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ABSTRACT 

This article examines the non-aligned stagnation point flow and heat transfer of an Ethylene-
Glycol and water based Nano fluid towards a stretching surface utilizing hematite (Fe3O4) as a heat 
enhancing agent. Resulting differential equations of the physical problem are solved numerically 
using Mid-point integration as a basic scheme along with Richardson extrapolation as an 
enhancement scheme. Influence of the flow governing parameters on the dimensionless velocity 
and temperature profile are expressed through graphs. Skin frictions co-efficient and Nusselt 
numbers are tabulated. It is observed that Ethylene-based nano fluids have higher local heat flux 
than water-based nano fluids. Computed numerical results of skin friction co-efficient are in good 
agreement with the existing available literature for the limited case. 

Keywords: Ethylene glycol 30%; Stagnation flow; Nano fluids; Numerical solutions. 

NOMENCLATURE 

a,b,c positive constants 
Cpf specific heat of the base fluid 
Cps specific heat of the nano particle 
f normal velocity component 
h tangential velocity component 
p fluid pressure 
T fluid temperature 
Tw wall temperature 
T∞ ambient temperature 
u velocity component along x direction 
v velocity component along y direction 

Pr Prandtl number 
 ௙ thermal conductivity of base fluidܭ

 ௦ thermal conductivity of nano particleܭ

 ௙ density of the base fluidߩ

ρୱ density of nano particle 

 ௙ dynamic viscosity of base fluidߤ

 ௡௙ dynamic viscosity of nano fluidߤ

θ dimensionless temperature 
 ,nano particles volumetric fraction ׎

1. INTRODUCTION

Traditional heat transfer fluids such as water, Oil and 
Glycols have many industrial and civil applications 
such as transport, air conditioning, electric cooling etc. 
But they have inherently poor or low thermal 
conductivity that greatly reduces their heat exchanging 
efficiency. Keeping in view, the effectiveness of 
stretching surfaces and the control of heat transfer rate 
in order to achieve the finest quality product, a great 
number of researchers have focused their attention to 
this specific domain. In order to improve the thermal 

transport properties of the fluid, thermally conductive 
solid particles are added in the conventional base fluid. 
These nano meter sized particles ((1-100 nm) are 
highly efficient heat transfer enhancement agents. 
Choi (1995) introduced the remarkable idea of 
nanofluids. Later on Wang et al. (1999) estimated the 
effective thermal conductivity of nanoparticle fluid 
mixture using parallel plate method. Bachok et al. 
(1999) discussed the stagnation point flow over a 
stretching/shrinking sheet in a copper-water nanofluid. 
Dual solutions of stagnation point flow of a nanofluid 
are presented by Kameswaran et al. (2013). Malvandi 
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Introducing the stream function relations 
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Making use of Eq (12) in (8) to (11) and elimination 
of pressure by using the fact ௫ܲ௬ ൌ ௬ܲ௫ yields 
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Finally we seek solution of Eq (13) and (14) of the 
form (25] 

߰ሺݔ, ሻݕ ൌ ሻݕሺ݂ݔ ൅ ݃ሺݕሻ, ܶ ൌ  ሻ,                 ሺ15ሻݕሺߠ

Where ݂ሺݕሻ and ݃ሺݕሻ denotes the normal and 
tangential components of the flow respectively. 
Making use of Eq (15) in Eqs (13) and (14) the 
resulting governing equations and the 
corresponding boundary conditions takes the form 
as 

ଵ
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is the Prandtl number. 

Using the boundary condition’s (19) we get ܥଵ ൌ
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behaves as ሺܽ/ܿሻ ݕ ൅  goes to infinity. Here ݕ as ܣ
 is constant that accounts for boundary layer ܣ
displacement. 

