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ABSTRACT 

The interaction of spherical solid particles with turbulent eddies in a 3-D turbulent channel flow with friction 

Reynolds number *
Re 180

u H


   was studied. A generalized lattice Boltzmann equation (GLBE) was 

used for computation of instantaneous turbulent flow field for which large eddy simulation (LES) was 
employed. The sub-grid-scale (SGS) turbulence effects were simulated through a shear-improved 
Smagorinsky model (SISM), which can predict turbulent near wall region without any wall function. 
Statistical properties of particles behavior such as root mean square (RMS) velocities were studied as a 

function of dimensionless particle relaxation time (  ) by using a Lagrangian approach. Combination of 
SISM in GLBE with particle tracking analysis in turbulent channel flow is novelty of the present work. Both 
GLBE and SISM solve the flow field equations locally. This is an advantage of this method and makes it easy 
implementing. Comparison of the present results with previous available data indicated that SISM in GLBE is 
a reliable method for simulation of turbulent flows which is a key point to predict particles behavior correctly. 

Key words: Generalized lattice Boltzmann equation, Large eddy simulation, Particle tracking, Fluid mean 
velocity, Fluid root-mean-square (RMS) fluctuation velocity, Particle mean velocity, Particle root-mean-
square (RMS) fluctuation velocity. 

NOMENCLATURE 

cC
 Stokes- Cunningham slip correction factor 

DC
 drag coefficient 

sC  Smagorinsky constant 
d  particle’s diameter 
dp dx  pressure gradient
e


velocity vector in direction

f  velocity distribution function 
F


external force vector of flow domain 
g  gravity acceleration 

g Dimensionless gravity acceleration 
H channel half width 
m  moments vector 

eqm equilibrium moments vector 

pm
 particle’s mass 

M transformation matrix of velocity   

u  shear velocity 

F
RMSu  fluid dimensionless stream-wise RMS 

velocity 
F

RMSv fluid dimensionless span-wise RMS 
velocity 

F
RMSw

fluid dimensionless normal RMS 
velocity 

F
MEANu fluid dimensionless mean stream-wise 

velocity
P
RMSu  particle dimensionless stream-wise 

RMS velocity 
p
RMSv particle dimensionless span-wise 

RMS velocity 
P

MEANu
particle dimensionless mean stream-

 wise velocity
P

MEANv particle dimensionless mean span-
 wise velocity
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Re  flow friction Reynolds number 
ReP  particle Reynolds number 
s  particle to fluid density ratio 
S(x, t)  Shear at position x and time t 

( , )S x t  magnitude of instantaneous  
 resolved rate of strain 

( , )X tS


 Source term vector 

s


 diagonal matrix of relaxation rates 
t  time  
t  Non-dimensional time      

U


 fluid velocity vector               

iu
 

fluid velocity in i direction        
p
iu

 
particle velocity in i direction 

 
 

P
RMSw

 particle dimensionless  normal RMS 
velocity 

z  dimensionless distance from the lower 
wall 

 
  characteristic directions presented by 
 the LBM model 

  grid filter width   
x  local grid spacing in x  direction 

  molecular mean free path of the gas 
  fluid kinematic viscosity 

T  eddy viscosity 
  density 
  Particle relaxation time 

 
 dimensionless particle relaxation time    

 
 

 

1. INTRODUCTION 

Particle-laden turbulent flows have a wide range of 
applications in industrial and engineering fields. 
Usually turbulent flows are consisting of multiple 
phases and include suspended particles. Apparent 
examples are cooling air flow of micro-electronic 
devices or conveying the concentrate particles by 
air in mineral and cement factories. Also, 
particulate flows occur in indoor air and outdoor air 
filtration systems, industrial copper melting 
furnaces, sprays, drug delivery devices and 
mechanical polishing instruments. Sediment 
transport in rivers and dust storms are other 
examples that need the knowledge aerosol science 
and multiphase flows. 

