. Writing equations (19) and (21) 
separately in the two fluids in non-dimensional 
form  

22 2

2 1 1

12 2 2 2

2

1
,

C C d v
DD ms DD m

z z d r C z


 

 
     
   

     
            

                 (23) 

22 2

2 1 2

22 2 2 2

2

1
,

C C d v
DD s DD

z z d r C z


 

 
     
   

     
            

                 (24) 

2

1

12
,DD ms v mTa

z z





   
 

  
    

              (25) 

2

2

22
,DD s v Ta

z z





   
 

  
    

              (26) 

Where 

4

1

2

2

4
,

C d
Ta


 

ν
 2

1

.m



                (27) 

Here Ta is the Taylor number in fluid 2 which is 
assumed to be less viscous. Therefore, the Taylor 
number in fluid 1 is smaller than in fluid 2. The 
kinematic boundary condition equation (11) in 
nondimensional form is 

s D 


   at z = 0                (28) 

Substituting from equation (18) in equations (12)-
(14) and (16), and writing the boundary conditions 
at the interface in nondimensional form yields 
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1 2

z z

  


 
 at z = 0              (29) 

1 2
v v    at z = 0              (30) 

1 2
D D 

 
   at z = 0              (31) 

2 2

1 22 2
DD m DD

z z
 

 

 
  
 

   
   
   

  at  z = 0   (32) 

1 2
v v

m
z z

 


 
  at z = 0              (33) 

2 2

1 2

2 2

1
3 3DD DD

m z z z z

 
 

  
    

   

   
   
   

 

at z = 0                (34) 

Equation (17) in nondimensional form is 
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
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
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2
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


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
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z
d

    for  1 2R R
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(35) 

The stream function   is defined correct to an 
additive constant. Therefore, one can choose   to 
be zero at one point on a boundary wall. Then using 
equation (35) it can easily be reasoned out that   
will be zero on all the walls bounding the flow 
region. Then equation (35) can be written as 

1 1 1
0v D      at 1R

r
d
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d
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d d
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
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
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z

d
  for 1 2R R

z
d d
   

(36) 

Further from equations (31) and (36) it follows that 

1 2          at     z = 0               (37) 

which now replaces equation (31). Equations (23)-
(26), together with matching conditions (28)-(30), 
(32)-(34) and (37), and boundary conditions (36) 
constitute the eigenvalue problem governing linear 
stability. This can be solved for the eigenvalue s if 
all other parameters are specified. For simplicity a 
narrow gap approximation 1 2,d R R  has been 

used. Then one can use the approximations D D   

and 2 2 2
2 1 2( ) (1 ) (1 )C d r C d C     , where   

is a nondimensional radial coordinate defined by 

1r R d   . A finite difference approximation has 

been used in order to solve the eigenvalue problem 
and follow a procedure very similar to that used in 
an earlier study (Bhattacharyya and Gupta 2004). 

3. RESULTS 

As a first check the analysis was carried out to 
compute the critical Taylor number when there is 
only one fluid occupying the entire length. The 
critical Taylor number vs length of the cylinders is 
shown in Fig. 2. The results show that as the length 
of the cylinders becomes large the critical Taylor 
number approaches the value calculated for 
cylinders of infinite length. This is in agreement 
with experimental observations of Koschmieder 
(1993).  
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Fig. 2. Variation of critical Taylor number with 
L/d ratio, for single fluid. 

 
For L/d = 16, the pattern of streamlines is shown in 
Fig. 3. This clearly shows the formation of Taylor 
vortices and the size of the vortices in the axial 
direction agrees with what theoretical calculations 
predict at the onset of instability. 

Now considering the situation where there are two 
axially superposed fluids. First considering fluid 
column heights to be large and compare with the 
results for one fluid column of infinite height.  The 
critical Taylor number in the lower fluid for onset 
of instability Tac vs the ratio of viscosities m, for 
L/d = 8 is shown in Fig. 4. When m = 1 there is no 
jump in material property and as expected the 
critical Taylor number is same as for one fluid in 
the entire flow domain.  When m < 1 the lower 
fluid is less viscous and, therefore, the Taylor 
number in the lower fluid is higher than in the upper 
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fluid. Bonn et al. (2004) assumed that instability 
occurs when the Taylor number in the less viscous 
fluid exceeds the critical Taylor number obtained 
from computation for one fluid. 
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Fig. 3. Contour plots of stream function for 

single fluid, for L/d = 16. 
 
Figure 4 shows that the critical Taylor number in 
the less viscous fluid for onset of instability 
increases slightly with decrease in the viscosity 
ratio. However, the difference is not more than 2%. 
Therefore, for this configuration the assumption 
made by Bonn et al. (2004) seems justified.  
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Fig. 4. Variation of critical Taylor number with 

viscosity ratio, for L/d = 8. 
 