Introducing 

݃′ሺݕሻ ൌ  ሻ.                                               ሺ20ሻݕଵ݄ሺߛ

Equations (16) to (19) give 
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2.1   Physical Quantities of Interest 

Physical quantities of interest are the shear stress 
and local heat flux at the wall which are given by 

߬௪ ൌ
ଵ

ሺଵିఝሻమ.ఱ ൛݂ݔ ′′ሺ0ሻ ൅ ௪ݍ   ,ଵ݄′ሺ0ሻൟߛ ൌ

െ
௄೙೑

௄೑
  ሺ0ሻ.                                  ሺ25ሻ′ߠ

The position ݔ௦ of attachment of dividing 
streamline is determined by zero wall shear stress, 
i.e. 

௦ݔ ൌ
െߛଵ݄′ሺ0ሻ,

݂ ′′ሺ0ሻ
                                                         ሺ26ሻ 

One can observe that point of stagnation is 
independent of nano particle volume fraction. 

2.2   Numerical Solution 

By suitable similarity transformations the governing 
system of physical problem is transformed in to a 
set of non-linear ordinary differential equations 
along with their boundary conditions as given in 
Eqs (21) - (24). These equations are then solved 
numerically using midpoint integration scheme 
along with Richardson’s Extrapolation via highly 
efficient computational Software Maple 15. In this 
procedure, the governing system of higher order 
nonlinear equations is transformed into a set of first 
order linear differential equations which are then 
solved using iterative procedures. Like any other 
numerical procedure, semi-infinite domain ሾ0,∞ሻ 
has been replaced with ሾ0,  is chosen ∞ݕ ሻ  where∞ݕ
to be large enough to satisfy the boundary 
conditions at infinity. A mesh size of ∆݄ ൌ
0.001 was set to satisfy convergence criterion 
of 10ି଺ in our computations. The detailed 
algorithm of the applied numerical scheme can be 
found in ሺ20 െ 24ሻ. 

3. RESULTS AND DISCUSSION 

This section is dedicated to study the influence of 
important physical parameters such as stretching 
ratio ܽ/ܿ and nanoparticle volume fraction ߮ on 
velocity and temperature profiles. Figs (2) to (7) are 
plotted for this purpose. Fig (2) displays that normal 
component of the velocity ݂ ′ሺݕሻ increases as we 
increase the nanoparticle volume fraction  ߮ and 
stretching ratio ܽ/ܿ. Moreover it is apparent that 
these slight variations in the velocity profile are 
detected very close to the wall only. Fig (3) depicts 
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Table 1 Thermo physical properties of base fluids and nanoparticles (8] 

Properties\Constituents ܹ݈ܽ݊݁ݕ݄ݐܧ ݎ݁ݐ ݈݋ܿݕ݈ܩ ଷ݁ܨሺ ݁ݐ݅ݐܽ݉݁ܪ 30% ସܱሻ 

Density ρ 
ሺKg/m3ሻ 

997 1036 5180 

Specific Heat Cp 
ሺJ/Kg. Kሻ 

4179 3720 670 

Thermal Conductivity K 
ሺW/m. Kሻ 

0.613 0.485 9.7 

Prandtl Number 6.2 15.6 - 
 

Table 2 Comparison with the existing literature for the limiting case 
݂ ′′ ሺ0ሻ ݄ ′ ሺ0ሻ 

