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ABSTRACT 

This article describes the time dependent flow of a non-Newtonian fluid with heat transfer. We consider three 
dimensional unsteady flow and heat transfer of an Oldroyd-B fluid for constant temperature (CT) and 
constant heat flux (CH) cases over an unsteady bidirectional stretching surface. Homotopic solutions of the 
governing boundary value problems have been computed. Convergence for both velocity and temperature 
profiles is explored. The effects of emerging parameters on the velocity and temperature fields are 
investigated with the help of graphs and tabular data. It is observed that due to unsteadiness temperature in 
both the constant temperature and constant heat flux cases decrease significantly. Comparison of obtained and 
previously published results is found in excellent agreement. 

Keywords: Unsteady flow; Bidirectional stretching; Oldroyd-B fluid; Heat transfer analysis; Homotopy 
analysis method.  

NOMENCLATURE 

ܣ unsteadiness parameter
௣ܥ specific heat
ଵܥ െ  .ଵ଴ integration constantsܥ
݂, ݃ dimensionless velocities
԰௙, ԰௚, ԰ఏ, ԰థ auxiliary parameters 
݇ thermal conductivity
݇ଵ thermal conductivity
ݎܲ Prandtl number
݌ embedding parameter
ܳ heat source or sink 
ݏ ,ݎ power indices

 kinematic viscosity ߥ
,ݔ ,ݕ  Cartesian coordinates ݖ

 dimensionless temperatures ߶ ,ߠ
 dimensionless independent varialbe ߟ
 stretching ratio ߙ
 internal heat parameter ߚ
 ଵ relaxation parameterߚ
 ଶ retardation parameterߚ
 fluid density ߩ

1. INTRODUCTION

The key importance of non-Newtonian fluids in 
industry and technology attracted many researchers. 
The constitutive relationships of non-Newtonian 
fluids are nonlinear and can predict different 
phenomena like shear thinning, shear thickening, 
normal stress effects, stress relaxation, retardation 
and fluid memory etc. Different nature of 
phenomena cannot be described by a single 
constitutive relationship between the shear stress 
and rate of deformation. Hence, different 
constitutive models of such fluids have been 
proposed in the literature. An Oldroyd-B fluid is in 

the subclass of rate type non-Newtonian fluids 
which exhibit both relaxation and retardation effects 
as discussed by Haitao and Mingyu (2009), Sajid et 
al. (2010), Jamil et al. (2011), Liu et al. (2011), 
Hayat et al. (2011), Hayat et al. (2012), Hayat et al. 
(2014), Shehzad et al. (2014), Khan et al. (2014). 

The pioneering problem for two dimensional 
boundary layer flow due to a stretching plane 
surface discussed by Crane (1970) is involved in 
many manufacturing process such as glass fiber 
production, hot rolling, continuous casting, 
manufacturing of sheets, coating and paper 
production. The three-dimensional flow due to a 
plane bidirectional linearly stretching sheet was first 
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discussed by Wang (1989). He found an exact 
numerical solution of classical Navier-Stokes 
equations. Ariel (2003) derived approximate 
analytic and numerical solutions for the steady three 
dimensional flows over a stretching sheet. Liu and 
Andersson (2008) considered the heat transfer in 
three dimensional flow due to a non-isothermal 
stretching sheet. Ahmad et al. (2011) extended the 
problem carried out by Liu and Andersson (2008) 
by incorporating the effects of applied magnetic 
field and Darcy resistane. 

A literature survey sheds light on the fact that only 
few studies have been reported on the problem of 
unsteady boundary layer flows due to a stretching 
sheet. Xu et al. (2007) examined uniformly valid 
series solutions for three dimensional unsteady flow 
caused by an impulsive stretching sheet. The 
unsteady three dimensional flow and mass transfer 
of elastico-viscous fluid due to unsteady stretching 
sheet with constant wall concentration was studied 
by Hayat et al. (2011). Recently Awais et al. (2014) 
studied time dependent boundary layer flow of a 
Maxwell fluid over an unsteady bidirectional 
stretching sheet. Very recently Ahmad et al. (2014) 
discussed heat transfer analysis of MHD flow due 
to unsteady bidirectional stretching sheet through 
porous space. To the best of our knowledge, the 
analysis for the three-dimensional unsteady flow of 
an Oldroyd-B fluid over an unsteady bidirectional 
stretching surface with heat transfer has not yet 
been reported in the literature. 

