
Journal of Applied Fluid Mechanics, Vol. 9, No. 3, pp. 1503-1513, 2016. 
Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.
DOI: 10.18869/acadpub.jafm.68.228.24852

MHD Stagnation Flow of a Newtonian Fluid towards a
Uniformly Heated and Moving Vertical Plate

M. S. Demir† and S. Barış

Faculty of Engineering, Department of Mechanical Engineering, Istanbul University, Avcılar 34320,
Istanbul, Turkey

†Corresponding Author Email: demirms@istanbul.edu.tr

(Received April 1, 2015; accepted June 16, 2015)

ABSTRACT

Stagnation flow of an electrically conducting incompressible viscous fluid towards a moving vertical plate in
the presence of a constant magnetic field is investigated. By using the appropriate transformations for the
velocity components and temperature, the partial differential equations governing flow and heat transfer are
reduced to a set of nonlinear ordinary differential equations. These equations are solved approximately using
a numerical technique for the following two problems: (i) two-dimensional stagnation-point flow on a
moving vertical plate, (ii) axisymmetric stagnation-point flow on a moving vertical plate. The effects of non-
dimensional parameters on the velocity components, wall shear stresses, temperature and heat transfer are
examined carefully.

Keywords: Stagnation point; Newtonian fluid; Magnetohydrodynamics (MHD); Similarity transformation;
Numerical solution.

NOMENCLATURE

a physical constant
B applied magnetic field vector

0B applied magnetic field strength

pc specific heat at constant pressure

F electromagnetic body force per unit
volume

, ,x y zF F F body force components

F,H,M dimensionless similarity functions

f,h,m similarity functions

g acceleration due to gravity
Ha dimensionless magnetic parameter
k thermal conductivity
p pressure
Pr Prandtl number

0Q heat generation constant

wq heat flux at the wall

T fluid temperature

wT wall temperature

T fluid temperature at infinity

,x z y zt t shear stress components

, v,u w components of the velocity vector

, v ,u w   velocity components at infinity

0V translation velocity of plate

( , , )x y z cartesian coordinates

 dimensionless heat generation
parameter

 coefficient of thermal expansion
 dimensionless similarity variable

 dimensionless convection parameter
 coefficient of viscosity

 dimensionless temperature function
 density

0 electrical conductivity

,w x w y  dimensionless shear stress components

1. INTRODUCTION

Flow and heat transfer phenomena over a moving
flat surface have become an active area of academic
research in recent years due to their importance in
various branches of science, engineering, and

technology. These analyses find applications in
many manufacturing processes such as the
boundary layer along material handling conveyers,
the aerodynamic extrusion of plastic sheet, and the
cooling of an infinite metallic plate in a cooling
bath.
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The classical two-dimensional stagnation point flow
towards a rigid horizontal plane was first studied by
Hiemenz (1911). Goldstein (1938) reported the
corresponding temperature distribution. The
axisymmetric case was investigated by Homann
(1936). Sibulkin (1952) derived a semi-analytical
relation for laminar heat transfer of impinging flow
to a body of revolution. Both two-dimensional and
axisymmetric flows were extended to three
dimensions by Howarth (1951) and Davey (1961),
respectively. Stagnation point flows on moving
plates were considered by Rott (1956), Glauert
(1956), Wang (1973), Libby (1974), and Weidman
and Mahalingam (1997). Wang (2008) reviewed the
existing steady similarity stagnation-point flow
solutions and discussed a new area of research on
the stagnation point flow with slip. The most
general solution of the Navier-Stokes equations and
energy equation for non-axisymmetric three-
dimensional stagnation-point flow and heat transfer
on a flat plate was presented by Abbasi and Rahimi
(2009).

