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ABSTRACT

The study considers the saddle point problem arising from the mixed finite element discretization
of the steady state Stokes equations. The saddle point problem is an indefinite system of linear
equations, a feature that degrades the performance of any iterative solver. The heart of the study is
the construction of fast, robust and effective iterative solution methods for such systems. Specific
attention is given to the preconditioned MINRES solver PMINRES which is carefully treated for
the solution of the Stokes equations. The study concentrates on the block preconditioner applied
to the MINRES to effectively solve the whole coupled system. We combine iterative techniques
with the MINRES as preconditioner approximations to produce an efficient solver for indefinite
system of equations. We consider different preconditioner approximations of the building blocks
of the preconditioner and compare their effects in accelerating the MINRES iterative scheme. We
give a detailed overview of the algorithmic aspects and the theoretical convergence analysis of our
solver. We study the MINRES method with the following preconditioner approximations: diago-
nal, multigrid v-cycle, preconditioned conjugate gradient and Chebyshev semi iteration methods. A
comparative analysis of the preconditioner approximations show that the multigrid method is a suit-
able accelerator for the MINRES method. The application of the preconditioner becomes mandatory
as evidenced by poor performance of the MINRES as compared to PMINRES. We study the prob-
lem in a two dimensional setting using the Hood-Taylor Q2−Q1 stable pair of finite elements. The
incompressible flow iterative solution software(IFISS) matlab toolbox is used to assemble the ma-
trices. We present the numerical results to illustrate the efficiency and robustness of the MINRES
scheme with the multigrid preconditioner.

Keywords: Stokes equations; Mixed finite element method; Block preconditioner; Preconditioned
MINRES method(PMINRES)

NOMENCLATURE

Â preconditioner for matrix A
(A = (ai j)i, j, ...) matrices
h, l mesh size and mesh level
Ŝ preconditioners matrix S
M̂A preconditioner approximation

for Â
M̂S preconditioner approximation

for Ŝ
(u, ..) vector valued functions
u ·v scalar product
Vh,Wh finite element spaces
(p,q, ...) s scalar values

R 2 space of dimension 2
Ω ∈ R 2 solution domain
∂Ω boundary of Ω

∇u : ∇v componentwise scalar product
∇p gradient of p
∆u Laplacian of u
div u divergence of u
α,α1 continuity constants
α0 coercivity constant
β continuous inf-sup constant
β1 discrete inf-sup constant
φ,ψ finite element bases functions



Muzhinji et al. / JAFM, Vol. 9, No. 3, pp. 1285-1296, 2016.

η global error estimator
‖ ∇ ·u ‖Ω velocity divergence error
L2(Ω) Lebesgue space of measurable

functions f

H1(Ω),H1
0 (Ω) Sobolev spaces

Q2−Q1 biquadratic-bilinear finite
eigenvalue elements

λ, [ω, ω̄], [δ, δ̄] eigenvalues and bounds

1. INTRODUCTION

In this paper we analyze the performance of
the MINRES and the preconditioned MINRES
method on the numerical solution of the steady
state Stokes equations. We study Stokes equa-
tions which govern the flow of steady, viscous,
incompressible, isothermal, Newtonian fluids.
They arise by simplifying the incompressible
Navier-Stokes equations through the omission
of the convective derivative and setting the time
derivative to zero. For more details on the
derivation, we refer to (Bramble and Pasciak
1999; Brenner and Scott 2008; Brezinski 2005;
Cebeci et al. 2005; Elman et al. 2005; Ferziger
and Peric 2002; Shaughnessy et al. 2005; Tu et
al. 2008; Zulehner 2002). This results in the
following system of linear system partial differ-
ential equation:

−4u+∇p = f in Ω (1)
div u = 0 in Ω (2)

u = 0 on ∂Ω (3)

where Ω is assumed to be a bounded open set
in R 2, with a sufficiently smooth and Lipschitz
continuous boundary ∂Ω, f : Ω→R is a density
of body forces acting on the fluid(e.g gravita-
tional force) and the kinetic viscocity of the
fluid has been set to 1. The problem is to find
the vector function u : Ω→ R 2 which denotes
the velocity of the fluid and p : Ω→R pressure.

The solution procedure begins with the mixed
finite element discretization of the domain of
the Stokes equations Eqs.(1)-(3) which results
in a coupled linear algebraic systems of block
structure. This study employs the Hood-Taylor
Q2−Q1 pair of finite elements as used in El-
man (2007). The efficient iterative techniques
for solving the linear algebraic system of the
saddle point form Eq.(4) below are considered.
The block coupled system has the form[

