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ABSTRACT 

MHD free convection over an inclined plate in a thermally stratified high porous medium in the presence of a 
magnetic field has been studied. The dimensionless momentum and temperature equations have been solved 
numerically by explicit finite difference technique with the help of a computer programming language 
Compaq Visual Fortran 6.6a. The obtained results of these studies have been discussed for the different 
values of well known parameters with different time steps. Also, the stability conditions and convergence 
criteria of the explicit finite difference scheme has been analyzed for finding the restriction of the values of 
various parameters to get more accuracy. The effects of various governing parameters on the fluid velocity, 
temperature, local and average shear stress and Nusselt number has been investigated and presented 
graphically.  
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NOMENCLATURE 

cD Darcy number 

cE  Eckert number 

k  thermal conductivity 
L characteristic length  
i initial conditions 
M  magnetic Parameter 

rP  Prandlt number 

P  pressure 

R  rotational Parameter 

TS thermal stratification parameter 

w conditions at the all 
 kinematic viscosity

  porosity parameter
 inertial parameter
  inclination angle
  conditions at infinity

1. INTRODUCTION

Free convection fluid flow with thermally stratified 
high porosity medium occurs in an environment has 
an important applications to the engineers dealing 
with many industrial process and technological 
fields such as in geophysics, astrophysics, 
geothermal energy convection, petroleum 
reservoirs, magneto hydrodynamics (MHD) 
accelerators and generatorsetc. Cowling (1957) 
studied the application of magneto hydrodynamics 
to geophysical and astronomical problems. 
Angirasa and Srinivasan (1989) have investigated 
about the natural convection over a vertical surface 
embedded in a thermally stratified medium due to 
the combined effects of the buoyancy force caused 

by the heat and mass diffusion. Hossain et al. 
(1996) studied the free convection flow form an 
isothermal inclined plate at an angle to the 
horizontal. Saxena and Dubey (2011) have analyzed 
the unsteady MHD heat and mass transfer free 
convection flow of polar fluid past a vertical 
moving porous plate in a porous medium with heat 
generation and thermall diffusion. Recently, 
Agarwal et al. (2012) have discussed the effect of 
stratified viscous fluid on MHD free convection 
flow with heat and mass transfer past a vertical 
porous plate. Gebhart and Pera (1971) analyzed the 
nature of vertical natural convection flows resulting 
from the combined buoyancy effects of thermal and 
mass diffusion. Fujii et al. (1974) investigated the 
laminar boundary layer free convection in a 
temperature stratified environment. The effects of 
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stratification are one of the important aspects that 
have to be taken into account in the study of heat 
and mass transfer. Stratification of fluid occurs due 
to presents of different fluids having different 
densities. The notion of stratification is important in 
lakes and ponds. Similarity solutions for the 
unrealistic situation where the temperature of the 
fluid decreases with height have been investigated 
by Yang et al. (1972). However, for stratified fluid 
similarity solution exists when the wall and ambient 
temperature increases with height. Chen and 
Eicchorn (1976) have investigated the natural 
convection flow over a heated vertical surface in a 
thermal stratified medium by using local non-
similarity technique. The non-Darcy effects on the 
natural convection boundary layer flow on an 
isothermal vertical plate embedded in a high 
porosity medium has been studied by Chen et al. 
(1987). Chamkha (1997) has extended the analysis 
of Chen et al. (1987) which includes the effects of 
the magnetic field. The case of non-similar laminar 
natural convection from a vertical flat plate placed 
in a thermally stratified medium has been studied 
by Venkatachala and Nath (1981). The non-linear 
coupled parabolic partial differential equations 
governing the flow has been solved numerically by 
Blottner (1970) using an explicit finite difference 
Scheme. 

The purpose of the present study is to extend the 
work of Takhar et al. (2003), investigates effects of 
non-uniform wall temperature or mass transfer in 
finite sections of an inclined plate on the MHD 
natural convection flow in a temperature stratified 
high-porosity medium.The proposed model has 
been transformed into non-similar coupled partial 
differential equations by usual transformation. 
Finally, the governing momentum and energy 
equations are solved numerically by using the 
explicit finite difference method. 