Convection in a boundary layer flow was first
considered by Sparrow et al. (1959). They obtained
similarity solutions for the combined forced and
free convection flow and heat transfer about a non-
isothermal body subjected to a non-uniform free
stream velocity. Lloyd and Sparrow (1970)
investigated mixed convection flow along an
isothermal vertical surface with the method of local
similarity. Wilks (1973) studied the same problem
under the condition of uniform surface heat flux
from the plate. Wang (1987) was the first to
investigate stagnation point flow and heat transfer
problem towards a vertical plate. He obtained
similarity solutions for the axisymmetric stagnation
point flow towards an isothermal vertical plate.
Wang (1988) considered the same problem for the
case of tilted two-dimensional stagnation point
flow. Mixed convection in two-dimensional
stagnation point flow was studied by Ramachandran
et al. (1988). They obtained similarity solutions
under the conditions of an arbitrary wall
temperature and arbitrary surface heat flux. Lin and
Chen (1988) solved the non-similar boundary layer
equations numerically for the mixed convection
flow problem on an isothermal vertical plate. The
effects of uniform suction or injection on the two-
dimensional stagnation point flow towards a
stretching horizontal plate with heat generation
were studied by Attia and Seddeek (2007).
Recently, Wang and Ng (2013) have presented the
solutions for the two-dimensional and axisymmetric
stagnation flow towards a heated vertical plate with
Navier’s slip condition.

Another situation commonly observed in industrial
applications is the hydromagnetic stagnation-point
flow with thermal effects, for instance, cooling of
electronic devices by fans, heat exchanger design,
MHD accelerators, and many others. In this type of
problems, there exists the motion of an electrically
conducting fluid towards a moving plate in the
presence of an applied electromagnetic field. The
study of hydromagnetic interaction of an
electrically conducting viscous fluid with an applied

magnetic field in stagnation-point flow was initiated
by Neuringer and Mcllroy (1958a). In their
subsequent study (Neuringer and Mcllroy 1958b),
they considered the heat transfer aspect of the same
problem. Ariel (1994) reexamined the Hiemenz
flow in hydromagnetics in general, and the
numerical procedure given by Na (1979) in
particular. The problem of steady forced convection
flow of an electrically conducting and heat
generating/absorbing fluid near a stagnation point
was solved numerically by Chamkha (1998a). In a
following paper Chamkha (1998b) obtained non-
similar solution with the finite difference method
for the problem of mhd mixed convection flow
along a semi-infinite vertical plate embedded in a
uniform porous medium with heat generation and
magnetic dissipation. Hiemenz and Homann
magnetic flows and heat transfer problems on a
permeable surface were considered by Attia (2003a,
b) in the presence of uniform suction or injection.
Attia (2007) concerned with the axisymmetric
stagnation point flow towards a stretching surface in
the presence of uniform magnetic field with heat
generation. Two-dimensional MHD stagnation
point flow towards a stretching sheet with variable
surface temperature was studied by Ishak et al.
(2009). Javed et al. (2009) investigated the
development of two-dimensional or axisymmetric
stagnation flow of an incompressible viscous fluid
over a moving plate with partial slip. Abbasbandy
and Hayat (2009) developed the homotopy analysis
solution for the problem considered by Chamkha
(1998a). Rashidi and Keimanesh (2010) constructed
the analytical approximate solutions of the MHD
flow in a laminar liquid film from a horizontal
stretching surface using the DTM-Pade technique.
Reza and Gupta (2012) extended the problem
studied by Wang (1985) to the case when an
electrically conducting incompressible viscous fluid
impinges orthogonally on the surface of another
quiescent heavier incompressible viscous
electrically conducting fluid. Rashidi and Erfani
(2012) investigated the thermal-diffusion and
diffusion-thermo  effects on combined heat and
mass transfer of a steady MHD convective and slip
flow due to a rotating disk. They found the
approximate analytic solutions by the DTM-Pade
technique. Borelli et al. (2013) studied numerically
the steady three-dimensional stagnation-point flow
of an incompressible, homogenous, electrically
conducting Newtonian fluid over a flat plate. The
recent paper by Rashidi et al. (2014) has analysed
the MHD and slip flow over a rotating infinite disk
with variable properties of the fluid.