Next, examining how the eigenmode varies with 
change in the viscosity ratio. The radial component 
of velocity at r = (R1 + R2)/2 as a function of z is 
shown in Fig.5. For m = 0.2, Fig.5 (a) shows that at 
the onset of instability, the disturbance is practically 
confined to the less viscous fluid. Now considering 
values of m close to 1, as seen in Fig.5(b), for m = 
0.9, the disturbance extends into the more viscous 
fluid but decays after roughly two Taylor cells. For 
m = 0.99, Fig.5(c) shows that the disturbance 
extends further into the more viscous fluid.  
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(c) 
Fig. 5. Variation of radial component of velocity 
with vertical position at r = (R1 + R2) / 2, for two 
fluid when L/d = 8 and (a) m = 0.2, (b) m = 0.9, 

(c) m = 0.99. 
 
The patterns of streamlines for different values of m 
are shown in Fig.6. It was observed that when m is 
close to 1 the size of the cells in the two fluids are 
very similar.  As the ratio of viscosities decreases 
the axial dimension of the cells in the more viscous 
fluid becomes progressively larger.  
 
The position of the perturbed interface for m = 0.2 
is shown in Fig.7. This shows there is a rise of the 
interface near the inner cylinder. However, since 
the displacement is an eigenvector its negative 
which shows depression near the inner cylinder 
would also be a valid solution. Therefore, present 
analysis does not explain the phenomenon of rod 
climbing completely. 
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Fig. 6. Contour plots of stream function for two 
fluid when L/d = 8 and (a) m = 0.2, (b) m = 0.9, 

(c) m = 0.99. 
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Fig. 7. Variation of interface displacement with 
radial distance when L/d = 8. 

 
In the experimental setup of Bonn et al. (2004) the 
total height of the two liquid columns was 90 mm 
while the gap between the cylinders was 25 mm. 
Accordingly L/d = 45/25 = 1.8 has been taken for 
numerical calculation. The critical Taylor number 
in the lower fluid for onset of instability Tac vs the 
ratio of viscosities m, for this value of L/d is shown 
in Fig. 8.  

The radial component of velocity vs z at r = (R1 + 
R2)/2 for the same value of L/d, and three values of 
m are shown in Fig.9.  

Now the above results for the two fluid 
configurations have been compared with results of 
one fluid. For one fluid with L/d = 1.8 the critical 
Taylor number is 5150. If one consider one fluid 
with L/d = 3.6, so that it occupies the total height of 
the two fluids in the two fluid configuration, the 
critical Taylor number is 3787. In two fluid 
configuration, when m = 1 a fluid of same viscosity 
is occupying the entire length and, therefore, the 
critical Taylor number is the same as for one fluid 

with L/d = 3.6. When m → 0, the upper fluid has 
very large viscosity compared to the lower fluid. 
Consequently the perturbation gets damped out in 
the upper fluid and is effectively confined to the 
lower fluid. Accordingly in this limit the critical 
Taylor number is same as for the one fluid 
configuration with L/d = 1.8.  
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Fig. 8. Variation of critical Taylor number with 
viscosity ratio, for L/d = 1.8. 

 

In all these numerical studies it was found that the 
unstable mode has Im(s) = 0. Thus the marginal 
state is stationary. For the Taylor-Couette problem, 
where there is only one fluid, the principle of 
exchange of stability is known to hold (Drazin and 
Reid, 1981; Yih, 1972a, and 1972b) unless the two 
cylinders rotate in opposite directions. When there 
are two axially superposed fluids and the outer 
cylinder is stationary while the inner cylinder 
rotates, for the considered parameter values, the 
marginal state is again found to be stationary when 
surface tension at the interface is neglected. 

4. CONCLUSION 

In this study the linear stability of two axially 
superposed fluids between two coaxial cylinders 
when the outer cylinder is stationary and the inner 
cylinder rotates about its axis with constant angular 
speed has been considered. It is observed that the 
more viscous fluid has a stabilizing effect on the 
onset of centrifugal instability. When m = 1, the 
critical Taylor number in the less viscous fluid for 
onset of instability is the same as for a one fluid 
configuration with column height equal to the total 
height of the two fluid columns in the two fluid 
configuration. When m → 0, the critical Taylor 
number is the same as for a one fluid configuration 
with column height equal to the height of the less 
viscous fluid column in the two fluid 
configurations. These two values may not be very 
different when L/d is large but can be significantly 
different when L/d is small. For such a 
configuration and for values of m different from 0 
and 1, a linear stability as carried out here is 
necessary to accurately predict the onset of 
instability. Present study also shows a displacement 
of the interface but this does not explain completely 
the rod climbing reported in Bonn et al. (2004). The 
linear stability reported here hope to provide a first 
step towards a theoretical understanding of the 
experimental results reported by Bonn et al. (2004). 
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(c)  
Fig. 9. Variation of radial component of velocity 
with vertical position at r = (R1 + R2) / 2, for two 

fluid when L/d = 1.8 and (a) m = 0.2 , (b) m = 0.6 , 
(c) m = 0.99. 
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