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ABSTRACT 

In this paper the viscoelastic flow and heat transfer over a non-linearly stretching sheet with the power law 
velocity of the form n

wu cx is investigated for the first time. A prescribed power-law surface temperature 

distribution of the form n
wT T Ax   is considered. Mathematical model is constructed through the 

constitutive equations of second grade fluid. The arising non-linear boundary value problem has been treated 
analytically by a powerful optimal homotopy analysis method (OHAM). The solutions are found in excellent 
agreement with the obtained numerical solutions in the case of Newtonian fluid. The results show that 
velocity and skin friction coefficient have direct relationship with the power-law index n . Further the 
thermal boundary layer becomes thinner when larger values of n  are taken into account. 

Keywords: Second grade fluid; Non-linearly stretching sheet; Heat transfer, Optimal homotopy analysis 
method (OHAM); Non-linear problem. 

NOMENCLATURE 

,a n  positive constants 

fC skin friction coefficient 

f dimensionless stream function 

 auxiliary (convergence control) parameter in 
OHAM 

k  thermal conductivity 

K local second grade fluid parameter 

xNu local Nusselt number 

Pr  Prandtl number 
q embedding parameter in OHAM 

wq wall heat flux 

xRe local Reynolds number 

T  fluid temperature 

wT  wall temperature 

T ambient fluid temperature 

wu velocity of the stretching sheet along the x 
direction 

,u v velocity components along the ,x y 
directions  

'  differentiation with respect to   

1  material fluid parameter 

  thermal diffusivity 
  similarity variable 

  dynamic viscosity 

f kinematic viscosity

 dimensionless temperature
  fluid density 

xy wall shear stress 

1 INTRODUCTION 

Non-Newtonian fluid mechanics has emerged as 
one of the most important subjects of modern 
applied mechanics. Materials encountered in 

industry and medicine such as multigrade oils, 
composite materials, blood, polymers, liquid 
detergents, fruit juices, printing inks and industrial 
suspensions exhibit the shear-rate dependent 
viscosity and thus fall outside the classical model of 
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Newtonian fluids. The frequently discussed power-
law fluid model has tendency to describe shear-
thinning as well as shear-thickening effects. The 
former is a common characteristic of many non-
Newtonian fluids including blood, polymers and 
composite materials. On the other hand, some fluids 
possess normal stress differences which can be 
described through second grade fluid model. In 
contrast to the power-law model, the second grade 
fluid model has been scarcely discussed in the 
literature due to its complex constitutive 
relationship between stress and shear rate. 
Vajravelu and Roper (1999) numerically 
investigated the flow and heat transfer in second 
grade fluid in the presence of viscous dissipation 
and heat generation/absorption. Later, Ariel (2001) 
discussed the axisymmetric flow of second grade 
fluid past a radially stretching surface using explicit 
finite difference scheme. Stagnation-flow of second 
grade fluid with variable wall heat flux was 
described by Massoudi (2003). Effects of heat 
transfer on the hydro-magnetic flow of second 
grade fluid past a stretching sheet were addressed 
by Liu (2004). Cortell (2006) extended this problem 
for permeable stretching sheet. Hayat and Sajid 
(2007) presented homotopy based analytic solution 
for second grade fluid flow caused by linearly 
stretching sheet. Abbas et al. (2008) described the 
flow of second grade fluid due to oscillatory 
stretching sheet. They presented both numerical and 
analytical solutions of the arising non-linear 
problem. Abel and Mahesha (2008) discussed the 
flow of second grade fluid with variable thermal 
conductivity, radiation and non uniform heat 
source/sink. Hayat et al. (2009) investigated the 
boundary layer flow over a flat plate with uniform 
free stream, the so-called Blasius flow, by 
considering second grade fluid. Simultaneous 
effects of heat and mass transfer on the flow of 
second grade fluid with Dufour and Soret effects 
were examined by Hayat et al. (2010). Recently a 
variety of two-dimensional flow problems 
concerning second grade fluid have been discussed 
in the literature (see Abel et al. (2010), Olajuwon 
(2011), Hayat et al. (2012), Raftari et al. (2013), 
Mustafa et al. (2014), Mastroberardino (2014), 
Weidman (2014) and Turkyilmazoglu (2014)). 

