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ABSTRACT

This article describes the time dependent flow of anon-Newtonian fluid with heat transfer. We consider three
dimensional unsteady flow and heat transfer of an Oldroyd-B fluid for constant temperature (CT) and
constant heat flux (CH) cases over an unsteady bidirectiona stretching surface. Homotopic solutions of the
governing boundary value problems have been computed. Convergence for both velocity and temperature
profiles is explored. The effects of emerging parameters on the velocity and temperature fields are
investigated with the help of graphs and tabular data. It is observed that due to unsteadiness temperature in
both the constant temperature and constant heat flux cases decrease significantly. Comparison of obtained and
previously published resultsisfound in excellent agreement.

Keywords: Unsteady flow; Bidirectional stretching; Oldroyd-B fluid; Heat transfer analysis; Homotopy
analysis method.

NOMENCLATURE
A unsteadiness parameter v kinematic viscosity
Gy specific heat x,y,z  Cartesian coordinates
Ci —Cqo integration constants.
f9 dimensionless velocities 9, ¢ dimensionless temperatures
hy by, hg, he auxiliary parameters n dimensionless independent varialbe
k thermal conductivity a stretching ratio
kq thermal conductivity B internal heat parameter
Pr Prandtl number b1 relaxation parameter
D embedding parameter B2 retardation parameter
Q heat source or sink p fluid density
r,s power indices

1. INTRODUCTION

The key importance of non-Newtonian fluids in
industry and technology attracted many researchers.
The congtitutive relationships of non-Newtonian
fluids are nonlinear and can predict different
phenomena like shear thinning, shear thickening,
normal stress effects, stress relaxation, retardation
and fluid memory etc. Different nature of
phenomena cannot be described by a single
congtitutive relationship between the shear stress
and rate of deformation. Hence, different
constitutive models of such fluids have been
proposed in the literature. An Oldroyd-B fluid isin

the subclass of rate type non-Newtonian fluids
which exhibit both relaxation and retardation effects
as discussed by Haitao and Mingyu (2009), Sagjid et
al. (2010), Jamil et al. (2011), Liu et al. (2011),
Hayat et al. (2011), Hayat et al. (2012), Hayat et al.
(2014), Shehzad et al. (2014), Khan et al. (2014).

The pioneering problem for two dimensional
boundary layer flow due to a stretching plane
surface discussed by Crane (1970) is involved in
many manufacturing process such as glass fiber
production, hot rolling, continuous casting,
manufacturing of sheets, coating and paper
production. The three-dimensional flow due to a
plane bidirectional linearly stretching sheet was first



M. Ahmad et al. | JAFM,Vol. 9, No. 3, pp. 1329-1337, 2016.

discussed by Wang (1989). He found an exact
numerical solution of classical Navier-Stokes
equations. Ariel  (2003) derived approximate
analytic and numerical solutions for the steady three
dimensional flows over a stretching sheet. Liu and
Andersson (2008) considered the heat transfer in
three dimensional flow due to a non-isothermal
stretching sheet. Ahmad et al. (2011) extended the
problem carried out by Liu and Andersson (2008)
by incorporating the effects of applied magnetic
field and Darcy resistane.

A literature survey sheds light on the fact that only
few studies have been reported on the problem of
unsteady boundary layer flows due to a stretching
sheet. Xu et al. (2007) examined uniformly valid
series solutions for three dimensional unsteady flow
caused by an impulsive stretching sheet. The
unsteady three dimensional flow and mass transfer
of elastico-viscous fluid due to unsteady stretching
sheet with constant wall concentration was studied
by Hayat et al. (2011). Recently Awais et al. (2014)
studied time dependent boundary layer flow of a
Maxwell fluid over an unsteady bidirectiona
stretching sheet. Very recently Ahmad et al. (2014)
discussed heat transfer analysis of MHD flow due
to unsteady bidirectional stretching sheet through
porous space. To the best of our knowledge, the
analysis for the three-dimensional unsteady flow of
an Oldroyd-B fluid over an unsteady bidirectional
stretching surface with heat transfer has not yet
been reported in the literature.