A BT

B O

][
u
p

]
=

[
f
g

]
(4)

with A- an n× n symmetric positive definite
2× 2 block matrix, B- an m× n matrix with

full rank and m ≤ n, and that the coefficient
matrix M is an (n + m)× (n + m) symmetric
indefinite matrix, hence MINRES is applicable
as a solution iterative scheme Paige and Saun-
ders (1975). If these conditions on the matri-
ces A and B above hold then the invertibility
of the coefficient matrix M is guaranteed and
that the Schur compliment form S is also sym-
metric positive definite (Elman et al. 2005; El-
man and Golub 1994; Reusken and Gross 2011;
Zulehner 2000; Zulehner 2002). Since matrix
M is very large, sparse and indefinite well es-
tablished iterative schemes such as Krylov sub-
space methods become very slow, stagnant or
fail to converge if not conveniently precondi-
tioned. The choice of the preconditioner is such
that the preconditioned matrix satisfies prop-
erties needed for the numerical scheme. For
the MINRES it means that the preconditioner
should be symmetric and positive definite to
preserve the symmetry of the preconditioned
system. Preconditioning enhances the conver-
gence behavior of the iterative schemes. There
are a number of solution schemes for finding the
solution (u ,p) of Eq. (4) and provided the pre-
conditioners for A and S are at available. A va-
riety of preconditioned iterative schemes exist
to tackle the system. The different variants of
preconditioners were developed thereafter. This
study analyses the performance and the theo-
retical behaviour of preconditioning strategies
and preconditioner approximations used with
Krylov subspace iteration to obtain the solution
of the system Eq. (4). For this class of systems,
special iterative schemes must be designed be-
cause of their indefiniteness and poor spectral
properties. A very extensive survey of these
schemes is given in (Benzi et al. 2005; Elman
et al. 1999; Turek 1999) among others. Some
recent studies on the numerical solution of such
system includes (Herzog and Sachs 2005; Pe-
ters et al. 2005; Rehman and Vuik 2007;
Stoll and Wathen 2008; Vuik 1996; ?; Zulehner
2000; Zulehner 2002). The candidate method
of choice for symmetric indefinite system is
the MINRES introduced in Paige and Saunders
(1975) as a method of minimizing the residual
‖ ri ‖2=‖ Mxi − b ‖2 over the current Krylov
subspace span(r0,Mr0,M2r0, ...,Mi−1r0). In
this study we consider the MINRES method
with a block diagonal preconditioner which is
symmetric positive definite. In order to ap-
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ply the MINRES method we need the precon-
ditioner to be symmetric and positive definite
and hence the block diagonal preconditioners
would present the natural choice Elman et al.
(1999). In this paper we apply the MINRES
scheme with a block diagonal preconditioner

M̂ =

[
Â O
O Ŝ

]

with Â and Ŝ the preconditioner of the (1,1)-A
block and the Schur compliment respectively.
The PMINRES and its variants has been in-
vestigated in (Elman et al. 2005; Larin and
Reusken 2008; Peters et al. 2005; Rees and
Stoll 2010; Stoll and Wathen 2008; Wathen and
Rees 2009). This study is influenced by the
work by (Elman et al. 1999; Rees and Stoll
2010; Stoll and Wathen 2008) and the variant of
the method considered in this study is the one
implemented as a driver in matlab.

In this study the velocity is preconditioned by
applying multigrid v-cycle method and for the
pressure, its preconditioner is an iterative solver
using the pressure mass matrix. The main
point of this preconditioner is to reduce the low
frequency error component on a coarser grid,
which the high frequency components of error
are reduced by a smoother on a fine grid. The
multigrid method has been studied in (Bren-
ner and Scott 2008; Hackbucsh 1985; Wessel-
ing 1999). The multigrid are the most effective
methods for solving large linear systems aris-
ing from the elliptic partial differential equa-
tions. The philosophy of the multigrid is based
on the combination of two key principles. The
first is that the high frequency components of
the error are reduced by applying the basic it-
erative solvers like Jacobi or Gauss Seidel as
smoothers. Next, the low frequency errors are
reduced by coarse grid correction procedure.
The smooth error components are represented
as a solution of an approximate coarser system.
After solving the coarser problem, the solution
is interpolated back to correct the fine grid ap-
proximation for its low frequency errors. The
way the multigrid components are linked that
is smoothing, restriction, prolongation and the
error of the coarse grid is illustrated in the algo-
rithm below.

Algorithm 1. Solve Ahuh = bh where the sub-
script is used for fine grid and H for coarse rid.

• Perform smoothing by using k1 iterations
of an iterative method (Jacobi, Gauss-
Seidel etc) on the problem Ahuh = bh

• Compute the residual rh = bh−Ahuh

• Solve for the coarse grid correction
AHeH = bH

• Prolongate and update uh = uh +PeH

• Perform smoothing by using k2 iterations
of an iterative method (Jacobi, Gauss-
Seidel etc) on the problem Ahuh = bh

The algorithm is a two grid method but step 4
can be utilised in various ways. The classical
method of solving it employs recursive calls to
the two grid method. If the recursion is carried
out in a loop, allowing different numbers of it-
erative sweeps on different coarse grids, we ob-
tain v-cycle, w-cycle and f-cycle. In this study
we use the multigrid v-cycle with Gauss-Seidel
smoother as preconditioner approximation for
both A and S.

The rest of the paper is organized as follows.
In section 2 the discrete system of the Stokes
equations discretized by mixed finite element
method is discussed. In section 3 the iterative
solution technique: The MINRES algorithm
and the PMINRES algorithm together with the
block preconditioner are outlined. The method
relies on good approximations to the (1,1)-block
and Schur complement. We also discuss the
suitable bounds and the known theoretical con-
vergence analysis based on the eigenvalue prob-
lem and results. In the final section 4 a numer-
ical experimental results and comparative anal-
ysis on the effectiveness of the preconditioner
approximations are presented, discussed and the
conclusion given in section 5.