   In order to predict particles transportation 
correctly, instantaneous fluid velocity components 
have to be evaluated carefully and economically. 
Direct numerical simulation (DNS) of fluid flow in 
which Navier-Stokes equations are solved without 
any model presents the most acceptable results. 
However, its high computational cost makes it 
inapplicable for large Reynolds number (RE) flows. 
Reynolds averaged Navier-Stokes (RANS) models 
contain empirical parameters and are not so 
efficient to predict underlying structure of 
turbulence and instantaneous velocity field. Large 
eddy simulation (LES) is an approach intermediate 
to the two previous methods. LES simulates the 
large scales that contain most of the kinetic energy 
of the flow, and then models the sub grid scales 
(SGS) which are problem independent and contain a 
small fraction of energy. An important advantage of 
LES is its ability to approach DNS with improved 
computational facilities and/or more accurate SGS 
modeling (Jafari and Rahnama, 2011). Fernandino, 
Beronov, and Ytrehus (2009) performed an LES of 
free surface duct flow using LBM in which 
Smagorinsky subgrid scale (SGS) model was used. 
Their results showed that the simple SGS model 
could be used as a possible tool for the simulation 

of free surface duct flow. Premnath et al. (2009a) 
presented a framework for LES using GLBE with a 
forcing term, for wall-bounded flows. They 
emphasized the numerical stability of their method 
even on a coarse grid and its ability to be used in a 
variable-resolution multiblock approach. They 
assessed their method for fully developed channel 
flow and shear-driven flow in a cubical cavity. 
Channel flow studies were reported for a. Reynolds 
number of 183.6 based on friction velocity and 
channel half-width. Their results showed reasonable 
agreement with DNS and experimental data. Sajjadi 
et al. (2011) investigated natural convection flow in 
large eddy simulated turbulent flow using LBM. 
They studied the results of high Rayleigh numbers 
between 106 and 109 for air with Pr=0.71. Their 
results proved that large eddy turbulence model by 
LBM is in acceptable agreement with other 
verifications of such a flow. 

A number of studies that employed a Lagrangian 
model to track particles in wall-bounded turbulent 
flows have been reported. Pedinotti et al. (1992) 
performed DNS in wall bounded turbulent flows 
and demonstrated the accumulation of inertial 
particles in the near wall region. Wang and 
Squires (1996) used LES method to investigate 
particle transportation, and particle turbulent 
intensity relative to the fluid. They also generated 
the SGS fluctuation velocities using random 
numbers sampled from a Gaussian distribution. 
Rouson and Eaton (1994, 2001) studied particles 
behavior in a turbulent channel flow by 
performing direct numerical simulation of flow 
field and discussed about particles mean and 
fluctuating velocities. They also illustrated the 
preferential concentration of particles in low speed 
streak regions. Nasr, Ahmadi, and Mclaughlin 
(2009) evaluated the flow field by implementing 
DNS of Navier-Stokes equations via a pseudo-
spectral method, while tracked the particles in a 
turbulent channel flow by a Lagrangian approach. 
In their work, the effects of inter-particle 
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collisions, two-way coupling, and particle 
aerodynamic interaction on both gas and solid 
phase fluctuations were examined. Salmanzadeh 
et al. (2010) developed a SGS model to study the 
effect of SGS turbulence fluctuations on particles 
root-mean-square fluctuation velocities, and also 
dispersion and deposition processes. They showed 
that SGS fluctuations increase the deposition rate. 
Salmanzadeh et al. (2012) modeled the effect of 
thermal plume adjacent to the body on particle 
transport and showed that temperature gradient 
made an important role in transporting 1 m  
particles. Jung et al. (2013) simulated turbulent 
duct flow using lattice Boltzmann method, and 
then allowed inertial particles to be tracked 
through a static probability density field 
distribution. Their results suggested that accurate 
particle tracking is feasible given a suitable 
probability field. Samari et al. (2014) investigated 
particles deposition in turbulent channel flow 
using generalized lattice Boltzmann method. 

In the present study, application of SISM in large 
eddy simulation of turbulent flow is used through a 
generalized lattice Boltzmann method (GLBM). In 
fact LBM was used because of its important 
features that distinguish it from other numerical 
methods. First, the convention operator of the LBM 
in velocity space is linear. Second, the pressure in 
LBM is calculated using an equation of state. And 
third, the LBM utilizes minimal set of velocities in 
phase space. Since both GLBM and SISM do local 
calculations to solve the fluid velocity field, the 
method is easy coding and cost effective. Particles 
were tracked as they move under the influence of 
drag, buoyancy, gravitational, and Brownian forces. 
Results of the present one-way coupled simulations 
were in an acceptable agreement with previous data 
of Rouson and Eaton (1994). 