In this study, the hydromagnetic viscous flow and
heat transfer in the vicinity of a stagnation-point on
a moving vertical plate is investigated. Our
motivation in this study is to generalize the
stagnation point flow and heat transfer problem of a
viscous fluid on an infinite vertical plate by letting
this plate move laterally with constant velocity in
the presence of a uniform magnetic field and heat
generation. A study of the problem under discussion
for a fixed vertical plate was conducted by Wang
and Ng (2013) in the absence of a magnetic field
and heat generation. The governing equations are
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Fig. 1. Physical model and coordinate system for (a) two-dimensional stagnation-point flow on a
moving vertical plate (b) axisymmetric stagnation-point flow on a moving vertical plate.

transformed into a system of nonlinear ordinary
differential equations by means of similarity
functions. The resulting equations, together with
their corresponding boundary conditions, are
solved numerically using the Matlab routine
bvp4c. We compute the velocity components,
temperature field, shear stresses and heat transfer
on a moving vertical plate by assigning some
specific values to the parameters entering into the
problem. The effects of these parameters on the
above fields are examined carefully. Particular
cases of our results are compared with existing
results of Wang and Ng (2013) and the agreement
is found to be excellent.

2. TWO DIMENSIONAL STAGNATION-
POINT FLOW TOWARDS A
UNIFORMLY HEATED AND MOVING
VERTICAL PLATE

The orthogonal two-dimensional stagnation-point
flow in the x-z plane against an infinite vertical flat
plate at z 0 moving with constant velocity 0V in

the y- direction is illustrated in Fig. 1a. A
Newtonian fluid flowing in the direction of the
negative z- axis approaches a moving vertical plane
at z 0 , and divides into streams proceeding away
from the stagnation-point at the origin. An external
uniform magnetic field 0B is applied in the z-

direction. The velocity components corresponding
to the x- , y- and z- directions are denoted by u , v
and w , respectively. Far from the plate, as z tends
to infinity, the velocity distribution in the
frictionless potential flow is given by

, v 0,     u ax w az (1)

where a is a physical constant, depending on the
velocity in potential motion. Since the velocity field
given in Eq. (1) does not satisfy the no-slip
conditions at the plate, it is not an acceptable
solution of the equations of viscous fluid flow. The
problem is to obtain a solution that satisfies the no-
slip boundary conditions and agrees with the outer
solution far from the stagnation point. We shall seek
a similarity solution compatible with the continuity

equation through the variable

m( ) f '( )

v h( )

f ( )

( ) ( ) 

 

 
  w

u z x z

z

w z

T T T T z

(2)

where the prime denotes the differentiation with
respect to z . It is important to note that the function
h( )z represents the velocity profile due to the

translation of the plate at 0z .

The three-dimensional Navier-Stokes equations
with the Boussinesq term and the energy equation
governing such type of flow are written as

2 2 2

2 2 2

( v )

( ) ( )



  

     
   

       
   x

pu u uu w
x y z x

u u u g T T F
x y z

(3)

2 2 2

2 2 2

v v v( v )

v v v( )





     
   

     
   y

p
u w

x y z y

F
x y z

(4)

2 2 2

2 2 2

( v )

( )





     
   

     
   z

pw w wu w
x y z z

w w w F
x y z

(5)

2 2 2

02 2 2

( v )

( ) ( )

p

T T Tc u w
x y z

T T Tk Q T T
x y z





   
  

      
  

(6)

where  is the density, p the pressure,  the

dynamic viscosity, T the temperature, pc the

specific heat at constant pressure, k the thermal
conductivity, 0Q the volumetric rate of heat

generation, wT the temperature of the plate, T the

temperature far from the surface, g the

gravitational acceleration,  the coefficient of
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thermal expansion and ( xF , yF , zF ) are the

components of the source term F due to the
imposed magnetic field. The electromagnetic body
force per unit volume can be simplified as

0( )  F v B B (7)

where 0 is the electrical conductivity and

0(0,0, )B B is the constant uniform magnetic field

applied to the fluid.

The boundary conditions for the velocity and
temperature field are

00 : 0, v , 0,

: , v v 0,

, .
 

 

  

 

    

  
 

wz u V w T T

z u u ax

w w az T T

(8)

Our investigation is restricted to the following
assumptions:

(i) All the fluid properties are constant.

(ii) The flow is steady and laminar.

(iii) The plate is electrically non-conducting.

(iv) The magnetic Reynolds number is so small
that the induced magnetic field produced by motion
of fluid can be ignored in comparison to the applied
one. In addition, the imposed and induced electrical
fields are assumed to be negligible.

(v) The effects of viscous dissipation, Ohmic
heating and Hall current are not included in the
analysis, since they are generally small in the
stagnation-point region. Also, the radiant heating is
neglected.