To the best of author’s knowledge, the flow of 
viscoelastic fluid due to non-linearly stretching 
surface is not yet reported. This work is therefore 
undertaken to fill such a void. Heat transfer analysis 
is also carried out by assuming a power-law surface 
temperature distribution. Mathematical formulation 
involves the constitutive relationships of second 
grade fluid. The arising non-linear boundary value 
problem is tackled through a powerful analytic 
approach namely optimal homotopy analysis 
method (OHAM) (see Marinca and Herisanu 
(2008), Niu and Wang (2010), Liao (2010), 
Abbasbandy et al. (2011), Sheikholeslami et al. 
(2011), Mustafa et al. (2013a), Mustafa et al. 
(2013b), Sheikholeslami et al. (2014), Rashidi et al. 
(2014) and Hassan and Rashidi (2014)). Graphs are 
presented to examine the behaviors of parameters 
entering in the problem. Expressions of skin friction 
coefficient and local Nusselt number are evaluated 

and discussed in detail. 

2 PROBLEM FORMULATION 

Consider the two-dimensional flow of an 
incompressible second grade fluid and heat transfer 
over a plane surface coincident with the plane 

0y  . The sheet is stretched in its own plane with 

the velocity n
wu cx , where , 0c n   are constants. 

Temperature across the sheet varies non-linearly in 
the form n

wT T Ax  , where A  is a constant and 

T  denotes the ambient fluid temperature. The 

boundary layer equations governing the flow of 
second grade and heat transfer in the absence of 
viscous dissipation and heat generation/absorption 
can be expressed as below: 

,0u v
x y
   

                  (1) 

2

2

3 2 3 2
1

2 2 3
,

u u u
u v
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u u u u u u
u v
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




  
  

  

      
           

          (2) 

2

2
,p

T T T
C u v k

x y y


   
     

                 (3) 

where u  and v  are the velocity components along 
the x   and y   directions respectively,  is the 

kinematic viscosity, 1 is the material fluid 

parameter, k  is the thermal conductivity, pC  is 

the effective heat capacity of the fluid and T  is the 
local fluid temperature. The boundary conditions 
are as under: 

( ) ,  ( ) at 0,

0,   as .

n n
w wu u x cx T T x T Ax y

u T T y




     
  

  (4) 

Introducing the following similarity transformations 

1
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
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

        (5) 

Eq. (1) is identically satisfied and Eqs. (2)-(4) 
become 

 

2
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2

1
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(0) 0,  (0) 1,  (0) 1, ( ) 0,  

( ) 0,

f f f


     
 

    (8) 

 

Where 1
1 /nK cx   is the local second grade 

fluid parameter and Pr /pC k  is the Prandtl 

number. 

The skin friction coefficient fC  and local Nusselt 

number xNu  are defined as below: 

2
, ,w w

f x

w w

xq
C Nu

u T T


 

 


                (9) 

where w  is the wall shear stress and wq  is the wall 

heat flux defined as: 

2 2

1 2

0
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w

y

w

y

u u u u v
u v

y x y y y y

T
q k

y

  




      
            

 
    

 (10)

 

Using Eqs. (5) and (10) in Eq. (9), one obtains 

1/2

1/2

1 7 1
Re 1 (0),

2 2

1
Re (0),

2

x f

x x

n n
C K f

n
Nu 

          

  

          (11)
 

where Re /x wu x   is the local Reynolds number. 

2.1 Particular Cases 

(i) When 0K  , viscous flow and heat transfer due 
to non-isothermal non-linearly stretching sheet 
is obtained, as discussed by Cortell (2006). In 
this problem, when Pr 1 , the solution of f   is 

also a solution of  . 

(ii) When 0n  , Eqs. (8)-(10) reduce to the well 
known Sakiadis flow problem in second grade 
fluid. 

(iii) When 1n  , flow of second grade fluid and 
heat transfer due to non-isothermal linearly 
stretching sheet is achieved. 