The purpose of present communication is to discuss 
the simultaneous effects of heat on the flow of an 
Oldroyd-B fluid over an unsteady bidirectional 
stretching surface. The stretching surface exhibits 
the heat transfer through two cases namely constant 
temperature (CT) and constant heat flux (CH). 
Effects of heat generation/absorption are also 
considered. As a first step the boundary layer 
equations under these assumptions have been 
developed and then series solutions by employing a 
homotopy analysis method (Liao 1992, Liao 2003, 
Turkyilmazoglu 2012, Ahmad 2013, Hayat et al. 
2015a, Hayat et al. 2015b) are presented for the 
transformed nonlinear boundary value problems. 
The effects of various involving physical 
parameters on the velocity and temperature profiles 
are discussed through graphs and tables. 

2. MATHEMATICAL FORMULATION 

Consider the unsteady, three-dimensional, 
incompressible flow of an Oldroyd-B fluid over an 
unsteady stretching sheet. The sheet coincides with 
the plane at ݖ ൌ 0 and the fluid occupies the region 
ݖ ൐ 0. Flow analysis is carried out in the presence 
of heat generation or absorption. Following Haris 
(1977) the developed boundary layer equations that 
govern the unsteady flow and heat transfer of an 
Oldroyd-B fluid are 
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The appropriate boundary conditions for the present 
problem are 

ݑ ൌ ݒ   ,ሻݔ௪ሺݑ ൌ ݓ   ,ሻݕ௪ሺݒ ൌ 0   at  ݖ ൌ 0,              

ݑ ՜ ݒ   ,0 ՜ 0   as     ݖ ՜ ∞,                (5) 

where 

ሻݔ௪ሺݑ ൌ
௔௫

ଵି௖௧
ሻݕ௪ሺݒ   , ൌ

௕௬

ଵି௖௧
, 

for the temperature we have the following two sets 
of boundary conditions 

(CT case): 

ܶ ൌ ௪ܶ ൌ ஶܶ ൅ ௦  at  zݕ௥ݔܣ ൌ  0, ܶ ՜ ஶܶ  as  ݖ ՜
∞,                                                                          (6) 

(CH case): 

െߣଷ
డ்

డ௭
ൌ ݖ  ௦   atݕ௥ݔܤ ൌ 0, ܶ ՜ ஶܶ  as  ݖ ՜ ∞,  

 (7) 

where ܽ ൐ 0, ܾ ൐ 0 and ܿ ൐ 0 are constant 
stretching rates with dimension time-1 such that 
ݐܿ ൏  is the kinematic viscosity, ݇ଵ is the ߥ ,1
thermal conductivity of the fluid,  ߣଵ is the 
relaxation time, ߣଶ is the retardation time,  ߣଷ is the 
thermal conductivity of the fluid,  ஶܶ is the ambient 
temperature outside the thermal boundary layer, ܣ 
and ܤ are positive constants. The power indices r 
and s decided how the temperature or the heat flux 
at the sheet varies in the ሺݔ,  ሻ-plane. The stretchingݕ
phenomenon in this direction has already studied by 
various authors Liu and Andersson (2008), Ahmad 
et al. (2011), Ahmad et al. (2014). 