2. THE DISCRETE STOKES EQUA-
TIONS

For the discretization of the Stokes equations
we need to transform the system Eqs. (1)-
(3) firstly to the variational form. The varia-
tional formulation of the Stokes equations re-
quires that we define the following solution and
test spaces:

H1(Ω) := {u : Ω−→ R | u, ∇u ∈ L2(Ω)}

H1
0 (Ω) := {v : v ∈ H1(Ω)| v = 0 on ∂Ω}.

By multiplication of the first Eq. (1) with v ∈
H1

0 (Ω)

and the second Eq. (2) with q ∈ L2(Ω) , subse-
quently integrating over the domain Ω, apply-
ing the Gauss theorem, and incorporating the
boundary condition Eq. (3), we obtain the vari-
ational form
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Find u ∈ H1
0 (Ω) and p ∈ L2(Ω) such that:

a(u,v)−b(v, p) = F(v) ∀ v ∈ H1
0 (Ω) (5)

b(u,q) = 0 ∀ q ∈ L2(Ω). (6)

where a(.,.) and b(.,.) are continuous bilinear
forms defined as

a(u,v) =
∫

Ω

∇u : ∇vdx (7)

b(u,q) =
∫

Ω

(div v)qdx (8)

F(v) =
∫

Ω

f ·vdx (9)

where ∇u : ∇v represents a componentwise
scalar product that is ∇ux ·∇vx +∇uy ·∇vy and
a : H1

0 (Ω)×H1
0 (Ω) −→ R and b : H1

0 (Ω)×
L2(Ω) −→ R . The well-posedness follows
from the coercivity of a(.,.) in the Lax-Milgram
theorem (Ciarlet (1978), Gockenbach (2006))
and partly from the inf-sup condition (Braess
(2007), Brenner and Scott (2008), Elakkad et
al. (2010), Elman et al. (2005), Girault and
Raviart (1986), Gunzburger (1989)). Below is
a sketch of the analysis of the existence unique-
ness and stability of the solution (u, p)∈V×W
of mixed problem Eqs. (5) and (6) with V =
H1

0 and W = L2(Ω):

i. the bilinear form a(.,.) is bounded or con-
tinuous:

| a(u,v) |≤ α ‖ u ‖V · ‖
v ‖V for all u,v ∈ V and α ∈ R

ii. the bilinear form a(.,.) is coercive on
V := H1

0 (Ω) that is there exists a pos-
itive constant α0 : a(v,v) ≥ α0 ‖
v ‖2

V f or all v ∈ V.

iii. the bilinear a(.,.) is symmetric and non-
negative

a(u,v) = a(v,u) and
a(v,v)≥ 0 f or all u,v ∈ V

iv. the bilinear form b(.,.) is bounded:

| b(u,q) |≤ α1 ‖ u ‖V · ‖
q ‖W for all u ∈ V,q ∈W and α1 ∈ R

v. the bilinear form b(.,.) satisfies the inf-
sup condition, that is:
there exists a constant β :

inf
06=q∈W

sup
06=v∈V

| b(v,q) |
‖ v ‖V · ‖ q ‖W

≥ β > 0

For instance in Girault and Raviart (1986) it is
shown that in our concrete case b(.,.) fulfills the
inf-sup condition, thus we can combine the as-
sumptions above to give the following theorem

Theorem 2. Variational problem Eqs. (5) and
(6) is uniquely solvable provide properties (i)-
(v) are all satisfied.

The details of the proof can be found in (Girault
and Raviart 1986; Brezinski 2005).

2.1 The Mixed Finite Element Discretiza-
tion

The mixed finite element discretization of the
variational formulation of the Stokes equations
results in a linear algebraic system of equations.
The finite element method described here is
based on the references (Braess 2007; Brenner
and Scott 2008; Ciarlet 1978; Donea and Huerta
2003; A. Elakkad and A. Elkhalfi and N. Gues-
sous 2010; Gunzburger 1989). We will intro-
duce the concept of mixed finite element meth-
ods. Details can be found in (Brenner and Scott
2008; Ciarlet 1978; Donea and Huerta 2003; A.
Elakkad and A. Elkhalfi and N. Guessous 2010;
Gockenbach 2006).

We assume that Ω⊆ R 2. We define the follow-
ing finite dimensional spaces .
Let Wh and Vh be subspaces of W and V re-
spectively and now we can formulate a discrete
version of problem Eqs. (5) and (6):
Find a couple (uh, ph) ∈ Vh×Wh such that

a(uh,vh)−b(vh, ph) = F(vh), ∀vh ∈ Vh (10)

b(uh,qh) = 0, ∀qh ∈Wh. (11)

The finite element discretization should satisfy
the discrete inf-sup condition. The following
theorem shows that again the inf-sup condition
is of major importance.