3 OPTIMAL HOMOTOPY 
ANALYSIS METHOD (OHAM) 

In order to derive analytic solutions of Eqs. (6)-(8) 
by optimal homotopy analysis method (OHAM), we 
choose the following initial guesses 0f  and 0 of 

( )f   and ( )   as under: 

0 0( ) 1 exp( ), ( ) exp( ),f                        (12) 

and the auxiliary linear operators are selected as 
below: 
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If [0,1]q  is an embedding parameter and   the 

non-zero auxiliary parameter, then generalized 
homotopic equations corresponding to (8)-(10) can 
be expressed as follows: 
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in which the non-linear operators fN and N  

through Eqs. (8) and (9) are 
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By Taylor series expansion one obtains 
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The final solutions can be obtained by substituting 
1q  in the above equations. The functions mf  and 

m  can be determined from the deformation of Eqs. 

(8)-(10). Explicitly mth-order deformation 
equations corresponding to Eqs. (8)-(10) are as 
under: 
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The optimal values of the convergence control 
parameter  can be determined by minimizing the 
squared residuals of the governing Eqs. (6) and (7), 
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Similar kind of error has also been considered in 
previous studies (see Liao (2010)). The smaller 

's,M  the more accurate the M-th order 

approximation of the solution. First of all we plot 
the so called   -curves and the squared residuals 
given in (27) and (28) in Figs. 1-3. A sample of 
optimal values of   for functions f  and   for 
different values of parameter n has been given in 
Table 1. 

4 RESULTS AND DISCUSSION 

This section focuses on the physical behaviors of 
the involved paramaters on the velocity and 
temperature distributions. Figs. 4 and 5 compare the 
15th-order OHAM solutions for different values of 

n and Pr  with the corresponding numerical 
solutions when 0K  . Here the numerical 
solutions have been derived by MATLAB built in 
routine bvp4c. It can be seen that both the solutions 
coincide for both small and large values of n and 
Pr .  

 
Fig. 1.   curves of (0)f   and (0)   at 20th –

order of approximations. 

 

 
Fig. 2. Averaged square residual for the function 

.f  
 

 
Fig. 3. Averaged residual for the function  . 

 

Fig. 6 presents the variation in velocity distribution 
with an increase in power-law index n . The bigger 
values of n  imply larger velocity of the stretching 
sheet. Due to this reason the x   component of 
velocity in the neighborhood of the sheet increases 



M. Mustafa / JAFM, Vol. 9, No. 3, pp. 1321-1328, 2016.  
 

1325 

when n  is increased. It may be noted that profiles 
descend to zero at larger values of   when n  is 
increased indicating an augmentation in the 
boundary layer thickness. Fig. 7 is prepared to 
examine the impact of local second grade fluid 
parameter K  on the hydrodynamic boundary layer. 
The velocity approaches zero value at large distance 
from the sheet when K is increased. This indicates 
that boundary layer thickness is an increasing 
function of K . 

 
Fig. 4. Temperature profiles for different values 
of n in Newtonian fluid case ( 0K  ). Lines: 15th 

–order OHAM solution; Circles: Numerical 
solution. 

 
 

 
Fig. 5. Temperature profiles for different values 

of Pr in Newtonian fluid case ( 0K  ). Lines: 
15th –order OHAM solution; Circles: Numerical 

solution. 

 
 

 
Fig. 6. Variation of f   with n . 

 
Fig. 7. Variation of f   with K . 

 
Fig. 8 plots the skin friction coefficient 1/2Rex fC  

against the viscoelastic fluid parameter K for 
different values of n . It is quite obvious that larger 
values of n  indicates larger sheet velocity which 
requires stronger driving force at the wall. 
Consequently the wall shear stress increases with an 
increase in n . For a fixed value of n , wall shear 
stress reduces when K  is increased. From the 
industrial point of view, this outcome is undesirable 
since the power required in displacing the fluid over 
the sheet increases when K  is increased. 
 
 

 
Fig. 8. Variation of 1/2Rex fC  with n  and K . 

 

 
Fig. 9. Variation of   with n . 