The purpose of present communication is to discuss
the simultaneous effects of heat on the flow of an
Oldroyd-B fluid over an unsteady bidirectional
stretching surface. The stretching surface exhibits
the heat transfer through two cases namely constant
temperature (CT) and constant heat flux (CH).
Effects of heat generation/absorption are aso
considered. As a first step the boundary layer
equations under these assumptions have been
developed and then series solutions by employing a
homotopy analysis method (Liao 1992, Liao 2003,
Turkyilmazoglu 2012, Ahmad 2013, Hayat et al.
20153, Hayat et al. 2015b) are presented for the
transformed nonlinear boundary value problems.
The effects of various involving physica
parameters on the velocity and temperature profiles
are discussed through graphs and tables.

2. MATHEMATICAL FORMULATION

Consider the unsteady, three-dimensional,
incompressible flow of an Oldroyd-B fluid over an
unsteady stretching sheet. The sheet coincides with
the plane at z = 0 and the fluid occupies the region
z > 0. Flow analysis is carried out in the presence
of heat generation or absorption. Following Haris
(2977) the developed boundary layer equations that
govern the unsteady flow and heat transfer of an
Oldroyd-B fluid are
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The appropriate boundary conditions for the present
problem are

u=u,x), v=v,U), w=0 at z=0,

u-0, v->0 as z— oo, 6)
where
u,(0) =1—, W)=

for the temperature we have the following two sets
of boundary conditions

(CT case):
T=T,=To+Ax"y* atz=0,T>T, as z—
o, (6)
(CH case):

—A3Z—Z=ery5 at z=0,T—->T, as z > o,
@)

where a >0, b>0 and ¢>0 are constant
stretching rates with dimension time® such that
ct <1, v is the kinematic viscosity, k; is the
thermal conductivity of the fluid, A, is the
relaxation time, 4, is the retardation time, A5 isthe
thermal conductivity of the fluid, T, isthe ambient
temperature outside the thermal boundary layer, A
and B are positive constants. The power indices r
and s decided how the temperature or the heat flux
at the sheet variesin the (x, y)-plane. The stretching
phenomenon in this direction has already studied by
various authors Liu and Andersson (2008), Ahmad
et al. (2011), Ahmad et al. (2014).

Following Awais et al. (2014) and Ahmad et al.
(2014), we introduce the following dimensionless
variables

a ax
= v(l—ct)Z' u=1—ctf (. v
ay
T1-ct
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W= [T () + g,
T(x,y,z, To
o) = % for (CT),
T, y,2,t) — Ty = Z\/;xrysd)(n) for (CH).

®

Thus the continuity equation is identically satisfied
and Egs. (2-4) takes the following form

flll _A(fl +gfll) _fIZ + (f +g)f”'
F+ " =2 +Df'f"
ﬁl +A2 (Zfl +%f!/ +7772fllr)
+ARf A nf " = (f + 9GBf" +nf")
+B2(Oc//+gu)f!l_(f_,’_g)fm/_,’_A(anH +
2f"), ©)
9" -A(g'+2g") =g +(f +9)g"-
(f+9)32g" —2(f +g)9’ "
b1 +A42 (2g +7T’g”+ =9 )
+A{29" +ng'g" - (f + g)(3g” +ng"}
+B.((f" +g"g" = (f +9)g"" + Almg"" +

29"), (10)
0" +Pr(f+g)0' +Pr(B—rf —sg')6 —
A(Ze'-0)Pr=0, for (CT) (11)
¢" +Pr(f+g)p' +Pr(B—rf —sg)¢—
A(L¢'—¢)Pr=0 for (CH). (12)

The associated boundary conditions are aso
reduced into the following form

f+g9g=0f"=1g9g"=a6=1¢ =—
atn =0
f'-0, g—-0606-0 ¢p—>0as n-o>oo (13)

where the prime denote differentiation with respect
to n, @ = b/a the stretching ratio, A = c/a the
unsteadiness parameter, B, = 4,a/(1 —ct), B, =
A,a/(1 — ct) the Deborah numbers, Pr = v/k the
Prantle number and 5 = Q/pC,a the internal heat
generation.