Theorem 3. Assume that a is Vh-elliptic
(with h independent ellipticity constant) and
that there exists a constant β > 0 (independent
of h) such that the discrete inf-sup condition

inf
06=qh∈Wh

sup
06=vh∈Vh

| b(vh,qh) |
‖ vh ‖Vh‖ qh ‖Wh

≥ β > 0. (12)
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holds. Then the associated (discretized, steady
state) Stokes problem has a unique solution
(uh; ph), and there exists a constant β1 such that

‖ u−uh ‖V + ‖ p− ph ‖W ≤ β1( inf
v∈Vh
‖ u−uh ‖V)

+( inf
q∈Wh

‖ p− ph ‖W ).

(13)

(for the proof we refer to Girault and Raviart
(1986)).

If the basis of Wh is given by {ψ1, ...,ψm} and
of Vh be given by {ϕ1, ...,ϕn} then

uh =
ni

∑
i=1

ui ·ϕi +
ni+n∂

∑
i=ni+1

ui ·ϕi, (14)

ph =
m

∑
k=1

pkψk. (15)

where ni is the number of inner nodes, n∂ is
the number of boundary nodes so the coeffi-
cients ui : i = ni + 1, ..,ni + n∂ interpolates the
boundary data and n = ni + n∂. The mixed fi-
nite element entails partitioning of the solution
domain Ω into quadrilaterals, in our case that
is Ω = ∪iτi we denote a set of quadrilateral
elements by Th = {τ1,τ2,τ3, ...} and on each el-
ement τi and we denote the space Pk(τi) of de-
gree less than or equal to k. There are a vari-
ety of finite element pairs whose effectiveness
is through stabilization[14]. In this work we
are going to use Hood-Taylor Q2−Q1 pair of
quadrilateral finite elements which are known to
be stable.

We specify

Vh := {uh ∈ V | uh |τi∈ P2(τi),∀ elements τi},
Wh := {ph ∈W | ph |τi∈P1(τi),∀ elements τi},

An element (uh, ph) ∈Wh×Vh is uniquely de-
termined by specifying components of vector
uh on the nodes and on the midpoints of the
edges of the elements and the values of ph on
the nodes of the elements. The mixed finite el-
ement method results in the coupled linear al-
gebraic system of equations which has to be
solved by the appropriate solvers. The resulting
coupled system is[

Ah BT
h

Bh O

][
uh
ph

]
=

[
fh
gh

]
(16)

with Ah is a block Laplacian matrix and Bh is
the divergence matrix whose entries are given

by

A = [ai j], ai j =
∫

Ω

(∇φi : ∇φ j)i, j=1,...,n

B= [bki], bki =−
∫

Ω

(ψk∇ ·φi))k=1,...,m; i=1,...,n

The entries of the right hand side vector are

f= [fi], fi =
∫

∂Ω

f·φi−
n+n∂

∑
i=n+1

ui

∫
Ω

(∇φi : ∇φ j)

g = [gk], gk =
n+n∂

∑
i=n+1

ui

∫
Ω

(ψk∇ ·φi))

The linear algebraic system can be represented
as

M x = b, (17)

where M :=
[

Ah BT
h

Bh O

]
; x :=

[
uh
ph

]
and

b :=
[

fh
gh

]
.

The solution vectors (uh, ph) are the mixed fi-
nite element weak solution. The system Eqs.
(16)-(17) is called the discrete Stokes problem.

The discretization and assembling of matri-
ces are done by the matlab implementation of
the mixed finite element method (Elman et al.
2005). Ah is stiffness matrix resulting from the
discretization of the Laplacian. The resultant
coefficient matrix is large, sparse, indefinite and
the system must be solved iteratively, in this
case by MINRES solvers. We are interested
in the approximate solution of Eq. (16) at the
finest mesh/discretization.

3. THE PRECONDITIONED MINRES
ITERATIVE SCHEME

In this section we outline the algorithmic struc-
ture of the iterative scheme for solving the
discretized linear algebraic system Eq. (16).
The main goal is to find the approximate pair
(uh, ph) of the discrete velocity and the discrete
pressure variables at the level of refinement l.
To calculate this, we apply our solvers to the
discrete algebraic system of equations. The al-
gorithmic details are outlined for the MINRES
and PMINRES iteration. The solvers have the
appeal of not requiring any parameters for mak-
ing the algorithm efficient as compared to other
methods like non-standard conjugate gradient
method and other variants of the Uzawa meth-
ods. Elman et al. (1999) also recommended
the preconditioned MINRES to solve the saddle
point problems. For convenience, we consider
Eq. (17). The MINRES method is based on the
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following residual minimization problem:

Given the initial guess x0, determine xi ∈
x0 +K i(M ;r0) such that
‖ M xi − b ‖= min(‖ M xi − b ‖| x0 +
K i(M ;r0)) where r0 = b − M x0
and K i(M ,r0)= span

{
r0,M r0,M 2r0, ...,M i−1r0

}
is the Krylov subspace. Below is the MINRES
algorithm for computing the iterate xi as given
in (Elman et al. (1999)).