 
The variation in temperature distribution with an 
increase in power-law index n  can be observed 
from Fig. 9. Both temperature   and thermal 
boundary layer thickness are decreasing functions 
of power-law index n . From the physical point of  
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Table 1 Optimal values of the auxiliary parameter   at 15th-order of approximations for different 
values of n  when 0.25K   and Pr 1  

n  Optimal   for f  Minimum f
M  Optimal   for   Minimum M

  

0 -1.025 1.52  10-11 -1.184 7.96  10-12 

1 -0.738 2.26  10-27 -1.198 6.11  10-16 

2 -0.738 1.020 10-17 -0.879 1.37  10-13 

3 -0.585 8.24  10-15 -0.678 1.11  10-11 

4 -0.480 3.94  10-13 -0.557 1.61  10-10 

5 -0.408 5.06  10-12 -0.478 1.59  10-9 
 

Table 2 Values of skin friction coefficient 1/2Rex fC  and 1/2Rex xNu  when Pr 1  

n  K  
1/2Rex fC  1/2Rex xNu  

0 
(Sakiadis flow problem) 

0 -0.44375 0.44375 
0.25 -0.38276 0.44634 
0.5 -0.32416 0.44847 

0.75 -0.26742 0.45024 

1 
(Linearly stretching sheet problem) 

0 -1.00000 1.00000 
0.25 -1.56525 1.02789 
0.5 -2.04124 1.04841 

0.75 -2.45677 1.06430 

2 
(Non-linearly stretching sheet problem) 

0 -1.34845 1.34845 
0.25 -2.84036 1.41148 
0.5 -3.97463 1.44857 

0.75 -4.91622 1.47385 

 
view, bigger values of n  enhance the intensity of 
cold fluid at the ambient towards the hot stretching 
surface due to increased fluid motion in the x   
direction adjacent to the sheet. In Fig. 10, we 
present the behavior of local second grade fluid 
parameter K  on the temperature  . Temperature 
at a point above the sheet decreases with an increase 
in K . Fig. 11 illustrates the effects of Prandtl 
number Pr  on the thermal boundary layer. A bigger 
Prandtl number fluid has relatively weaker thermal 
diffusivity and hence it yields shorter penetration 
depth of the temperature  . Further the 
temperature profiles become steeper when Pr  is 
increased indicating a growth in the magnitude of 
local Nusselt number. 

 

 
Fig. 10. Variation of   with K . 

 

The variation in local Nusselt number xNu  with K

and n  can be observed from Fig. 12. The magnitude 
of local Nusselt number or equivalently the rate of 

heat transfer from the sheet is a decreasing function 
of K . 

 

 
Fig. 11. Variation of   with Pr . 

 

 
Fig. 12. Variation of 1/2Rex xNu  with n and K . 

Table 2 gives the numerical values of skin friction 
coefficient and local Nusselt number for different 
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values of local second grade fluid parameter K . 
The cases of Sakiadis flow ( 0)n  , linearly 

stretching sheet ( 1)n  and non-linearly stretching 

sheet with 2n   are considered. We notice that 
magnitude of skin friction coefficient increases 
when K  is increased in the linearly and non-
linearly stretching sheet problems. Interestingly, 
opposite trend is observed in the Sakiadis flow 
problem. 

5 CONCLUDING REMARKS 

For the first time, the flow and heat transfer of 
viscoelastic fluid due to non-linearly stretching 
sheet is considered. Analytic solutions are 
computed by powerful analytical approach namely 
optimal homotopy analysis method (OHAM). The 
main observations of this work are outlined below: 

(i) Analytic solutions are found in excellent 
agreement with the numerical solutions in a 
limiting sense. 

(ii) Velocity increases and temperature 
decreases when the power-law index n  is 
incremented.   

(iii) An increase in the local second grade fluid 
parameter K  increases the velocity and 
decreases the temperature distribution. 

(iv) Both skin friction coefficient and local 
Nusselt number have direct and linear 
relationship with the local second grade 
fluid parameter K .   

(v) The well known Sakiadis flow problem for 
second grade fluid can be obtained as 
special case of present study by substituting 

0n  .  
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