3. HOMOTOPY ANALYSIS SOLUTIONS

Based on the rules of solution expressions and the
boundary conditions (13), the initial approximations

fo@), gom), 6,(n) and ¢o(n) for the functions
£, g, 6(n) and p(n) are

fo(n) =1-e,
go(m) =a(l—e™),
Oo(m) = e, ¢o(n) =e™", (14

and the auxiliary linear operators are
Ly=f"—=f' L,=0"—-86, (15)
satisfying

Li[Cy + Ce" + C3e7"] =0, L,[C,e" + Cge™]

=0, (16)

in which C;'s are arbitrary constants. From Egs.
(99«12, the nonlinear operators
N;, Ny , Ny and Ny, are defined by the following
expressions

N [f @), g p)] = ' (n.p) ~ (f’(n,p))2 +(fap) +
90.p)) " p) — AL () + £, p)}
( afofap)+2f o+ o))
| » { 2(7p) +nf .0 () - }I
1 (F@.p) + 301.p)) (37", p) + nf " (n,p)) ? +
{ fap)+9ap) fp) - }
l f(n p)+4(, p))f (.0)f"(,p) J
((From+ g om)frmp) )
B (f(n p)+ 3@, p)) "(m.p) }, (17)
L +4(nf " aup) + 2F () |

N[f o), g )] = 3" ) — (@) + (Fnp) +
g, p)) g"m,p) - A{ §"(p)+3'(, P)}
4 {2, p) + 29" GLp) + 29" (1.}
AF 2(g'n, p)) +ng'(, p)”’(n p) - }
By (F@,p)+ gGr.p)) (39" (0, ) + 03" (1.1))
{ (Fop) +3mp) 3" p) ~ }
l (f(n p)+ 3@, p))g m.p)3" (. p)
{ (70 + §"1) " 1, ) }

(f (n.p) +g(n,p)) 3" )¢ (18)

+A(mg"" (. p) + 28" (0, p))
NG [f(ﬂ' p)' QA(TIr P)] =
(F@,p) +g(n.p)) 0 (0. p)

Arr ﬁ - rf’(n' P) A
8" (n,p) + Pr +< —sg'(p) )9(?7,19) , (19)

L -4 (28 + o) )

((Fop) + 5tn.p) 8 (n.p))

T ﬁ_rf’(n'P)
¢"(m,p) +Pr +< _Sg\’(TI,P)

-A (Z@’(n,p) + é(n,p))

>¢3(n. P) }.(20)

If pe[0,1] is the embedding parameter and
hs,hg,hg and hy are the non-zero auxiliary
parameters, then the zeroth-order deformation
problems are of the following form

(A =p)Li[f . p) — fo)] = PR, (21)

(1 =p)Lilg(m,p) — g-(M)] = phyNg, (22)
(1 =p)L,[6(n,p) — 6o ()] = PhoNg, (23)
(1 = p)L[ (0, p) — po()] = PN, (24)
f.p)=g(0,p) =0, A
f'Op)=06(0,p) =1,
g'0,p)=a, ¢§'0,p)=-1, (25)
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Table 1 Numerical values of £”(0), g"(0), 8'(0) and ¢'(0) at different order of approximations
whene =0.5, ;=B =0.2, f,=0.3, r= s=1.0,Pr=1.0, iy = h, = —0.7 and

Order of approximation —f£"(0) —-g"(0) =60'(0) ¢"(0)
1 1.097083 0.482708 1.265000 1.455000
5 1.097084 0.479925 1.445586 1.237031
10 1.097075 0.479903 1.481215 1.210069
15 1.097074 0.479902 1.492032 1.205008
18 1.097074 0.479901 1.494212 1.203597
20 1.097074 0.479901 1.496374 1.202214
25 1.097074 0.479901 1.498309 1.201000
30 1.097074 0.479901 1.498894 1.200639
35 1.097074 0.479901 1.498922 1.200312
40 1.097074 0.479901 1.498922 1.202312
f'(0,p) = §'(0,p) = B(e0,p) = p(c0,p) = 0. F) = fo@) + =i fin (), (35)
(26) g = gom) + Zm=19m(m), (36)
These equations implies that for p = 0andp =1 () = 0,(n) + X8, (1), (37)
have the following solutions ~ -
A . d() = Po(M) + X=1 Pm (M) (38)
f@,0)=fm), f(,D)=fm), (27)
d@,0) =go(m,g(n1) =gm), (28)
6(n,0) =6,(m), 6(n, 1) =6(), (29)
$(,0) = po(m), ¢, 1) = p(). (30)