2.1 Fluid Flow 

In order to simulate flow field using lattice 
Boltzmann Method (LBM), fictitious particles 
groups i.e. distribution functions perform 
consecutive propagation and collision processes 
over a discrete lattice mesh. An important 
parameter in LBM computation is the relaxation 
time in the modeling of the collision step that 
distribution functions relax toward their local 
equilibrium values and in streaming process they 
move along the characteristic directions given by 
the LBM model (Succi 2001; Aidun and Clausen 
2010). A single relaxation time (SRT) LBM has 
been used for a wide range of fluid flow problem 
because of its simplicity (Qian et al. 1992; Djenidi 
2008). However, numerical instability of SRT 
along with the lack of proper mechanism for 
dissipation of small-scale unphysical oscillations 
arising from the kinetic model where the main 
reasons of shifting toward multiple relaxation time 
(MRT) LBM which is sometimes called 
generalized Lattice Boltzmann equation (GLBE). 
While LBM performs both collision and streaming 
steps in usual particle velocity space, generalized 
Lattice Boltzmann method (GLBM) computes the 
collisions in moment space and the streaming 

process is performed in the usual particle velocity 
space. Since GLBM uses multiple relaxation 
times, it shows a significant improvement in the 
numerical stability as compared SRT LBM model 
(Lallemand and Luo, 2000; Humières et al. 2002). 
This characteristic makes the GLBM suitable for 
simulation of turbulent flows. The effect of 
external forces can also be considered in an 
additional force term. Generalized Lattice 
Boltzmann equation (GLBE) with forcing term is 
written in the form of:  

 ( , ) ( , )f X e t t t f X t   
  

 
1. .[ ( , )]( , )eqM s m m U X t


 
 

 

1 1
.( ). ( , )

2
M I s X t


 


S                                   (1) 

as stated in Premnath et al. (2009a). 

In the present study, D3Q19 model was used to 
simulate the flow field, so all the vectors in Eq. (1) 
have 19 components. The last term in Eq. (1) shows 
the effect of source terms in moment space which 

are functions of F


and U


. Components of 

( , )X t


S , ŝ , m  and 
eqm  are mentioned in 

Premnath et al. (2009a,b); and Pattison et al. 
(2009). 

In D3Q19 model the macroscopic density and 
momentum on each lattice node are calculated from 
Eq. (1) and Eq. (2). 

18

0

f





                                                              (2) 

18

1

1

2 tu e f F 


 


 
  

                                          (3) 

In matrix ŝ , the relaxation rates which correspond 
to hydrodynamic modes can be related to transport 
coefficients and modulated by eddy viscosity due to 
SGS model (Premnath et al. 2009a; Humières 2002; 

Yu et al. 2006) as: 1
1 0.5(9 1)s    , where  is 

molecular bulk
  

viscosity, and  

9 11 13 14 19s s s s s s      with 

 1 3 0.5 3( ) 0.5Ts                                   (4) 

Other relaxation rates are indicated as: (Premnath et 
al. 2009a) 

1 2 10 12

4 6 8

16 17 18

1.19, 1.4,

1.2,

1.98

s s s s

s s s

s s s

   

  

  



 

Strain rate tensor components, used to model SGS 
turbulence, can be written in terms of non-

equilibrium moments - neqh . For instance: 
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1 91 9
1

19
38

neq neq
xxS s h s h


                               (5) 

1

2
neq eqh m m      S                                        (6) 

Other components can be found in (Premnath et al. 
2009a).  

The magnitude of strain rate tensor can be 
calculated using Eq. (7). 

2 2 2 2 2 2

2

2 2( )

ij ij

xx yy zz xy yz xz

S S S

S S S S S S

 

      

          (7) 

 

 