a/c Present Mahapatra ݐ݁ ݈ܽ ሺ2002ሻ Pop ݐ݁ ݈ܽ. ሾ25ሿ Present Pop ݁ݐ ݈ܽ. ሾ25ሿ 

0.1 െ0.96938 െ0.9694 െ0.96938 0.26295 0.26278 

0.3 െ0.84942 - െ0.84942 0.60631 0.60573 

0.8 െ0.29938 - െ0.29938 0.93434 0.93430 

1.0 0.0 - 0.0 1.0 1.0 

2.0 2.01750 2.01750 2.01750 1.16522 1.16489 

3.0 4.72928 4.72930 4.72928 1.23465 1.23438 
 

Table 3 Numerical values of Boundary layer displacement constant A 

a/c Φ ൌ 0.01 Φ ൌ 0.05 Φ ൌ 0.10 Φ ൌ 0.20 Φ ൌ 0.30 

Ethylene െ Glycol Based fluid  

0.1 0.786145 0.770581 0.763302 0.779946 0.833642

0.3 0.515850 0.505637 0.500860 0.511782 0.547016 

0.5 0.326288 0.319828 0.316807 0.323715 0.346001 

0.7 0.177832 0.174311 0.172665 0.176430 0.188576 

1.0 0.0 0.0 0.0 0.0 0.0 

Water Based fluid  

0.1 0.785407 0.767460 0.758025 0.771607 0.822743 

0.3 0.515365 0.503589 0.497398 0.506310 0.539864 

0.5 0.325981 0.318532 0.314617 0.320254 0.341477 

0.7 0.177665 0.173605 0.171471 0.174543 0.186111 

1.0 0.0 0.0 0.0 0.0 0.0 

 

volumetric concentration ߮ results in a rise in 
temperature profile ߠሺݕሻ. Figs (5) to (7) are coated 
to determine the stream line patterns of the physical 
problem assuming fixed stretching ratio ܽ/ܿ and the 
nanoparticles volume fraction ߮. It is evident from 
these figures that streamline patterns are slanted 
towards the left of the origin for positive value of ߛଵ 
and they are on the right side of the origin for the 
negative values of ߛଵ. Moreover fluid strikes the 
stretching surface in an aligned manner when shear 
in the stream i.e. ߛଵ is neglected (See Figs (5) to 
(7)). 

Table 1 provides the thermo physical properties of 

base fluid and nanoparticles. Tables 2 to 6 depict 
the influence of stretching ratio a/c and 
nanoparticles volume fraction ߮ on local skin 
friction and heat flux. Table 2 assures the 
correctness of present numerical results with the 
previous existing literature in the absence of 
nanoparticles. Table 3 provides the numerical 
values of boundary layer displacement constant ܣ 
with an increase in ܽ/ܿ and ߮. It is apparent from 
this table that boundary layer displacement constant 
 decreases with an increase in ܽ/ܿ and ߮. Tables 4 ܣ
and 5 offers the numerical values of Normal and 
tangential components of local skin friction co-
efficient. It is marked from these calculated results  
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Table 4 Numerical values of skin friction coefficient 
૚

ሺ૚ି࣐ሻ૛.૞  ᇱᇱሺ૙ሻࢌ

ߔ ܿ/ܽ ൌ ߔ 0.01 ൌ ߔ 0.05 ൌ ߔ 0.10 ൌ ߔ 0.20 ൌ 0.30 

Ethylene െ Glycol Based fluid  

0.1 1.001081 1.132225 1.308451 1.718978 2.245616 
0.3 0.877193 0.992107 1.146524 1.506247 1.967710 