f.p), §m,p), 6(n,p) and d(n,p) varies from
fo(m, g0, 6o(n) and ¢o(n)to the solutions

f@), g), () and ¢(n) as p varies from O to
1. The Taylor’s series thus suggest that

. f@.p)
= folD + ) fnCP™,
m=1

1 8™f(n.p)
ful) = =200

i opm (31)

dm,p)

=go(n) + Z Im(MP™,
m=1

1 0™g(mp)
m!  Jdp™

gm(n) = |p=0' (32)

. 6(n.p)
=0, + Z O (MP™,
m=1

™0 (n.p)
ap™

O () = — (33)

|p:0!

. é(n.p)

= bo) + ). b,
m=1

1 0™mp(n,
Pm(m) = L ITetp)

m! dp™

|p=0r (34)
The auxiliary parameters hg, hy, hg and hy in Egs.
(21)-(24) ensures the the convergence of the series
solutions given by Egs. (31)-(34). Assuming that
s, hg, hg and hy are chosen such that the seriesin
Eqgs. (31)-(34) are convergent at p = 1. Thus

Egs. (35)-(38) have the genera solutions in the
forms

fmn@) = fin () + Gy + Coe" + Cze77, (39)
Im(@) = gm@) + C4 + Cse™ + Cee™, (40)
0m(m) = 0,5,(m) + C,e™ + Cge™, (41)
S (M) = Pm(m) + Coe™ + C1oe™7, (42)

where f7.(1), gm (1), 6 () and ¢y, () denotes the
special solutions.
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Fig. 1. h-curves for f"(b),g"(o), 0'(0) and
¢"'(0) at 18" order of approximation.

0.25

4, CONVERGENCE OF THE
SOLUTIONS

SERIES

The series solutions for f,g,0 and ¢ are given in
Egs. (35)-(38) which contain auxiliary parameters
hs, hg, hg and hg. The convergence and rate of
approximation of the obtained solutions depends
upon these parameters. To find out the suitable
values of these auxiliary parameters h — curves for
the 18" order of approximation are plotted. Fig. 1
clearly show that the range of admissible values are
-120< h <-01, —122<h; <0, —-122<
hg < —0.5 and —1.25 < hy < —0.5. Table 1 is
made to see that how many order of approximations
are required for a convergent solution. It is found

1332



M. Ahmad et al. | JAFM,Vol. 9, No. 3, pp. 1329-1337, 2016.

that for velocities f and g 18" order solution is
sufficient however for temperatures 8 and ¢ the
required convergence will be achieved at 35" order
of approximation. Hence we need fewer
deformations for the velocities as compared to the
temperatures for a convergent solution.

b1=0.2, bp=0.3

A=2.0,15, 1.0, 0.5, 0.0

5 6

Fig. 2. Influence of unsteadiness parameter A on
the temperature (a) CT case (b) CH case.

A=0.5, by=0.3

0 1 2 3 4 5 6

Fig. 3. Influence of Deborah number B4 on the
temperature, (a) CT case (b) CH case.

5. RESULTS AND DISCUSSION

The homotopy analysis method solutions in the
form of an infinite series are obtained using
symbolic softwvare MATHEMATICA. The values
of h are chosen in such a way that the obtained