Algorithm 4. The MINRES Algorithm
v0 = 0, w0 = 0, w1 = 0

Choose x0, compute
v1 = b−M x0, set γ1 =‖ v1 ‖

set η = γ1, s0 = s1 = 0, c0 = c1 = 1
for i = 1,2...until convergence do

vi =
vi
γ i

δi = 〈M vi,vi〉
vi+1 = M vi−δivi− γivi−1

γi+1 =‖ vi+1 ‖
α0 = ciδi− ci−1siγi

α1 =
√

α2
0 + γ2

i+1

α2 = siδi + ci−1ciγi
α3 = si−1γi

ci+1 =
α0
α1
, si+1 =

γi+1
α1

wi+1 =
(vi−α3wi+1−α2w j)

α1
xi = xi−1 + ci+1ηwi+1

η =−si+1η

Test for convergence
end for

We consider a symmetric positive definite block
preconditioner M̂ of M as studied in (Schor-
bel and Zulehner (2007), Zulehner (2002)). The
block triangular preconditioner is given as

M̂ :=
[

Â O
O Ŝ

]
(18)

Such that the left preconditioned system be-
comes

M̂ −1M x = M̂ −1b (19)

which is

M̃ x = b̃ (20)

The residual minimization criteria is applied to
the preconditioned system Eq. (20):

Given the initial guess x0 ∈ R n+m×n+m and
initial residual r̃0 = b̃ − M̃ x0, determine
xi ∈ x0 + K i(M̃ ; r̃0) such that: ‖ M̃ xi −

b̃ ‖= min(‖ M̂ xi − b̃ ‖ | x0 + K i(M̃ ; r̃0))

where r̃0 = b̃ − M̃ x0 and K i(M̃ , r̃0) =

span
{

r̃0,M̃ r̃0,M̃ 2r̃0, ...,M̃ i−1r̃0

}
is the

Krylov subspace and 〈·, ·〉M̂ = 〈M̂·, ·〉.

Then the preconditioned residual M̂ −1(b −
M x) is minimized in ‖ · ‖M̂ over transformed
Krylov subspace. The implementation of the
PMINRES requires one evaluation of M̂ −1z for
a given z and one multiplication by A per iter-
ation. The evaluation of the preconditioner is
achieved by solving a linear system z = M̂ y

The PMINRES method is outlined in the algo-
rithm below.

Algorithm 5. The PMINRES Algorithm
v0 = 0, w0 = 0, w1 = 0

Choose x0, compute
v1 = b−M x0, set γ1 =‖ v1 ‖

Solve M̂z1 = v1 set γ1 =
√
〈z1,v1〉

set η = γ1, s0 = s1 = 0, c0 = c1 = 1
for i = 1,2...until convergence do

zi =
zi
γ i

δi = 〈M zi,zi〉
vi+1 = M vi− ( δi

γi
)vi− ( γi

γi−1
)vi−1

Solve M̂zi+1 = vi+1
γ1 =

√
〈zi+1,vi+1〉

α0 = ciδi− ci−1siγi

α1 =
√

α2
0 + γ2

i+1

α2 = siδi + ci−1ciγi
α3 = si−1γi

ci+1 =
α0
α1
, si+1 =

γi+1
α1

wi+1 =
(zi−α3wi+1−α2w j)

α1
xi = xi−1 + ci+1ηwi+1

η =−si+1η

Test for convergence
end for

The main convergence results for PMINRES
method are due to (Peters et al. 2005; Rees
and Stoll 2010; Reusken and Gross 2011). The
convergence analysis is based on the eigenvalue
analysis of the preconditioned matrix system.
The spectral analysis of the preconditioner in-
fluences the convergence properties of the itera-
tive scheme connected with the approximations
of Â and Ŝ. We require that the eigenvalues
of the preconditioned system are well clustered
and distributed provided that the eigenvalues of
Â−1A and Ŝ−1S are so. The convergence of
the iterative scheme is driven mostly by the ra-
tio between the largest and smallest eigenvalue
of the preconditioned system. The theorem be-
low gives convergent analysis of the PMINRES
method
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Theorem 6. Let M ∈ R (n+m)×(n+m) be sym-
metric and M̂ ∈ R (n+m)×(n+m) be symmetric
and positive definite. For xi, i > 0 computed in
the preconditioned MINRES algorithm we de-
fine r̂i = M̂−1(b−M xi). Then the following
holds

‖ r̂i ‖M̂ = minpi∈Pi;p0=1 ‖ pi(M̂−1M )r̂0 ‖M̂

≤ minpi∈Pi;p0=1max
λ∈σ(M̂−1M )

|pi(λ)| ‖ r̂0 ‖M̂ (21)

The maximum is over the eigenvalues λ of
M̂ −1M .