Following Awais et al. (2014) and Ahmad et al. 
(2014), we introduce the following dimensionless 
variables 

ߟ ൌ ඨ
ܽ

ሺ1ߥ െ ሻݐܿ
ݑ   ,ݖ ൌ

ݔܽ
1 െ ݐܿ
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ൌ
ݕܽ

1 െ ݐܿ
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ݓ ൌ െට
ߥܽ

1 െ ݐܿ
ሼ݂ሺߟሻ ൅ ݃ሺߟሻሽ,               

ሻߟሺߠ ൌ
ܶሺݔ, ,ݕ ,ݖ ሻݐ െ ஶܶ

௪ܶሺݔ, ሻݕ െ ஶܶ
  for  ሺCTሻ,             

ܶሺݔ, ,ݕ ,ݖ ሻݐ െ ஶܶ ൌ
ܤ
ଷߣ

ට
ߥ
ܽ

 .ሻ   for   ሺCHሻߟ௦߶ሺݕ௥ݔ 

(8)  

Thus the continuity equation is identically satisfied 
and Eqs. (2-4) takes the following form 
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ఎ
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The associated boundary conditions are also 
reduced into the following form 

݂ ൅ ݃ ൌ 0, ݂ᇱ ൌ 1, ݃ᇱ ൌ ,ߙ ߠ ൌ 1, ߶ᇱ ൌ െ1  

 at  ߟ ൌ 0 

݂ᇱ ՜ 0,    ݃ᇱ ՜ 0, ߠ ՜ 0, ߶ ՜ 0  as   ߟ ՜ ∞    (13) 

where the prime denote differentiation with respect 
to ߙ ,ߟ ൌ ܾ/ܽ the stretching ratio, ܣ ൌ ܿ/ܽ the 
unsteadiness parameter, ߚଵ ൌ ଵܽ/ሺ1ߣ െ ,ሻݐܿ ଶߚ ൌ
ଶܽ/ሺ1ߣ െ ݎܲ ,ሻ the Deborah numbersݐܿ ൌ  the ݇/ߥ
Prantle number and ߚ ൌ  ௣ܽ the internal heatܥߩ/ܳ
generation. 

3. HOMOTOPY ANALYSIS SOLUTIONS 

Based on the rules of solution expressions and the 
boundary conditions (13), the initial approximations 
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ሻߟ଴ሺߠ ൌ eିఎ,   ߶଴ሺߟሻ ൌ eିఎ,              (14) 

and the auxiliary linear operators are 

ࣦଵ ൌ ݂ᇱᇱᇱ െ ݂ᇱ,   ࣦଶ ൌ ԢԢߠ െ  (15)             ,ߠ
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in which ܥ௜Ԣݏ  are arbitrary constants. From Eqs. 
(9)–(12), the nonlinear operators 
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ఏࣨൣ መ݂ሺߟ, ,ሻ݌ ො݃ሺߟ, ሻ൧݌ ൌ

,ߟ෠ᇱᇱሺߠ ሻ݌ ൅ ݎܲ

ە
ۖ
۔

ۖ
ቀۓ መ݂ሺߟ, ሻ݌ ൅ ො݃ሺߟ, ሻቁ݌ ,ߟ෠ᇱሺߠ ሻ݌

൅ ቆ
ߚ െ ݎ መ݂ᇱሺߟ, ሻ݌

െݏ ො݃Ԣሺߟ, ሻ݌
ቇ ,ߟ෠ሺߠ ሻ݌

െܣ ൬
ఎ

ଶ
,ߟ෠ᇱሺߠ ሻ݌ ൅ ,ߟ෠ሺߠ ሻ൰݌ ۙ

ۖ
ۘ

ۖ
ۗ

,  (19) 

థࣨൣ መ݂ሺߟ, ,ሻ݌ ො݃ሺߟ, ሻ൧݌ ൌ

߶෠ᇱᇱሺߟ, ሻ݌ ൅ ݎܲ

ە
ۖ
۔

ۖ
ቀۓ መ݂ሺߟ, ሻ݌ ൅ ො݃ሺߟ, ሻቁ݌ ߶෠ᇱሺߟ, ሻ݌

൅ ቆ
ߚ െ ݎ መ݂ᇱሺߟ, ሻ݌

െݏ ො݃Ԣሺߟ, ሻ݌
ቇ ߶෠ሺߟ, ሻ݌

െܣ ൬
ఎ

ଶ
߶෠ᇱሺߟ, ሻ݌ ൅ ߶෠ሺߟ, ሻ൰݌ ۙ

ۖ
ۘ

ۖ
ۗ

. (20) 