Substituting Eq. (2) into Eqs.(3)-(6), and
eliminating the pressure term from these equations,
we arrive at the following equations:

2 2
2 20 0 0 0f ''' f f '' (f ') f ' 0

  
  
     

B B
a a (9)

2
0 0m'' f m' mf ' m

( ) 0w

B

g T T


 

 

  

  
(10)

2
0 0h '' f h ' h 0

 
 
  

B
(11)

0'' f ' 0     pk c Q (12)

The corresponding boundary conditions for the
velocity and temperature field are re-written as

00 : f (0) 0, f ' (0) 0, h(0) ,

m(0) 0, (0) 1

: f ' ( ) , h( ) 0,

m( ) 0, ( ) 0.

z V

z a





   

 
    

   

(13)

To write the governing equations and the boundary
conditions in dimensionless form, the following
non-dimensional quantities are invoked

0

, F( ) f ( ),

1
H( ) h( ), M( ) m( )

 
 

 


 



 

 

a
z z

a

z z
V a

(14)

With help of the above quantities, the governing
equations  reduce to the following dimensionless
form:

2F''' FF'' (F' ) Ha (1 F' ) 1 0      (15)

H '' FH ' Ha H 0   (16)

M '' FM ' MF' Ha M 0     (17)

'' Pr F ' Pr 0      (18)

Similarly, the transformed boundary conditions are
given by

0 : F(0) 0, F' (0) 0, H(0) 1,

M(0) 0, (0) 1

: F' ( ) 1, H( ) 0,

M( ) 0, ( ) 0.







   
 

    
   

(19)

where the prime denotes the differentiation with
respect to  . Ha is the non-dimensional magnetic

parameter,  is the non-dimensional convection
parameter, Pr is the Prandtl number and  is the
non-dimensional heat generation parameter and
they are defined as

2
0 0

0

( )
Ha , ,

Pr , .

 


 






 

 

w

p

p

g T TB

a a a

c Q

k c a

(20)

The dimensionless expressions for the velocity
components are given through the following
equations:

0

1
M( ) F'( ),

v w
H( ), F( )


 



 
 

 

 


u

ax x a

V a

(21)

For the problem under consideration, it is important
to find the shear stress on the plate in the x and y
directions. From the constitutive equation of a
Newtonian fluid, we obtain

0

0 0

1 M' (0) F'' (0),

1 H ' (0)


 








    

   

wx xz
z

wy yz

z

a
t x

a

t
V a

(22)

where xzt and yzt are the shear stress components

of a Newtonian fluid and they are defined as

v,                  xz yz

u w wt t
z x z y

(23)
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The heat transfer rate per unit area on the plate can
be written by Fourier’s law as follows:

0

( ) ' (0).
 
 



    
w w

z

aTq k k T T
z

(24)

3. AXISYMMETRIC STAGNATION-POINT
FLOW TOWARDS A UNIFORMLY
HEATED AND MOVING VERTICAL
PLATE

Figure 1b shows an orthogonal axisymmetric
stagnation point flow against an infinite vertical
plate at z = 0 moving with constant velocity 0V in

the y-direction in the presence of a uniform
magnetic field in the z- direction. Let the Cartesian
velocity components at infinity be

, v , 2     u ax ay w az (25)

which represents a rotational inviscid flow.

We look for a solution of the form

m( ) f ' ( )

h(z) f ' ( )

2f ( )

( ) ( ). 

 
 
 
  w

u z x z

v y z

w z

T T T T z

(26)

By using equations of motion, energy equation,
non-dimensional quantities given in Eq. (14) and
above similarity transformations, it can be shown
that the governing equations for the problem under
discussion are

2F''' 2FF'' (F' ) Ha (1 F' ) 1 0      (27)

H'' 2FH ' F' H Ha H 0    (28)

M '' 2FM ' MF' Ha M 0     (29)

'' 2Pr F ' Pr 0      (30)

The boundary conditions for the above equations
are as follows

F(0) 0, F' (0) 0, F' ( ) 1,

H(0) 1, H( ) 0, M(0) 0,

M( ) 0, (0) 1, ( ) 0 

   
   
    

(31)