For the proof we refer to (Reusken and Gross
(2011)). The theorem gives that the rate of
convergence of the preconditioned MINRES
method depends on σ(M̂−1M ). We need to de-
rive these bounds. The special case is when
we have Â = A and Ŝ = S and we have that
σ(M̂−1M ) ∈ { 1

2 (1−
√

5),1, 1
2 (1+

√
5)}. This

yields an exact solution in at most 3 iterations
(Elman et al. 1999; Peters et al. 2005; Reusken
and Gross 2011). In our case this is not practi-
cally feasible since the Schur compliment Ŝ =
BÂ−1BT is not computed explicitly since Â−1

is not sparse anymore and is very costly to
use since the matrix vector computation Ŝz =
B(Â−1(BT z)) that involves solving a linear sys-
tem like Ây = BT z. Since the exact precon-
ditioning is not feasible, we use the precondi-
tioner approximations M̂A o f Â and M̂S o f Ŝ.
The quality of these approximations is mea-
sured by using the spectral equivalences or in-
equalities. In order to quantify the quality of the
both approximations we use the spectral analy-
sis under the following conditions. For the pre-
conditioner approximations M̂A and M̂S and
let ω, ω, δ, δ > 0 such that

ω≤ λ =
xT Ax

xT M̂Ax
≤ ω (22)

δ =
xT BA−1BT x

xT M̂Sx
≤ δ (23)

Using the results in (Elman et al. 1999; Peters
et al. 2005; Rees and Stoll 2010) we obtain the
result for the eigenvalue bounds for the precon-
ditioned matrix. The conditions Eqs. (22) and
(23) implies that [ω,ω] contain all the eigenval-
ues of the preconditioned matrix Â−1A and δ

is the smallest eigenvalue of Ŝ−1S, with δ the

inf-sup constant. As a consequence the follow-
ing theorem for eigenvalue bounds points to the
convergence of PMINRES method.

Theorem 7. Let ω, ω, δ, δ > 0 and assume

that Eqs. (22) and (23). Let (λ,
[

u
p

]
) be an

eigenpair M̃ . Then following eigenvalue prob-
lem

M
[

u
p

]
= λ

(
M̂A O
O M̂S

)[
u
p

]
(24)

and A,S,M̂A and M̂S is positive definite. Then
λ is real and positive that satisfies

ω−
√

ω2−4(ωδ)
2 ≤ λ≤ ω−

√
δ

2
+4δω

2
ω≤ λ≤ ω

ω+
√

ω2+4ωδ

2 ≤ λ≤ ω+
√

ω
2+4(δω)
2

with ω, ω, δ, δ measures the qual-
ity and effectiveness of the precondition-
ers(approximations) M̂A of A and M̂S to S.

For the proof we refer to (Elman et al. 1999;
Elman et al. 2005; Rees and Stoll 2010).

Remark 8. The results of the theorems (6) and
(7) indicate that as long as we choose the ap-
proximations M̂A and M̂S close enough to A
and S then we can expect a good clustering of
eigenvalues of the eigenvalue problem that is
the spectral constants are ω, ω, δ, δ close 1
then one can expect a fast convergence of the
PMINRES method.

4. NUMERICAL RESULTS

In this section we present the numerical solu-
tion of classical Stokes problem Eqs. (1)-(3) us-
ing the solvers presented above. The solvers are
denoted by MINRES (algorithm 4) and PMIN-
RES (algorithm 5). We present the results of
this method as outlined above to run the tradi-
tional test problem, the driven cavity flow prob-
lem (Bramble et al. 1997; Bramble and Pasciak
1999; Elman et al. 1999; Larin and Reusken
2008). It is a model of the flow in a square cav-
ity (the domain is Ω ) with the top lid moving
from left to right in our case the regularized cav-
ity model {y = 1 : − 1 ≤ x ≤ 1 | ux = 1− x4}
Elman et al. (1999). The Dirichlet no-slip
boundary condition is applied on the side and
bottom boundaries. The mixed finite element
method was used to discretize the cavity domain
Ω = (−1,1)2.
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We pay particular attention to the computational
performance of the MINRES and PMINRES
methods at different grid levels. We compare
the effectiveness of different approximations for
the preconditioners M̂A and M̂S. The following
are considered, no preconditioning and different
combinations of the preconditioners Â and Ŝ are
considered as outlined in section 3:

i. MINRES with no preconditioning

ii. PMINRES: diagonal preconditioning
(diag(A), diag(Q)), Q is the pressure mass
matrix.

iii. PMINRES: multigrid v-cycle with Gauss
Seidel smoothing for M̂A and multigrid v-
cycle for the M̂S using the pressure mass
matrix (Amg,Smg)

iv. PMINRES: multigrid v-cycle with Gauss
Seidel smoothing for M̂A and diagonally
preconditioned standard conjugate gradi-
ent for the M̂S using the pressure mass
matrix (Amg,Spcg)

v. PMINRES: multigrid v-cycle with Gauss
Seidel smoothing for M̂A and Chebyshev
semi-iteration for the M̂S using the pres-
sure mass matrix ? (Amg,Scheb).

vi. PMINRES: multigrid v-cycle with Gauss
Seidel smoothing for M̂A and diagonal
preconditioning using the pressure mass
matrix (Amg,diag(Q)).