If ݌ א ሾ0 , 1ሿ is the embedding parameter and 
԰௙ , ԰௚ , ԰ఏ ܽ݊݀ ԰థ are the non-zero auxiliary 
parameters, then the zeroth-order deformation 
problems are of the following form 

ሺ1 െ ሻࣦଵൣ݌ መ݂ሺߟ, ሻ݌ െ ଴݂ሺߟሻ൧ ൌ ԰௙݌ ௙ࣨ,             (21) 

ሺ1 െ ,ߟሻࣦଵሾ݃ሺ݌ ሻ݌ െ ݃°ሺߟሻሿ ൌ ԰௚݌ ௚ࣨ,             (22) 

ሺ1 െ ,ߟ෠ሺߠሻࣦଶൣ݌ ሻ݌ െ ሻ൧ߟ଴ሺߠ ൌ ԰ఏ݌ ఏࣨ,             (23) 

ሺ1 െ ,ߟሻࣦଶൣ߶෠ሺ݌ ሻ݌ െ ߶଴ሺߟሻ൧ ൌ ԰థ݌ థࣨ,           (24) 

መ݂ሺ0, ሻ݌ ൌ ො݃ሺ0, ሻ݌ ൌ 0,
መ݂ᇱሺ0, ሻ݌ ൌ ,෠ሺ0ߠ ሻ݌ ൌ 1,         

ො݃Ԣሺ0, ሻ݌ ൌ ,෠Ԣሺ0߶   , ߙ ሻ݌ ൌ െ1,               (25) 
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that for velocities ݂ and ݃ 18th order solution is 
sufficient however for temperatures ߠ and ߶ the 
required convergence will be achieved at 35th order 
of approximation. Hence we need fewer 
deformations for the velocities as compared to the 
temperatures for a convergent solution. 
 

 
Fig. 2. Influence of unsteadiness parameter ࡭ on 

the temperature (a) CT case (b) CH case. 
 

 

 
Fig. 3. Influence of Deborah number ࢼ૚ on the 

temperature, (a) CT case (b) CH case. 
 
 

5. RESULTS AND DISCUSSION 

The homotopy analysis method solutions in the 
form of an infinite series are obtained using 
symbolic software MATHEMATICA. The values 
of ԰ are chosen in such a way that the obtained 

series are convergent for the chosen set of fluid 
parameters. In the present study we are focusing our 
attention in the discussion of temperature profiles 
across the surface for both constant surface 
temperature and constant heat flux cases. To depict 
the influence of different parameters on the 
temperature profiles Figs. 2-9 have been sketched. 
The influence of parameter ܣ on temperature 
profiles ߠሺߟሻ and ߶ሺߟሻ for three dimensional flow 
situation is portrayed in Fig. 2. This Figure 
indicates that temperature is a decreasing function 
of ܣ for both CT and CH cases. It is also noted that 
the thermal boundary layer thickness decreases with 
an increase in ܣ. Fig. 3 describes the influence of 
Deborah number ߚଵ on the temperature profiles 
 ሻ. It can be seen that as we increaseߟሻ and ߶ሺߟሺߠ
Deborah number ߚଵ the temperature also increases 
for both the cases. The deviation of ߚଶ on ߠሺߟሻ and 
߶ሺߟሻ are seen in Fig. 4. Here we see that the 
temperature profiles decreases when we increase 
Deborah number ߚଶ. An increase in Deborah 
number ߚଶ is due to increase in retardation time. An 
increase in retardation time decreases the 
temperature. 
 

 

 
Fig. 4. Influence of Deborah number ࢼ૛ on the 

temperature, (a) CT case (b) CH case. 

 
It is worth mentioning that the stress decreases with 
an increase in the relaxation parameter. Retardation 
parameter characterizes the retardation time when 
strain decreases at constant stress, so velocity 
decreases by increasing the retardation parameter. A 
comparison between Figs. 3 and 4 shows that 
Deborah numbers ߚଵ and ߚଶ effects quite oppositely 
on temperature profiles. Fig. 5 elucidates the 
influence of stretching ratio ߙ on the temperature 
profiles. It is noted that the temperature decreases 
with increasing the stretching ratio ߙ in both CT 
and CH cases. It is also observed that the thermal 
boundary layer thickness is decreased for large 
values of the stretching ratio ߙ. It is further noted 
that these results are similar in qualitative sense 
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with the temperature profiles shown by Liu and 
Andersson (2008). 
 