The dimensionless expressions for the velocity
components and the shear stresses on the plate are
given through the following equations, respectively:

0 0

1
M( ) F' ( ),

v
H( ) F' ( ),

w
F( )

2

u

ax x a

ay

V V

a


 



 


 

 

 




(32)

0

M '(0) F'' (0),

H ' (0) F'' (0)






  

  

wx

wy

a
x

ay
V

(33)

4. RESULTS AND DISCUSSION

In the presence of a constant magnetic field, the
flow and heat transfer problems involving two-
dimensional and axisymmetric three-dimensional
stagnation-point flows on a moving vertical plate
are governed by the similarity equations and
boundary conditions given in Eqs.(15)-(19) and
Eqs. (27)-(31), respectively. The equations are
nonlinear and have no analytical solutions.
Therefore, they must be solved numerically. These
numerical solutions were obtained using the Matlab
solver boundary value problem (bvp4c) designed
for the solution of two point boundary value
problems. The code is based on a collocation
formula. An error estimate for the global error of
the approximate solution is also provided. Mesh
selection and error control are based on the residual
of continuous solution. We set the relative and
absolute tolerance equal to 10-7. We refer the reader
to the book by Shampine et al. (2003) for details
about how to solve boundary value problems with
bvp4c.

The above-mentioned differential equations were
integrated from 0  to   , where  is a

sufficiently large number. In practice, setting  as

low as 12 yields satisfactory accuracy for the
problems under discussion. To validate the accuracy
of our numerical solutions, we have compared our
results for the values of F'' (0) , M '(0) and ' (0)
with those of Wang and Ng (2013) in Table 1 for
the special case of Ha 0 , 0  and 1  . This
table shows an excellent agreement with the
existing results in Wang and Ng (2013). Hence, it
is concluded that the Matlab solver bvp4c is very
powerful and efficient in finding the numerical
solutions of the boundary value problems discussed
in this research.

Figures 2 to 4 show the velocity profiles for the two
dimensional and axisymmetric cases, respectively.
It is clear from Figures 2 and 3 that the main effect
of the magnetic field on the flow is to increase the
velocity components in the x- and z- directions,
whereas it is to decrease the velocity component in
the y- direction. Furthermore, for both stagnation-
point flows, the tangential velocity component
approaches the free stream values more quickly as
Ha increases. In other words, the velocity boundary
layer is thicker in the absence of a magnetic field.
From Figures 2b and 3b, we observe that the
velocity component in the x- direction increases
with the convection parameter  . This behavior is
a consequence of the fact that the buoyancy
increases with the increase in  . To investigate the
effect of Prandtl number on the velocity component
in the x- direction, we have plotted the
dimensionless velocity component /u ax against
 in Figure 4. It is evident from the figure that an
increase in the Prandtl number leads to a decrease in
the upward velocity component. Note that the
dependence of velocity components in the y- and z-
directions on  , Pr and  is insignificant, so they
are not presented here.
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Table 1 Comparison of the numerical results with those of Wang and Ng (2013)

Wang and Ng (2013)
Present Work

( Ha 0, 0, 1    )

Pr=0.7 Pr=7 Pr=0.7 Pr=7

Axisymmetric case
F (0)' ' 1.31194 1.31194 1.311938 1.311938

M (0)' 0.4955 0.2849 0.495440 0.284883

(0)' -0.6654 -1.5458 -0.665378 -1.545779

Two dimensional case
F (0)' ' 1.23259 1.23259 1.232588 1.232588

M (0)' 0.6155 0.3619 0.615467 0.361859

(0)' -0.4959 -1.1784 -0.495866 -1.178375

Fig. 2. Velocity profiles for the two dimensional case.

Figures 5 and 6 illustrate the temperature profiles
for different values of the non-dimensional
parameters. The numerical results show that the
effect of increasing values of Prandtl number results
in a decrease in the thermal boundary layer
thickness. The reason is that smaller values of Pr
are equivalent to increasing the thermal
conductivities, and therefore heat is able to diffuse
more rapidly. Hence, in the case of small Prandtl
numbers the thermal boundary layer is thicker. It is
apparent from Figures 5 and 6 that the presence of
the heat generation parameter  leads to an
increase in temperature. This result qualitatively
agrees with the expectation, since the effect of
internal heat generation is to increase the rate of
energy transport to the fluid, thereby increasing the
temperature of fluid. Again from Figures 5 and 6,
we observe that the temperature decreases with the
magnetic parameter Ha .