The comparison is made on the performance
of the MINRES and PMINRES schemes with
different combinations of preconditioners (i)-
(vi) in terms of iterative counts and CPU time.
The numerical treatment is given to the discrete
Stokes problem which resulted from the mixed
finite Hood-Taylor Q2-Q1 stable elements con-
sisting of biquadratic elements for the velocities
and bilinear elements for the pressure, on a uni-
form grid. Implementation was performed on a
windows 7 platform with 2.13 GHz speed intel
dual core processor by using matlab 7.14 pro-
gramming language. For the discretization we
start with a uniform square grid with h0 =

1
2 and

we apply regular refinements to this starting dis-
cretization.

The Fig. 2 show the snapshot of the error indi-
cators at level 6 from the MINRES and PMIN-
RES.

In this work we use the structured mesh and
regular refinements. The meshes are generated

by the matlab IFISS toolbox Elman (2007) in a
hierarchy of grids which are produced by suc-
cessive refinements. We need to choose the
coarse mesh (the starting mesh), finest mesh
which corresponds to the maximum level of re-
finement on which the final approximate solu-
tion is considered. The assembled matrices are
stored for each refinement level for the system
Eq. (16). The Table (1) below shows an exam-
ple of the refinement levels (in the examples be-
low we use the coarsest (starting) level to have
9 nodes for velocity and 4 nodes for pressure
variables (level 0)) but we start the computation
at level 2.

The Table (1) shows the refinement levels and
the number of grid points (nodes) for each level.

In all cases the iterations are repeated until the
tolerance of 10−6 is satisfied. The schemes con-
verge if the stopping criteria is satisfied. The Ta-
ble (2) shows the numerical results of the MIN-
RES and PMINRES (diagonal preconditioner)

The results in Table (2) show the MINRES and
diagonally preconditioned MINRES are not ef-
ficient and robust in solving the Stokes equa-
tions. Hence the need for a preconditioner ap-
proximations to act as accelerators of the solu-
tion process. In applying the preconditioner, we
approximate the preconditioner Â of the Lapla-
cian stiffness and sparse matrix A by a geomet-
ric multigrid v-cycle method (Amg). The multi-
grid is a well known fast solver for such sys-
tems. Before we apply the approximation com-
bination we need to check the effects of the
number of smoothing iterations on the perfor-
mance of the multigrid preconditioner.

The Table (3) shows the effects of different
multigrid v-cycle (1, 2, 3, 4) pre-and post-
smoothing steps in the performance of the
PMINRES method.

The results in Table (3) indicate that there is
no significant difference in the performance of
the PMINRES with multigrid preconditioner
approximation of the preconditioner of A and
Schur compliment S using pressure mass ma-
trix Q. In the next table we present results of the
PMINRES with multigrid v-cycle approxima-
tion of the Laplacian combined with different
approximations of the Schur compliment using
the mass pressure matrix Q.

The results in Table (4) show that the multigrid
v-cycle approximation for the preconditioner Â
combined with the Chebyshev semi iteration/
multigrid v-cycle for the preconditioner Ŝ have
shown better results in terms of iterative counts
and faster in terms of computational time. The
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Table 1 Refinement levels and number of nodes(nl= number of velocity unknowns(× 2) and ml
number of pressure unknowns)

refinement level(l) 1 2 3 4 5 6 7 8
mesh size(hl) 1

2
1
4

1
8

1
16

1
32

1
64

1
128

1
256

velocity nodes(nl) 9 25 81 289 1089 4425 16641 66049
pressure nodes(ml) 4 9 25 81 289 1089 4425 16641

Table 2 CPU time and number of iterations for PMINRES for different preconditioner
approximations at different levels of refinement, tolerance = 10−6

Level Minres Pminres(diag(A),diag(Q))
iter(cpu time (sec)) iter(cpu time (sec))

1
4 12(1.349) 12(4.4e-002)
1
8 59(1.6e-002) 33(1.9e-002)
1
16 231(1.57e-001) 86(1.00e-001)
1
32 529(8.11e-001) 182(5.78e-001)
1
64 1012(5.68) 386(4.621)
1

128 1845(4.11754e+001) 1008(5.0165e+001)

Table 3 CPU time and
number of iterations for PMINRES(Amg,Smg) at different levels of refinement, tolerance = 10−6

Levels vmg(1,1)iter) vmg(2,2) vmg(3,3) vmg(4,4)
iter(cpu time (sec)) iter(cpu time (sec)) iter(cpu time (sec)) iter(cpu time (sec))

1
4 6(9e-003) 6(8e-003) 6(8e-003) 6(8e-003)
1
8 28(6.2e-002) 25(6.3e-002) 24(7e-002) 24(2.08e-002)
1
16 32(1.98e-001) 28(2.04e-001) 27(2.3e-001) 27(2.62e-001)
1
32 33(5,43e-001) 28(6.11e-001) 27(7.009e-001) 27(8.5e-001)
1
64 35(1.608) 30(4.621) 27(2.105) 27(2.496)
1

128 33(5.153) 28(5.017) 26(7.009) 25(8.315)

Table 4 CPU time and number of iterations for PMINRES for different preconditioner
approximations at different levels of refinement, tolerance = 10−6

Levels pminres(Amg,Smg) pminres(Amg,Spcg) pminres(Amg,Schebv) pminres(Amg,diag(Q))
iter(cpu time (sec)) iter(cpu time (sec)) iter(cpu time (sec)) iter(cpu time (sec))