 

 

 
Fig. 5. Influence of stretching parameter ࢻ on 

the temperature, (a) CT case (b) CH case. 

 

 
Fig. 6. Influence of ࢘ on the temperature, (a) CT 

case (b) CH case. 

 
The effect of power indices ݎ and ݏ on the 
temperature profiles are seen through Figs. 6 and 7. 
It can be seen that the indices ݎ and ݏ have similar 
effect on the temperature profiles. It is observed that 
both decrease the temperature and thermal 
boundary layer thickness. Fig. 8 shows the effects 
of the heat source/sink parameter ߚ on the 
temperature profiles ߠሺߟሻ and ߶ሺߟሻ. As expected, 
the temperature increases with increasing heat 
source 0 < ߚ and decreases in the case of heat sink 

 on the ݎܲ The behavior of Prandtl number .0 > ߚ
temperature is shown in Fig. 9. The temperature 
decreases with an increase in Prandtl number which 
implies that the thermal boundary layer becomes 
thinner with large Prandtl number. 
 

 

 
Fig. 7. Influence of ࢙ on the temperature, (a) CT 

case (b) CH case. 
 

 
Fig. 8. Influence of ࢼ on the temperature, (a) CT 

case (b) CH case. 
 

Table 2 provides a comparison for velocity fields in 
the special case when ߚଵ ൌ ଶߚ ൌ ܣ ൌ 0 and found 
in excellent agreement with Shehzad et al. (2013) 
and Khan et al. (2014). The comparison of ߠԢሺ0ሻ 
and ߶ሺ0ሻ for different values of ܲݎ and ߚ when 
ଵߚ ൌ ଶߚ ൌ ݎ ,0 ൌ ݏ ൌ 1 and ߙ ൌ 0.5 is presented  
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Table 2 Comparison of results for velocity fields for different values of  
૚ࢼ when ࢻ ൌ ૛ࢼ ൌ ࡭ ൌ ૙ are fixed 

 Shehzad et al. (2013) Exact Sol. Khan et al. (2014) HAM Sol. Present result ߙ
 െ݂ԢԢሺ0ሻ െ݃ԢԢሺ0ሻ െ݂ԢԢሺ0ሻ െ݃ԢԢሺ0ሻ െ݂ԢԢሺ0ሻ െ݃ԢԢሺ0ሻ 

0.0 1.0 0.0 1.0 0.0 1.0 0.0 
0.1 1.020259 0.066847 1.02026 0.06685 1.020260 0.066846
0.2 1.039495 0.148736 1.03949 0.14874 1.039496 0.148742
0.3 1.05794 0.243359 1.05795 0.24336 1.057953 0.243358
0.4 1.075788 0.349208 1.07578 0.34921 1.075786 0.349209
0.5 1.093095 0.465204 1.09309 0.46521 1.093093 0.465209
0.6 1.109946 0.590528 1.10994 0.59053 1.109945 0.590532
0.7 1.126397 0.724531 1.12639 0.72453 1.126394 0.724530
0.8 1.142488 0.866682 1.14249 0.86668 1.142489 0.866684
0.9 1.158253 1.016538 1.15826 1.016538 1.158261 1.016538
1.0 1.173720 1.173720 1.17372 1.173720 1.173723 1.173722

 
Table 3 Numerical values of െࣂᇱሺ૙ሻ ܌ܖ܉ ࣘሺ૙ሻ when ࡭ ൌ ૙, ࢼ ൌ ૚ࢼ ൌ ૛ࢼ ൌ ૙, ࢘ ൌ ૚, ࢙ ൌ ૚ and 