series are convergent for the chosen set of fluid
parameters. In the present study we are focusing our
attention in the discussion of temperature profiles
across the surface for both constant surface
temperature and constant heat flux cases. To depict
the influence of different parameters on the
temperature profiles Figs. 2-9 have been sketched.
The influence of parameter A on temperature
profiles 8(n) and ¢(n) for three dimensional flow
Situation is portrayed in Fig. 2. This Figure
indicates that temperature is a decreasing function
of A for both CT and CH cases. It is also noted that
the thermal boundary layer thickness decreases with
an increase in A. Fig. 3 describes the influence of
Deborah number B; on the temperature profiles
6(n) and ¢(n). It can be seen that as we increase
Deborah number g, the temperature also increases
for both the cases. The deviation of 8, on 6(n) and
¢(n) are seen in Fig. 4. Here we see that the
temperature profiles decreases when we increase
Deborah number B,. An increase in Deborah
number S, is dueto increasein retardation time. An

increase in retardation time decreases the
temperature.
A=0.5, by1=0.2
1 a
0.8
0.6
o b, = 1.0, 0.75, 0.5, 0.25, 0.0
0.4
0.2
0
0 1 2 3 4 5 6
h
A=0.5, by=0.2
1
b
0 1 2 3 4 5 6

Fig. 4. Influence of Deborah number B, on the
temperature, (a) CT case (b) CH case.

It is worth mentioning that the stress decreases with
an increase in the relaxation parameter. Retardation
parameter characterizes the retardation time when
strain decreases at constant stress, so velocity
decreases by increasing the retardation parameter. A
comparison between Figs. 3 and 4 shows that
Deborah numbers 8, and 3, effects quite oppositely
on temperature profiles. Fig. 5 elucidates the
influence of stretching ratio a on the temperature
profiles. It is noted that the temperature decreases
with increasing the stretching ratio « in both CT
and CH cases. It is also observed that the thermal
boundary layer thickness is decreased for large
values of the stretching ratio a. It is further noted
that these results are similar in qualitative sense
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with the temperature profiles shown by Liu and
Andersson (2008).

A=0.5, b1=0.2, bp=0.3

a
0.8
0.6
(=2
0.4
0.2
0
6
1
b
5 6

Fig. 5. Influence of stretching parameter a on
the temperature, (a) CT case (b) CH case.

A=0.5, b1=0.2, bp=0.3

a
-2.0, -4.0
0 1 2 3 4 5 6
h
A=0.5, b1=0.2, by=0.3
b
- -2.0, -4.0
4 5 6

Fig. 6. Influence of r on the temperature, (a) CT
case (b) CH case.

The effect of power indices r and s on the
temperature profiles are seen through Figs. 6 and 7.
It can be seen that the indices r and s have similar
effect on the temperature profiles. It is observed that
both decrease the temperature and thermal
boundary layer thickness. Fig. 8 shows the effects
of the heat source/sink parameter B on the
temperature profiles 6(n) and ¢(n). As expected,
the temperature increases with increasing heat
source § > 0 and decreases in the case of heat sink

B < 0. The behavior of Prandtl number Pr on the
temperature is shown in Fig. 9. The temperature
decreases with an increase in Prandtl number which
implies that the thermal boundary layer becomes
thinner with large Prandtl number.

A=0.5, b1=0.2, bp=0.3

-2.0, -4.0

0 1 2 3 4 5 6

Fig. 7. Influence of s on the temperature, (a) CT
case (b) CH case.

A=0.5, b1=0.2, b=0.3

0 1 2 3 4 5 6

Fig. 8. Influence of B on the temperature, (a) CT
case (b) CH case.

Table 2 provides a comparison for velocity fieldsin
the specia case when 8, = 8, = A = 0 and found
in excellent agreement with Shehzad et al. (2013)
and Khan et al. (2014). The comparison of 6'(0)
and ¢(0) for different values of Pr and § when
Bi=B,=0,r=s=1and a =0.5 is presented
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Table 2 Comparison of results for velocity fields for different values of
a when B, = B, = A = 0 are fixed

a Shehzad et al. (2013) Exact Sol. Khan et al. (2014) HAM Sol. Present result
—f"(0) —-9"(0) —f"(0) —g"(0) —f"(0) —9"(0)