The values of tangential shear stresses on the plate
are tabulated in Tables 2 to 4 for different values of
the non-dimensional parameters. We conclude from
these tables that the tangential shear stresses
increase with the increase in the magnetic parameter
Ha. This can be explained physically as follows.
We observe from figures related to the velocity
components in the x- and y- directions that when the
magnetic parameter increases, the velocity gradients
at the moving plate increases. This causes the
tangential shear stresses to increase, and hence the
force necessary to move the plate in the y- direction
is greater. Similarly, this change in tangential shear
stresses on the plate is more pronounced for the
case of large heat generation and convection
parameters. Note that the effects of  , Pr and 

on the tangential shear stress wy on the plate is

insignificant, so they are not presented here.
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Fig. 3. Velocity profiles for the axisymmetric case.

Fig. 4. Variation of the non-dimensional velocity component in the x-direction with Pr (a) two
dimensional case (b)axisymmetric case.

The values of temperature gradient '(0) on the

plate are listed in Tables 5 and 6 for a selection of
values of the non-dimensional parameters. The
magnitude of the wall temperature gradient
increases as the magnetic parameter Ha increases.
Also, in the case of small Prandtl numbers the rate
of heat transfer is reduced as the thermal boundary
layer is thicker. Again from these tables, we
observe that the magnitude of the wall temperature
gradient decreases with the heat generation
parameter  . Finally, the wall temperature gradient

'(0) changes its sign from positive to negative

for some values of the parameters. This implies that

heat flows from the fluid to the plate. From a
physical point of view, this follows from the fact
that in the presence of significant internal heat
generation, the local temperature in the
neighborhood of 0  may be larger than wT so

that heat may flow from the fluid to the plate.

5. CONCLUSION

In this paper, the hydromagnetic stagnation-point
flows on moving vertical plate were studied
theoretically. By means of appropriate similarity
transformations, the governing equations were
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Table 2 Tangential shear stress wx on the plate for the two dimensional case 2 / 0.4ax  

Ha   wx

P r 0 .1 P r 0 .7 P r 7 P r 7 0

0 0.535254 0.523808 0.511128 0.502474

0.05 0.2 0.536610 0.525657 0.513586 0.505910

0.4 0.538232 0.528002 0.517403 0.517640

0 0.915220 0.800768 0.673964 0.587428

0 0.5 0.2 0.928784 0.819256 0.698549 0.621781

0.4 0.945000 0.842702 0.736714 0.739086

0 1.337405 1.108502 0.854894 0.681822

1 0.2 1.364534 1.145477 0.904064 0.750528

0.4 1.396964 1.192368 0.980394 0.985136

0 0.665884 0.658898 0.649614 0.642505

0.05 0.4 0.666665 0.660121 0.651359 0.644925

0.6 0.667588 0.661642 0.653917 0.651182

0 0.951646 0.881794 0.788947 0.717855

1 0.5 0.2 0.959463 0.894020 0.806396 0.742059

0.4 0.968690 0.909225 0.831980 0.804627

0 1.269160 1.129456 0.943762 0.801578

1 0.2 1.284793 1.153908 0.978660 0.849985

0.4 1.303247 1.184317 1.029827 0.975121

0 0.872410 0.868517 0.862178 0.856571

0.05 0.2 0.872822 0.869261 0.863345 0.858203

0.4 0.873302 0.870166 0.864963 0.861603

0 1.080433 1.041508 0.978115 0.922042

3 0.5 0.2 1.084552 1.048941 0.989780 0.938368

0.4 1.089352 1.057998 1.005965 0.972369

0 1.311569 1.233719 1.106935 0.994787

1 0.2 1.319808 1.248587 1.130263 1.027440

0.4 1.329408 1.266699 1.162634 1.095443

Fig. 5. Temperature profiles for the two dimensional case.