0.5 0.689080 0.779351 0.900654 1.183235 1.545739 

0.7 0.447648 0.506291 0.585093 0.768667 1.00416 

1.0 0.0 0.0 0.0 0.0 0.0 

 Water Based fluid  

0.1 1.002020 1.136829 1.317559 1.737556 2.275365 

0.3 0.878017 0.996141 1.154505 1.522526 1.993778 

0.5 0.689728 0.782521 0.906924 1.196023 1.566216 

0.7 0.448069 0.508350 0.589166 0.776974 1.017463 

1.0 0.0 0.0 0.0 0.0 0.0 

 
Table 5 Numerical values of skin friction coefficient 

૚

ሺ૚ି࣐ሻ૛.૞  ᇱሺ૙ሻࢎ

a/c Φ ൌ 0.01 Φ ൌ 0.05 Φ ൌ 0.10 Φ ൌ 0.20 Φ ൌ 0.30 

Ethylene െ Glycol Based fluid  

0.1 0.270117 0.299455 0.342796 0.460167 0.642519 

0.3 0.621743 0.689271 0.789028 1.059190 1.478951 

0.5 0.802596 0.889766 1.018541 1.367288 1.909149 

0.7 0.916016 1.015506 1.162479 1.560509 2.178945 

1.0 1.025444 1.136818 1.301348 1.746928 2.439242 

Water Based fluid  

0.1 0.270117 0.299455 0.342796 0.460167 0.642524 

0.3 0.621743 0.689271 0.789028 1.059190 1.478951 

0.5 0.802596 0.889766 1.018541 1.367288 1.909149 

0.7 0.916016 1.015506 1.162479 1.560509 2.178945 

1.0 1.025444 1.136818 1.301348 1.746928 2.439242 

 

Table 6 Numerical values of local heat flux െ
ࢌ࢔ࡷ

ࢌࡷ
 ᇱሺ૙ሻࣂ

ߔ ܿ/ܽ ൌ ߔ 0.01 ൌ 0.05 ߔ ൌ 0.10 ߔ ൌ 0.20 ߔ ൌ 0.30 
Ethylene െ Glycol Based fluid  

0.1 2.977547 3.108984 3.278004 3.638412 4.042180 
0.3 3.008800 3.144742 3.319417 3.690919 4.104864 
0.5 3.052462 3.194313 3.376337 3.762121 4.189196 
0.7 3.104104 3.252562 3.442744 3.844296 4.285922 
1.0 3.190718 3.349597 3.552577 3.978775 4.443280 

Water Based fluid  
0.1 1.797142 1.863438 1.949065 2.133407 2.343211 
0.3 1.831843 1.903442 1.995717 2.192984 2.414356 
0.5 1.877276 1.955044 2.054912 2.266683 2.501073 
0.7 1.928337 2.012433 2.120008 2.346396 2.593997 
1.0 2.00987 2.103226 2.222009 2.469593 2.736545 
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that normal component of the local skin friction 
decreases with increasing stretching parameter ܽ/ܿ 
while it increase when we raise the amount of 
nanoparticles volumetric concentration ߮. It is also 
noticed that water based nano fluid has higher 
normal component of the skin friction when 
compared with the ethylene based nano fluid (see 
Table 4). On the other hand tangential component 
of the local skin friction co-efficient has similar 
behaviour for water as well as ethylene based fluid 
(Table 5). Numerical values of the local heat flux 
for both water and ethylene based nano fluids are 
presented in Table 6. As expected, local heat flux at 
the stretching surface rises when stretching ratio 
ܽ/ܿ and nanoparticles volume fraction ߮ is 
increased. Further it is worth mentioning here that 
ethylene based fluid has greater local heat flux rate 
at the stretching surface when compared with the 
traditional water based fluid. This is due to the fact 
that ethylene based fluid has higher thermal 
conductivity when compared to the water based 
fluid. This leads to rapid removal of heat from the 
stretching surface. 

4. CONCLUSIONS 

We have investigated the non-aligned stagnation 
point flow of a nano fluid over a stretching surface 
using hematite nanoparticles. The effects of 
stretching ratio parameter ܽ/ܿ and nanoparticle 
volume fraction ߔ on the local skin friction co-
efficient and heat flux are tabulated. The core out 
comes of this study can be summarized as: 

 Influence of nanoparticle volume fraction ߔ on 
normal and tangential components of velocity 
is opposite whereas it enhances the 
temperature of the fluid. 

 An increase in nanoparticle volume fraction ߔ 
consequently increases the local skin frictions 
and heat flux at the stretching surface. 

 Heat flux at the surface increases with an 
increase in stretching ratio  ܽ/ܿ for water as 
well as ethylene based fluid. 

 It is observed that ethylene based fluid has 
higher heat transfer rate compared to water 
based fluid. 
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