2.1.1   Calculation of Eddy Viscosity with 
Shera- Improved Smagorinsky Model 

In order to model turbulence in lattice Boltzmann 
method, a varying relaxation toward equilibrium, 

i.e. s


 in Eq. (1), was used. For computing sub-grid 
scale stresses, shear-improved Smagorinsky model 
was implemented (Leveque et al. 2007). In this 
model SGS eddy viscosity has two types of 
intractions. The one between the mean velocity 
gradient and the resolved fluctuating velocities, and 
the other one among the resolved fluctuating 
velocities themselves. The former is related to the 
large-scale distortion, while the latter is associated 
with the Kolmogorov’s energy cascade (Jafari and 
Rahnama, 2011). For evaluation of SGS eddy 
viscosity, the magnitude of the shear should be 
subtracted from the instantaneous resolved rate of 
strain as in Eq. (8). This improvement accounts for 
the large- scale distortion in regions of strong shear 
like near a solid boundary, and also allows us to 
recover the standard Smagorinsky model in regions 
of locally homogeneous and isotropic turbulence (at 
grid scale). The SISM does not use any adjustable 
parameter, a damping function or any kind of 
dynamic adjustment. Results concerning a plane-
channel flow (Leveque et al. 2007) and a backward-
facingstep flow (Toschi et al. 2006) have shown 
good predictive capacity of this model, essentially 
equivalent to thedynamic Smagorinsky model 
(Germano et al. 1991), but with a computational 
cost and manageability comparable to the original 
Smagorinsky model. 

2( , ) ( ) ( ( , ) ( , ))SISM
T Sx t C S x t S x t                  (8) 

In this equation CS=0.18 for homogeneous and 

isotropic turbulence and
1

3( )x y z     . Since the 
flow is assumed to be well enough resolved in the 

direction of the shear, then ( , ) ( , )S x t S x t  

(Jafari and Rahnama 2011). 

In the present study, spatial averaging over 
homogeneous directions in the channel (x and y 

directions) was used to compute ( , )S x t and Eq. 

(7) was employed for calculation of rate of strain. 

So SISM
T obtained from Eq. (9) and was used as 

eddy viscosity in this turbulent flow. 

2( , ) ( ) ( ( , ) )SISM
T Sx t C S S X t   


               (9) 

The total viscosity which is sum of the physical and 
the eddy viscosity is substituted in Eq. (4). 

2.2 Computational Domain 

The selected channel has dimensions of 
6 3 2H H H  in stream-wise, span-wise and cross 
sectional directions, respectively. The Reynolds 
number based on the shear velocity and channel 
half width is 180 for which previous DNS data 
exists. The flow is bounded from top and bottom by 
two no-slip walls. Owing to presence of fully 
developed flow in stream- wise direction and 
homogeneity in span-wise direction, periodic 
boundary condition was selected for these two 
directions (Succi, 2001). 

A uniform grid was used for present simulation, and 
the computational domain was discretized into 
240 120 80  nodes in stream-wise, span-wise and 
wall directions, respectively. This corresponds to a 
mesh with resolution of 4.5 wall units in each 
direction. Because of using half-way bounce-back 
scheme for implementation of wall boundary 
condition, the first grid point is located at a distance 
of 2.25 wall units from the wall. The driving force 
in the present channel flow is pressure gradient in 
flow direction and can be related to wall shear 
velocity w  , and u  through: 

2
w udp

F i i i
dx H H

 
   
   

                                (10) 

2.3 Particle Discrete Phase 

Here the Lagrangian approach was selected to solve 
the dispersed phase whereas the carrier phase is 
treated via an Eulerian approach as explained in 
previous sections. The governing equations of 
motion are given by:  

Re1 1
( ) (1 )

24
( ).

p
D p pi

i ii

i

CdU
U U g

dt
n t


   


s          (11) 

.p
i idX dt U                                                       (12) 

Where  

2 18 .Cd C  s                                                  (13) 

2
1 (1.257 0.4 exp( 1.1 2 )).   CC d

d

 
        

(14)

 

0.687

24
Re 1

Re

24
(1 0.15Re ) 1 Re 400

Re

p
p

D

p p
p

C



 



 

 





 
(15)   
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Re .p
p i id U U                                           (16) 

The first term on the right hand side of Eq. (11), is 
the Stokes drag force due to particle and fluid 
relative slip. The second term represents the 
buoyancy effect. And, the last term depicts the 
Brownian force per unit mass that shows the impact 
of fluid molecules on the particle and is modeled as 
a Gaussian white noise random process. The 
Brownian force is described in detail by Ounis et al. 
(1993) and therefore is not presented here. 

The effect of turbulence is considered on transport 
and dispersion of particles via using instantaneous 
fluid velocity field in particles equation of motion. 
In order to solve Eq. (11), fluid velocity in particle 
location is evaluated by a volume averaged 
interpolation scheme (Salmanzadeh et al. 2010). 