reduced to a set of ordinary differential equations.
Numerical solutions to these equations were
obtained by employing a Matlab routine built on the
bvp4c boundary value problem solver. Solutions
were calculated over the domain 0    , where

 was chosen to be sufficiently large that results

were insensitive to changes in the integration
length. The graphical and tabular presentation of the
results revealed the effects of the relevant
parameters on the velocity components, temperature

distribution, tangential shear stresses and heat
transfer. It is hoped that the results obtained in this
work be of use for understanding of more
complicated problems involving stagnation-point
flows.
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Table 3 Tangential shear stress - wx on the plate for the axisymmetric case 2 0 .4)( ax  

Ha   wx

P r 0 .1 P r 0 .7 P r 7 P r 7 0
0 0.560137 0.549547 0.539019 0.532148

0.05 0.2 0.560785 0.550363 0.540060 0.533463
0.4 0.561493 0.551282 0.541361 0.535681
0 0.878392 0.772495 0.667217 0.598501

0 0.5 0.2 0.884872 0.780654 0.677628 0.611658
0.4 0.891950 0.789845 0.690633 0.633832
0 1.232010 1.020216 0.809658 0.672227

1 0.2 1.244968 1.036534 0.830480 0.698540
0.4 1.259125 1.054916 0.856492 0.742889
0 0.686696 0.679203 0.670748 0.664811

0.05 0.2 0.687131 0.679803 0.671542 0.665813
0.4 0.687604 0.680474 0.672511 0.667373
0 0.943801 0.868871 0.784318 0.724947

1 0.5 0.2 0.948150 0.874873 0.792263 0.734973
0.4 0.952878 0.881578 0.801951 0.750572
0 1.229473 1.079614 0.910506 0.791766

1 0.2 1.238171 1.091617 0.926398 0.811817
0.4 1.247628 1.105027 0.945774 0.843015
0 0.888355 0.883668 0.877372 0.872460

0.05 0.2 0.888611 0.884069 0.877938 0.873181
0.4 0.888887 0.884513 0.878610 0.874219
0 1.084622 1.037758 0.974797 0.925676

3 0.5 0.2 1.087179 1.041767 0.980455 0.932885
0.4 1.089942 1.046202 0.987176 0.943260
0 1.302696 1.208968 1.083047 0.984804

1 0.2 1.307811 1.216986 1.094362 0.999223
0.4 1.313336 1.225857 1.107805 1.019973

Table 4 Tangential shear stresswy on the plate Pr 7, 0 .4, 1)(    

Ha wy

Two dimensional case Axisymmetric case (
0 0.4ay V  )

0 0.570465 0.413956
0.5 0.874875 0.560884
1 1.112340 0.685898

1.5 1.311997 0.795906
2 1.486990 0.894928

2.5 1.644414 0.985515
3 1.788563 1.069392

Fig. 6. Temperature profiles for the axisymmetric case.
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Table 5 Temperature gradient on the plate for the two-dimensional case ( 1  )

Ha  '(0)

P r 0 .1 Pr 0.7 Pr 7 Pr 70

0 0.219566 0.495866 1.178375 2.642045

0 0.2 0.180129 0.377157 0.668846 0.047644

0.4 0.135247 0.237625 -0.017283 -6.494990

0 0.224177 0.515632 1.251033 2.839845

1 0.2 0.185234 0.400810 0.774613 0.519358

0.4 0.141024 0.267068 0.157239 -4.113287

0 0.229270 0.538476 1.339427 3.086727

3 0.2 0.190830 0.427653 0.896983 1.025959

0.4 0.147300 0.299721 0.343883 -2.437674

Table 6 Temperature gradient on the plate for the axisymmetric case ( 1  )

Ha  '(0)

P r 0 .1 Pr 0.7 Pr 7 Pr 70

0 0.301472 0.665378 1.545779 3.427570

0 0.2 0.273881 0.580779 1.179949 1.666793

0.4 0.244558 0.489312 0.757530 -0.837951

0 0.307786 0.690931 1.634221 3.661087

1 0.2 0.280545 0.608957 1.288815 2.038886

0.4 0.251629 0.520695 0.896079 -0.139310

0 0.315367 0.722735 1.748164 3.966509

3 0.2 0.288519 0.643721 1.425596 2.492850

0.4 0.260057 0.559026 1.064681 0.619589

comments and suggestions regarding an earlier
version of this paper.
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