2. MATHEMATICAL FORMULATION 

Consider an unsteady MHD free convection flow 
past infinite vertical porous plate which is thermally 
stratified. Let us consider an unsteady free 
convective flow of an electrically conducting 
viscous fluid through a porous medium along a 

semi-infinite vertical porous plate 0y   in a 
rotating system under the influence of transversely 
applied magnetic field. The flow is assumed to be in 
the x -direction which is taken along the plate in 

the upward direction and y -axis is normal to it. 
Initially the fluid is at rest, after the whole system is 
allowed to rotate with a constant angular velocity 
  about the y-axis. Since the systems rotate about 

the y-axis, so it is assumed as (0, ,0)   . The 

temperature of the plate raised from wT  to T , 

where T  be the temperature of the uniform flow. 

A uniform magnetic field B  is taken to be acting 

along the y -axis which is assumed to be 
electrically non-conducting. There has been an 

inclination angle 2

 
 
  with the vertical plate. The 

assumption is justified when the magnetic Reynolds 
number of the flow is taken to be small enough so 
that the induced magnetic field is negligible and is 

of the form 0(0, ,0)B B and the magnetic lines of 
force are fixed relative to the fluid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Physical configuration and coordinate 
system. 

 
Thus accordance with the above assumptions 
relevant to the problem and under the 
electromagnetic Boussinesq and non-Darcy 
approximation and neglecting hall current made by 
Chen and Lin (1995) Herman Schlichting (1969) 
and Chamkha (1996), in a rotating frame the basic 
boundary layer equations are given by; 

The continuity equation 

0
u v

x y

 
 

 
                                                          (1) 

Momentum equations 

 2

1

2

u u u
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t x y
 

                  
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2Ω
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  
 


     
           (2)

2

2 2

1 w w w w
u v w

t x y y k

 
 

    
        

 
2

2 2 02
B w

c u w u



                                     (3) 

Energy equation 

2

2
p

T T T k T
u v

t x y c y
   

  
   
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 
2 2 2

2 20

p p

u w B
u w

c y y c

 


     
             

              (4) 

with the corresponding initial and boundary 
conditions are; 

0, 0, 0, 0,t u v w T T     everywhere  

                    (5) 

0, 0, 0, 0, at 0wt u v w T T Y       

0, 0, 0, atu v w T T Y    
 

Where , ,u v w  are the velocity components in 
, ,x y z directions respectively,   is the kinematic 

viscosity, g  is the acceleration due to gravity,   is 

the density, k  is thermal conductivity, 0B  be the 

uniform magnetic field,   be the porosity, pC is 

the specific heat at constant pressure. 

To obtain the governing equations and the boundary 
conditions in the dimensionless form, the following 
non-dimensional quantities are introduced as; 

1/2 1/2 1/2

1/4 1/2

2

, , , ,

, and

r r r

r r

w

G uL G vL G wL x
U V w X

v v v L

G y G y T T
Y

L T TL

 

  





   


  

  

Substituting the above relations in equations (1)-(4) 
and after simplification, the following non-linear 
coupled partial differentials equations in terms of 
dimensionless variables are obtained as; 

0
U V

X Y

 
 

 
                                                         (6)

2
2

2 2

U U U U
U V Cos

X Y Y
  


                  

   2 2 2 2 2 1 2Γ cRW U W D M U               (7) 

ሺ૝. ૜. ૛ሻ
2

2
2

W W W W
U V RU

X Y Y
 


   

   
   

   2 2 2 2 1 2Γ cU W D M W                           (8) 

2 22

2

1

r

U W
U

P
V Ec

X Y Y Y Y

   


                           

 2 2 2
TcM U W SE U                                         (9) 

The corresponding initial and boundary conditions 
(5)-(6) becomes; 

0, 0, 0, 0, 0V U W      everywhere (10) 

0, 0, 0, 0, 1 at 0TU V W S X Y       

0, 0, 0, 0 atU V W Y      

where,
2

2( )
r

p w

G
Ec

C L T T







(Eckert number)

  3

2
w

r
g T T L

G





 (Grashofnumber),
2

r
c

k G
D

L


(Darcy number), Γ CL (inertial parameter), 
22Ω

r

L
R

G
 (rotational parameter), 

2 2
2 0

r

L
M

G




  (magnetic force parameter) and

,

,( )

x

T
w o

T

xS
T T









(thermal stratification parameter). 

3. SHEAR STRESS AND NUSSELT 

NUMBER 

From the velocity field, the effects of various 
parameters on the local and average shear stress 
have been investigated. The following quantities 
represent the local and average shear stress at the 
plate. 