3. RESULTS 

3.1   Fluid Flow Velocity Field 

In order to make sure about the accuracy of fluid 
velocity field, root-mean-square (RMS) fluctuation 
velocities became non- dimensional by u   and 

they were compared with RMS velocities obtained 
from DNS (Kim et al. 1987) and GLBE with 
Smagorinsky model (Premnath et al. 2009a). The 
results show a reasonable agreement and are shown 
in Fig 1.  

To show a grid independent study and before 
settling on a 240 120 40   grid with mesh 
resolution of 4.5 wall units, non-dimensional fluid 
RMS velocities were calculated for different grid 
resolutions, and the profiles are shown in Fig 2. 
Although a coarse mesh with resolution of 6 was 
used on a 180 90 30  grid, the comparison 
between these resolutions shows an acceptable 
agreement. In order to save mesh resolution and 
obtain accurate results, it is clear that a finer grid 
have to be used if the flow friction Reynolds 
number (Re) increases. 

 

 
Fig. 1. Fluid fluctuation velocities. 

 

 

Fig. 2. Fluid RMS fluctuation velocity profiles 
for different grid resolutions. 

3.2   Particles Velocity Statistics 

After reaching the flow field to a statistically steady 
state, 200,000 particles were randomly distributed 
throughout the channel, and their initial velocities 
were set equal to fluid velocity at particles’ 
locations. To check the accuracy of the calculations, 
at first simulations were done for particles with the 
same relaxation times as those used in DNS of 
Rouson and Eaton (1994). Results of fluid and 
particles mean and RMS velocities are presented in 

Fig. 3, Fig. 4, and Fig. 5 for different values of  . 
There is reasonable agreement between present 
simulation results and previous data. The difference 
is may be due to using different simulation methods 
i.e. DNS and LES and also different grid resolution 
in these two works. Why the figures show such 

trends for vrious values of  , is discussed in 
following sections. 

 

 

Fig. 3. Mean stream-wise fluid and particle 
velocities vs. the distance from the wall. 
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Simulations were also done by tracking and 
recording the velocity statistics of 200,000 particles 

with 0.0216  , 1.0  , 4.0  , 10.0  , 

20.0  , and 40.0   for 
2*

1000  
t u

t 


 

and air flow at 288T K ,
2

51.5 10
m

s
   , 

0.36u m s  and 2000s . It is note- worthy 

that it is a one-way coupled simulation that the 
effect of particle feedback force on the flow is 
negligible.  It is showed that this approach is valid 

for volume fractions less than 610 (Elghobashi and 
Truesdell, 1993). Here the maximum volume 

fraction is about 105.4 10  related to particles 

with 40.0  . This volume fraction of the 
dispersed phase is small enough such that particle 
collisions are negligible and properties of the carrier 
flow are not modified. This small concentration 
allows the continuum assumption to be invoked.   

 The dispersed phase statistics were obtained by 
averaging over x-y planes and time. Fig. 6 shows 
mean stream-wise particle velocity profiles versus 

dimensionless distance from the wall, z . 

*z u
z 


                                                       (17)  

 
Fig. 4. Particle and fluid RMS velocities vs. 

distance from the wall ( 9.0)  . 
 

 

It is seen that particles with small   

( 0.0216   and 1.0  ) are flow tracers. As 

the particles become inertia ( 20.0  ) they begin 
to lead the flow especially in wall region, 

30.0 z . This phenomenon is a part due to 
stream-wise gravitational acceleration, and a part 
due to migration of these large and fast speed 
particles from channel core into the wall region. It 

is seen particles with 4.0   and 10.0   

slightly lag the flow where10.0 30.0 z . This 
result is may be because of preferential 
concentration of these particles in low-speed streaks 

as Rouson and Eaton (1994) reported first.  
 

 
Fig. 5. Particle and fluid RMS velocities vs. 

distance from the wall ( 117.0)  . 
 