1
4 6(8e-003) 6(9.5e-002) 6(3.2e-002) 6(9e-003)
1
8 24(2,08e-001) 24(8.3e-002) 22(6.8-002) 21(5.6e-002)
1
16 27(2.62e-001) 29(2.81e-001) 25(2.41e-001) 40(3.24e-001)
1
32 27(8.5e-001) 29(2.9e-001) 27(8.08e-001) 44(3.4e-001)
1
64 27(2.496) 29(2.81) 27(8.08e-001) 44(1.136)
1

128 25(8.315) 29(9.252) 25(8.318) 44(1.29e+001)

Table 5 Changes in the ‖ ∇ ·u ‖Ω estimated velocity divergence error. η the global error
estimator from one level to the other

level 1
4

1
8

1
16

1
32

1
64

1
128

‖ ∇ ·u ‖Ω 2.230e-001 7.6e-002 2.016e-002 5.1e-003 1.28e-003 3.2e-004
η 2.6543 1.065e+000 2.773e-001 6.87e-002 1.71e-002 4.24e-003

iterative counts and the time are more attrac-
tive as compared to the other preconditioner ap-
proximations combinations like preconditioned
conjugate gradient and diagonal preconditioner
of the pressure matrix. The multigrid method
proves to be a suitable approximation for the
matrix A from the Laplacian. This agrees with
the results in Peters et al. (2005) and the Cheby-
shev iteration becomes a better approximation
for the Schur compliment preconditioner using

the pressure mass matrix. The results show that
the PMINRES is robust because the iterative
counts do not change significantly as the matrix
size increases.

The Table 5 shows the changes in the estimated
a posteriori errors for regularized driven cav-
ity flow using Q2 −Q1 approximation for the
flow: using the strategy built in IFISS ((Elman
2007),(Elman et al. 2005)) that for every ele-
ment error, the local error estimation is given
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as by the combination of the energy norm of the
velocity error and the L2 norm of the divergence
error that is

η
2
T :=‖ ∇eT ‖2

T + ‖ RT ‖2
T

Where eT is the velocity error estimate and

RT =‖ ∇ · u ‖T and η := (∑T∈Th
η2

T )
1
2 the

global error estimator. From the Table 5 we note
that the velocity divergence is clearly converg-
ing at a faster rate to O(h4), which means the
estimated global error η is increasingly domi-
nated by the velocity error component as h→ 0

The changes in the solution errors are high-
lighted in the table 5 below for the levels with
mesh sizes 1

4 to 1
64 .

The Fig. 1 below shows the sample snapshot of
the grid output of residual reduction at the level
with mesh size 1

32 for MINRES and PMINRES.
The Fig. 1 below the PMINRES residual error
reduction is faster and is done in fewer iterations
as compared to the MINRES. This is a reflec-
tion that the preconditioners were very effective
in making the solver perform very well.

The most interesting observation on the fig-

ures and table 5 is that from the two iterative
schemes we get the same solution and a poste-
riori error estimates. The above figure on the
residual reduction clearly shows that the PMIN-
RES is faster than the MINRES. This shows that
the accelerator is effective in improving the per-
formance of the MINRES method. Hence pre-
conditioning is an effective way of improving
the performance of the iterative schemes. The
use of the preconditioner in mandatory in mak-
ing the iterative schemes effective and robust
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Fig. 1. Residual reduction for MINRES(left) and PMINRES(right) of the Stokes equation at
level 5.
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Fig. 2. Estimated error η in the computed solution at level 5 for the MINRES(left) and
PMINRES (right).

1294



Muzhinji et al. / JAFM, Vol. 9, No. 3, pp. 1285-1296, 2016.

5. CONCLUSION

The objective of the work consisted of the de-
veloping efficient and robust iterative solvers
for the two dimensional steady state Stokes
equations discretized by mixed finite element
method Q2 −Q1 stable pair of rectangular el-
ements. To this end, a MINRES method and its
preconditioned counterpart denoted by PMIN-
RES were used as solution schemes. In this pa-
per we presented results for the MINRES and
PMINRES that were considered through tradi-
tional benchmark lid-driven cavity domain. For
PMINRES we applied a combination of the pre-
conditioners with the main diagonal approxi-
mated by different iterative scheme. The pre-
conditioner diagonal element Â was approxi-
mated by the multigrid v-cycle for all the tests
since it is the best known solver for the Lapla-
cian and different approximations were used for
the Schur compliment. A comparative study
was also made on the performance of the MIN-
RES and PMINRES iterative schemes in terms
of iterative counts and cpu time. We advocate
the use of the multigrid preconditioner approx-
imation for the Laplacian matrix A-block with
the combination of the multigrid/Chebyshev
semi iteration approximation for the Schur com-
pliment to accelerate the performance of the
MINRES iterative scheme. This entails that the
multigrid solver is effective in accelerating the
performance of the MINRES iterative scheme
as justified by the numerical results. Hence it
represents a robust and efficient solver of the
Stokes problem. In most applications the MIN-
RES (without preconditioning) is not an alter-
native since it is expensive and requires direct
inversion of a huge sparse matrix.
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