ࢻ ൌ ૙. ૞ 
 െߠᇱሺ0ሻ for CT ߶ሺ0ሻ for CH 

ߚ   ൌ െ0.2 ߚ ൌ ߚ 0 ൌ ߚ 0.2 ൌ െ0.2 ߚ ൌ ߚ 0 ൌ 0.2 

Liu & Andersson 
ൌ ݎܲ (2008)  1 1.348064 1.255781 1.148932 0.741805 0.796317 0.870355 

Present  1.348068 1.255778 1.148933 0.741806 0.796318 0.870370 
Liu & Andersson 

ൌ ݎܲ (2008)  5 3.330392 3.170979 3.002380 0.300265 0.315360 0.333069 

Present  3.330395 3.170981 3.002379 0.300259 0.315363 0.333072 
Liu & Andersson 

ൌ ݎܲ (2008) 10 4.812149 4.597141 4.371512 0.207807 0.217527 0.228754 

Present  4.812151 4.597143 4.371514 0.207806 0.217531 0.228755 

 

 
Fig. 9. Influence of ࢘ࡼ on the temperature, (a) 

CT case (b) CH case. 
 

in table 3. From this table we examined that our 
series solutions have very good agreement with the 
previously obtained results. Table 4 gives the 
numerical values of local Nusselt number െߠᇱሺ0ሻ 
for different values of ܲݎ, ,ߙ ,ߚ ,ܣ  in both ݏ and ݎ
viscous and Oldroyd-B fluids. We observe that the 

values of local Nusselt number for viscous fluid 
case are quantitatively smaller in comparison to the 
Oldroyd-B fluid. It is also observed that an increase 
in the value of unsteadiness parameter ܣ also 
increase the Nusselt number. 

6. CONCLUDING REMARKS 

The three-dimensional unsteady flow and heat 
transfer characteristics of an Oldroyd-B fluid due to 
an unsteady bidirectional stretching sheet is 
investigated in this paper. For the heat transfer 
analysis the heating process of (i) the constant 
temperature (CT) and (ii) the constant heat flux 
(CH) are taken in to account.  The convergence of 
the developed series solution is explicitly discussed. 
The main findings of the present study are 

 Temperature profiles ߠሺߟሻ and ߶ሺߟሻ are the 
decreasing function of time dependent 
parameter ܣ. 

 The Deborah numbers ߚଵ and ߚଶ behaves quite 
oppositely on both the temperature profiles 
 .ሻߟሻ and ߶ሺߟሺߠ

 A rise in Deborah number ߚଶ decrease the 
temperatures ߠሺߟሻ and ߶ሺߟሻ and thermal 
boundary layer thickness.  

 The numerical values of local Nusselt number 
for an Oldroyd-B fluid are larger than the 
viscous fluid. 

 The temperature profile ߠሺߟሻ and ߶ሺߟሻ are the 
decreasing function of Prandtl number. 
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Table 4 Numerical values of local Nusselt number െࣂᇱሺ૙ሻ for different values of  ࢘ࡼ, ,ࢻ ,ࢼ ,࡭ ,࢘ ,࢙ ,૚ࢼ  ૛ࢼ
ݎ ߚ ܣ ݎܲ ߙ ݏ ଵߚ ൌ ଶߚ ൌ 0.0 ଵߚ ൌ ଶߚ ൌ 0.3 

0.25 1.0 0.5 0.0 0.0 0.0 1.069386 1.072114 
0.50      1.108350 1.111716 
0.75      1.158753 1.162966 
0.50 0.5     0.739980 0.741497 

 1.5     1.459927 1.465274 
 1.0 0.0    0.716953 0.721059 
  1.0    1.448419 1.450931 
  0.5 -0.2   1.207769 1.210970 
   0.2   0.997745 1.001277 
   0.0 -2.0  0.340102 0.336027 
    2.0  1.663113 1.670415 
    0.0 -2.0 0.746805 0.748907 
     2.0 1.412769 1.418924 

 
 For ܣ ൌ 0, the steady flow situations will be 

obtained. 

 For ߚଵ ൌ ଶߚ ൌ 0, the result for viscous fluid can 
be recovered. 
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