 
Fig. 6. Mean stream-wise particle velocity vs. 

distance from the wall. 
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Particle stream-wise RMS velocities are shown in 
Fig.7. It is illustrated that by increasing particles 
inertia, higher stream-wise fluctuation velocities are 
seen especially in wall region. This fact is related to 
existence of two different particle categories near 
the wall. One which contains low velocity particles 
that have already been in this region, and the other 
one that contains high velocity particles migrated 
from channel core to this region. These large, 
migrated particles are inertia, they show less 
responsiveness to the flow and keep their 
momentum for a long time; therefore, there is a 
wide range of stream-wise velocities in the wall 
region and as a result the particle stream-wise 

fluctuating velocity increases. In 20.0 z  

particles with different   values which are at the 
same distance from the wall have almost the same 
stream-wise RMS velocities;  
Since, these particles are fast speed and their mean 
stream-wise velocities show no large normal 
gradient (Fig. 6); Thus, their migration between 
layers do not change RMS velocities considerably. 
 

 
Fig. 7. Particle stream-wise fluctuation velocity 

vs. the distance from the wall. 
 

As the presented results in Fig. 8 shows, particles 
span-wise turbulent intensity has a decreasing trend 

by increasing  values owing to less obedience of 
inertial particles from turbulent eddies. Also as the 
particle relaxation time increases, it may be seen 
that the particle turbulent intensities become larger 
than the fluid in the stream-wise direction, but 
smaller in span-wise direction. 

It is seen that for inertia particles the stream-wise 
fluctuating velocity increases while the span-wise 
turbulent intensities decreases. Since, particle span-
wise velocity has a uniform zero-mean velocity in 
the whole channel, while there is a gradient for the 
stream-wise particle velocity. In fact, this velocity 
gradient causes the migrated particles to make two 
different particle categories near the wall. 

 

 
Fig. 8. Particle span-wise fluctuation velocity vs. 

distance from the wall. 

 

Figure 9 shows the variation of RMS velocities of 
particles in wall direction for different non-
dimensional relaxation times. This variation reveals 

that by increasing   values in near wall region 

( 10.0 z ), where particles have a large mean 
normal velocity gradient i.e. the mean normal 
velocity of particles in different layers differ a lot 
from each other (Fig. 10), normal RMS velocities 
increase due to particles flux toward the wall. 

However, for 10.0 z where the gradient is not 

as large as in wall region, as   increases, less 
responsiveness of the particles from the flow 
becomes more apparent. Therefore, the normal 
turbulent intensities decrease. 
 

 
Fig. 9. Particle normal fluctuation velocity vs. 

distance from the wall. 
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Fig. 10. Mean normal particle velocity vs. 

distance from the wall. 

Figure 11 shows the reason of using non-linear drag 
coefficient for this particle-laden turbulent channel 
flow. It is observed that as particles become more 
inertial, their Reynolds number becomes greater. 

Also for all different values of  , Re p  gets its 

maximum value in wall region, where  p
i iu u

 
has 

a large value.  

 

 
Fig. 11. Particle Reynolds number vs. distance 

from the wall. 

4. CONCLUSION 

Particles' statistics in large eddy simulated turbulent 
channel flow with Re 180  were studied. Fluid 
flow velocity field was simulated using a 
generalized lattice Boltzmann method. And, SGS 
turbulence effects were modeled by SISM. Particle 
transport was studied using Lagrangian approach. 
Measured statistical properties of particles' 
velocities were compared with available DNS data, 
and reasonable agreement was demonstrated. 
Following conclusions can also be derived from the 
results. 

Both GLBM and SISM solve the fluid velocity field 
locally. This property made the code easy 
implementing. 

The GLBE with SISM is capable of capturing 
turbulent channel flow structures. It has the ability 
to predict instantaneous fluid velocity field 
correctly, which is a key point for particles' accurate 
behavior. 

Statistics of particles movement simulated with 
good precision with this simulated flow field by 
LBM. 

The followings could also be deduced from 
particles' simulation results: 

As   increases, mean stream-wise particle 
velocity increases. 

By increasing   values, stream-wise RMS 
velocity of particles in near wall region 

( 20.0) z  increases, while stream-wise RMS 

velocity of particles far from the wall ( 20.0) z  
nearly remains unchanged.  

By increasing   values, particle span-wise 
fluctuation velocity decreases. 

As   increases, mean normal particle velocity 
toward the wall increases. 

By growing   values, particle normal fluctuation 

velocity is increased in 10.0 z , while it is 

decreased in 10.0 z .   

By increasing   values, particles Reynolds 
number in stream-wise direction increases. 

Particles Reynolds number gets its maximum in 
near wall region. 
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