Local shear stress, 0( )L Y
u

y
  





and average 

shear stress, 0( )A Y
u

dx
y

  



  which are 

proportional to 0( )Y
U

Y 



 and 
100

0

0

( )Y
U

Y
dX




respectively. 
From the temperature field, the effects of various 
parameters on the local and average heat transfer 
coefficients have been investigated. The following 
equations represent the local and average heat 
transfer rate that is well known as Nusselt number. 

Local Nusselt number, 
0

uL
Y

T
N

y




 
   

and 

average Nusselt number, 0( )u A y
T

N dx
y

 


 
  

which are proportional to 0( )Y
T

Y 





 and 

100

0

0

( )Y
T

dX
Y 



 respectively. 

4. NUMERICAL TECHNIQUE 

 To  obtain  the  difference   equations,  the  region  
of   the  flow  is  divided into a grid of lines parallel 
to X  and Y axes where X -axes is taken along the 
plates  and Y - axes  is normal to the plates. It is 
considered that the plate of the height max 100X   

i.e, X varies from 0 to 100 and regard max 25Y  . 

There are 200m   and 200n  grid spacing in the
X and Y directions respectively has been shown in 

the Fig.2  

It has been assumed that ,X Y   are constant 
mesh sizes along ܺand ܻdirections respectively 
taken as follows; 

 0.5 0 100X x     0.125 0 25Y y   
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with the smaller time step, 0.001.   

 
Fig. 2. Finite difference grid system. 

 

 
Fig. 3. Grid independent test. 

 

Here we have used the maximum mesh size (m=200 
and n=200) for computing required result to get 
better accuracy. If we use less than the above 
mentioned mesh size then we will not get better 
result. If we consider higher mesh size then the 
program will not convergence due to shortage of 
memory of our computer. We have calculated the 
grid independent test for different mesh size; 

.300,300and295,295

;290,290;285,285;280,280

;275,275;250,250;225,225

;200,200;150,150;100,100






nmnm

nmnmnm

nmnmnm

nmnmnm

From these mesh size we have used m=200, n=200, 
because we get better accuracy for this mesh size 
݉ ൌ 200 ܽ݊݀ ݊ ൌ 200. If we used the mesh size 
more than ݉ ൌ 300, ݊ ൌ 300, then that will be 
time consuming and if we increase mesh size more 
than that like m=400, ݊ ൌ 400, then the program 
will not convergence. Here we have shown a figure 
of primary velocity for ܲݎ ൌ 0.71 below for the 
grid independent test 

NowU  ,W   denote the values ofU ,W  at the end 
of a time-step respectively. The explicit finite 
difference approximation gives; 

 

Fig. 4. Primary velocity profiles for different values 
of dimensionless thermal stratification parameter TS . 

 

 

Fig. 5. Secondary velocity profiles for different 
values of dimensionless thermal stratification 
parameter TS . 

 

 

Fig. 6. Temperature profiles for different  values 
of dimensionless thermal stratification 

parameter TS . 
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Fig. 7. Primary velocity profiles for different 

values of dimensionless Darcy number cD . 
 

 
Fig. 8. Secondary velocity profiles for different 

values of dimensionless Darcy number cD . 

 

 

Fig. 9. Temperature profiles for different  values 
of dimensionless Darcy number cD . 
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And the initial and boundary conditions with the 
finite difference scheme are; 

0 0 0
, , ,0, 0, 0i j i j i jU W   

 

,0 ,0 ,00, 0, 1n n n
i i i TU W S X   

 

, , ,0, 0, 0n n n
i L i L i LU W    where L   

Here the subscript i and j designates the grid 
points with x and y coordinate and n represents a 

value of time n   where 1,2,3...n  . At the 

end of the time step  , the new primary velocity 
1

,
n
i jU  , the new secondary velocity 1

,
n

i jW  and the 

new temperature distributions 1
,
n
i j  at all interior 

nodal points, may be calculated by successive 
applications of equations (11)-(14) respectively. 
Also the numerical values of the local shear stress 
and Nusselt number are evaluated by five-point 
approximation formula for their derivatives and the 
average shear stress and Nusselt number are 

calculated by the use of the Simpson’s
1

3
integration 

formula. 
 

 
Fig. 10. Primary velocity profiles for different 

values of dimensionless magnetic parameter M . 
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Fig. 11. Secondary velocity profiles for different 
values of dimensionless magnetic parameter M . 