0.0 1.0 0.0 1.0 0.0 1.0 0.0
0.1 1.020259 0.066847 1.02026 0.06685 1.020260 0.066846
0.2 1.039495 0.148736 1.03949 0.14874 1.039496 0.148742
0.3 1.05794 0.243359 1.05795 0.24336 1.057953 0.243358
0.4 1.075788 0.349208 1.07578 0.34921 1.075786 0.349209
0.5 1.093095 0.465204 1.09309 0.46521 1.093093 0.465209
0.6 1.109946 0.590528 1.10994 0.59053 1.109945 0.590532
0.7 1.126397 0.724531 1.12639 0.72453 1.126394 0.724530
0.8 1.142488 0.866682 1.14249 0.86668 1.142489 0.866684
0.9 1.158253 1.016538 1.15826 1.016538 1.158261 1.016538
1.0 1.173720 1.173720 1.17372 1.173720 1.173723 1.173722

Table 3 Numerical values of —8'(0) and ¢(0) when4 =0, =B, =B,=0,r=1,s=1and

a=0.5
—6'(0) for CT ¢(0) for CH

p=-02| g=0 |g=02 |p=-02 |p=0 |[pg=02

"i”&(ZAOB‘;?SSO” Pr = 1 |1348064 | 1255781 |1.148932 | 0.741805 |0.796317 [0.870355
Present 1.348068 | 1.255778 | 1.148933 | 0.741806  |0.796318 |0.870370
Li”&(ggg?m“ Pr =5 |3.330392 |3.170979 |3.002380 | 0.300265 [0.315360 [0.333069
Present 3.330395 | 3.170981 | 3.002379 | 0.300259 |0.315363 |0.333072

Liu &(ZAOB‘;?SSO” Pr =10 |4.812149 | 4507141 |4371512 | 0207807 |0.217527 [0.228754
Present 4812151 | 4507143 | 4371514 | 0.207806 |0.217531 |0.228755

A=0.5, b1=0.2, b,=0.3

Fig. 9. Influence of Pr on the temperature, (a)
CT case (b) CH case.

in table 3. From this table we examined that our
series solutions have very good agreement with the
previously obtained results. Table 4 gives the
numerical values of local Nusselt number —8’(0)
for different values of Pr,a,f, A,r and s in both
viscous and Oldroyd-B fluids. We observe that the

values of local Nusselt number for viscous fluid
case are quantitatively smaller in comparison to the
Oldroyd-B fluid. It is also observed that an increase
in the value of unsteadiness parameter A aso
increase the Nusselt number.

6. CONCLUDING REMARKS

The three-dimensional unsteady flow and heat
transfer characteristics of an Oldroyd-B fluid due to
an unsteady bidirectiona stretching sheet is
investigated in this paper. For the heat transfer
analysis the heating process of (i) the constant
temperature (CT) and (ii) the constant heat flux
(CH) are taken in to account. The convergence of
the developed series solution is explicitly discussed.
The main findings of the present study are

® Temperature profiles 8(n) and ¢(n) are the
decreasing function of time dependent
parameter A.

® The Deborah numbers g; and 3, behaves quite
oppositely on both the temperature profiles

6(n) and ¢ ().

® A rise in Deborah number B, decrease the
temperatures 6(n) and ¢(n) and thermal
boundary layer thickness.

® The numerical values of local Nusselt number
for an Oldroyd-B fluid are larger than the
viscous fluid.

® The temperature profile 8(n) and ¢(n) are the
decreasing function of Prandtl number.
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Table 4 Numerical values of local Nusselt number —8’(0) for different values of Pr,a,B, A,1,s,B1,B

a Pr A B r s B =pB,=0.0 L1 =p,=03
0.25 1.0 0.5 0.0 0.0 0.0 1.069386 1.072114
0.50 1.108350 1.111716
0.75 1.158753 1.162966
0.50 0.5 0.739980 0.741497

15 1.459927 1.465274
1.0 0.0 0.716953 0.721059
1.0 1.448419 1.450931

0.5 -0.2 1.207769 1.210970

0.2 0.997745 1.001277

0.0 -2.0 0.340102 0.336027

2.0 1.663113 1.670415

0.0 -2.0 0.746805 0.748907

2.0 1.412769 1.418924

® For A =0, the steady flow situations will be
obtained.

® For B, = B, =0, theresult for viscous fluid can
be recovered.
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