 

 
Fig. 12. Local primaryshear stress for different 
values of thermal stratification parmeter  TS

.
 

 

 
Fig. 13. Local secondaryshear stress for different 
values of thermal stratification  parmeter  TS

.
 

5. STABILITY AND CONVERGENCE 

ANALYSIS 

Since an explicit procedure is being used, the 
analysis will remain incomplete unless the 
discussion of the stability and convergence of the 
finite difference Scheme. For the constant mesh size 

the stability criteria of the scheme may be 
established as follows; 
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U V
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                                                   (16) 

2

1 2Δ Δ Δ
1

(Δ ) Δ Δr

U V

P Y X Y

  
                                   (17) 

From the above equations (15) – (17), the 
convergence limit of the model of flow are

0.51, 0.1, 1.90 and Γ 10r cP D     . 

 

 
Fig. 14. Average primaryshear stress for 
different values of thermal stratification 

parmeter  TS . 

 

 
Fig. 15. Average secondary shear stress for 

different values of thermal stratification 
parmeter  TS . 

6. RESULTS AND DISCUSSIONS 

The results have been presented for various values 
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of thermal stratification parameter  TS , Darcy 

number  cD and magnetic parameter  .M Figs. 4 

to 6 represented the primary, secondary velocity 
and the temperature distributions for different 

values of thermal stratification parameter  TS . 

From these figure it has been observed that the 
primary velocity and temperature distribution 
decreases with the increases of the thermal 

stratification parameter  TS while the secondary 

velocity increase with the increases of the values of 

thermal stratification parameter  TS . Figs. 7 to9 

represented the primary, secondary velocity and the 
temperature distributions for different values of 

Darcy number  cD . From these figure it has been 

observed that the primary velocity increases with 

the increase of the Darcy number  cD  while the 

secondary velocity decreases with the increase of 

the Darcy number  cD .There exhibits minor 

effects in the temperature distributions with the 

increasing values of Darcy number  cD . Figs. 10 

and 11 represented the primary and secondary 
velocity for different values of magnetic parameter

 M . From these figure it has been observed that 

the primary velocity decreases with the increases 
magnetic parameter  M while the secondary 

velocity increases with the increases of magnetic 
parameter  M . 

 

 
Fig. 16. Local primaryshear stress for different 

values of magnetic parameter  M . 
 

Figs. 12 to 15 represented the local and average 
primary and secondary shear stress for different 

values of thermal stratification parameter  TS . 

From these figures it has been observed that the 
local and average primary shear stress decreases 
with the increase of thermal stratification parameter

 TS while the local and average secondary shear 

stress increases with the increase of thermal 
stratification Figs.16to19represented the local and 
average primary and secondary shear stress for 

different values of magnetic parameter  M . From 

these figures it has been observed that the local and 
average primary shear stress decreases with the 
increase of magnetic parameter  M while the local 

and average secondary shear stress increases with 
the increase of magnetic parameter  M . Fig. 20 

represented the average Nusselt number for 
different values of magnetic parameter. From these 
figure it has been observed that the average nusselt 
number decreases with the increase of magnetic 
parameter  M . 

 

 
Fig. 17. Local secondaryshear stress for different 

values of magnetic parameter  M . 

 

 
Fig. 18. Average primaryshear stress for 

different values of magnetic parameter  M
.
 

9. CONCLUSIONS 

It has been observed that the primary velocity 
increases with the increase of Darcy number and 
while the reverse effect shows for thermal 
stratification parameter, Prandlt number and 
magnetic parameter. The secondary velocity 
increases with the increase of thermal stratification 
parameter, Prandlt number and magnetic parameter 
while the reverse effect shows for Darcy number. 
There has been cross flow shown for the primary 
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and secondary velocity for the porosity parameter. 
Temperature distributions decreases for thermal 
stratification parameter and Prandlt number and 
minor effects exhibits for Darcy number. Local and 
average primary shear stress increases for Darcy 

number and porosity parameter while reverse effect 
shows for thermal stratification parameter and 
magnetic parameter. Local and secondary shear 
stress increases for thermal stratification parameter 
and magnetic parameter while reverse effect shows 
for Darcy number and porosity parameter. 

 

 
Fig. 19. Average secondaryshear stress for 

different values of magnetic parameter  M
.
 

 

 
Fig. 20. Average Nusselt number for different 

values of magnetic parameter  M
.
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