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ABSTRACT

The present article examines the flow, heat and mass transfer of a non-Newtonian fluid known as
Casson fluid over a stretching surface in the presence of thermal radiations effects. Lie Group analy-
sis is used to reduce the governing partial differential equations into non-linear ordinary differential
equations. These equations are then solved by an analytical technique known as Homotopy Anal-
ysis Method (HAM). A comprehensive study of the problem is being made for various parameters
involving in the equations through tables and graphs.
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1. INTRODUCTION

The popularity of non-Newtonian fluids has
been a dynamic area of research because of its
applications. Examples of such fluids include
coal-oil slurries, grease, paints, clay coating
and suspensions, shampoo, cosmetic products,
custard, animals bloods, body fluids and many
others. After the initial work done by Crane
(1970), a comprehensive and detail research has
been made by many scientists and researchers
on Newtonian and Non-Newtonian boundary
layer flows over stretching surfaces. Gupta and
Gupta (1977) studied heat and mass transfer ef-
fect over a permeable sheet stretching in its own
plane. Grubka and Bobba (1985) used Kum-
mer’s function (1965) to study the heat transfer
phenomenon along a linearly stretching surface
by assuming a power law temperature distribu-
tion. Takhar et al. (2000) examined the mag-
netohydrodynamic fluid flow and mass trans-
fer on a stretching surface with chemically re-
active species. Mehmood and Ali (2008) ana-
lyzed three dimensional viscous flow and heat
transfer over a stretching surface. Bhargava
et al. (2007) used finite element technique

to study the pulsating flow of non-newtonian
fluid known as Casson fluid in a non-Darcian
porous medium. The unsteady boundary layer
flow adjacent to permeable stretching surface
in a porous medium was studied by Ali and
Mehmood (2008). Flow and heat transfer on a
stretching surface in a rotating fluid with a mag-
netic field analyzed by Takhar (2003). Butt et
al. (2012) studied the effects of viscoelastic-
ity on entropy generation in a flow through a
porous medium over a stretching sheet. Beg et
al. (2009) analyzed the free convection MHD
flow, heat and mass transfer over a stretching
surface through a saturated porous medium and
also examined the Soret and Dufour effects dur-
ing the flow phenomenon. A lot of work has
been done on Non-Newtonion fluid flows under
consideration of different geometries (Tufail et
al. 2014; Butt et al. 2014; Hayat et al. 2014;
Nadeem et al. 2014; Afify et al. 2014; She-
hzad et al. 2014; Haq et al. 2015; Hamad et
al. 2012; Boyd et al. 2007; Attia and Ahmed
2010; Khader and Megahed 2013). Arasu et
al. (2011) used Lie theoretical analysis to study
the thermal diffusion effects on free convection
flow over a porous stretching sheet with variable
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stream conditions. Lie symmetries are useful as
they successfully reduce the number of indepen-
dent variables of the problem. Reviews for the
theory and applications of Lie group analysis to
differential equations may be found in (Olver
1986 and Bluman and Kumei 1989). Yuru-
soy and Pakdemirli (1999) used group theoreti-
cal analysis to obtain the exact solution of sec-
ond grade fluid over a stretching surface. Afify
(2009) made use of Lie symmetries to study
MHD(magnetohydrodynamics) aligned creep-
ing flow and heat transfer in second grade flu-
ids. Later, Mehmood et al. (2005) used symme-
try reduction to examine unsteady MHD aligned
second grade flow and found the general solu-
tion. The aim of this article is to analyze flow,
heat and mass transfer of Non-Newtonian fluid
known as Casson fluid over a stretching surface
embedded in a porous medium in the presence
of a uniform magnetic field and thermal radia-
tion effects. Lie group analysis is used to reduce
the governing equations into non-linear ordi-
nary differential equations. These equations are
then solved using Homotopy Analysis Method
(HAM) and a complete analysis of the problem
is presented. The effects of various physical pa-
rameters governing the equations are discussed
and interpreted through tables and graphs.

2. MATHEMATICAL FORMULATION
OF THE PROBLEM

Consider a steady, two-dimensional laminar
flow of an incompressible Casson fluid over a
stretching surface through a porous medium.
The sheet lies in the plane y = 0 with the flow
being confined to y > 0. The coordinate x is
being taken along the stretching surface and y
is normal to the surface. Along the x-axis, two
equal and opposite forces are applied, so that the
surface is stretched, keeping the origin fixed. A
uniform transverse magnetic field of strength B0
is applied parallel to y-axis. It is also assumed
that the fluid is electrically conducting and the
magnetic Reynolds number is small so that the
induced magnetic field is neglected. No electric
field is assumed to exist. By following Naka-
mura and Sawada (1988) we use the biviscosity
modified Casson rheological model. The rhe-
ological equation of state for an isotropic and
incompressible flow of a Casson fluid is

τi j =

{
2(µB +

py√
2π
)ei j,π > πc

2(µB +
py√
2πc

)ei j,π < πc
. (1)

Here π = ei jei j is the product of the compo-
nent of deformation rate with itself, ei j is the
(i, j)th component of the deformation rate, πc

is a critical value of this product based on the
non-Newtonian model, µB is plastic dynamic
viscosity of the non-Newtonian fluid and py is
the yield stress of fluid. Using (1) and conserva-
tion of mass, momentum, heat transfer and mass
transfer, the following boundary layer equations
are obtained

∂u
∂x

+
∂v
∂y

= 0, (2)

u
∂u
∂x

+ v
∂u
∂y

=
µ
ρ
(1+

1
β
)

∂2u
∂y2 −

υ

k′
u−

σB2
0

ρ
u, (3)

u
∂T
∂x

+ v
∂T
∂y

=
k

ρcp

∂2T
∂y2 +

16σ1T 3
∞

3ρcpk1

∂2T
∂y2 , (4)

u
∂C
∂x

+ v
∂C
∂y

= D
∂2C
∂y2 , (5)

The boundary conditions for the momentum
and energy equation are [11];

u(x,y) = bx, v(x,y) = 0 at y = 0,
u(x,y) = 0, at y→ ∞. (6)
T (x,y) = Tw , C(x,y) =Cw at y = 0, (7)
T (x,y) = T∞ , C(x,y) =C∞, at y→ ∞.

where µ is the constant viscosity, ρ is fluid den-
sity, ν = µ

ρ
, is kinematic viscosity, β = µB

√
2πc

py
is

Casson fluid parameter, σ is electrical conduc-
tivity of fluid, k′ is permeability of medium, cp
is specific heat at constant pressure, k is thermal
conductivity of the fluid, D is mass diffusivity,
T and T∞ are fluid and ambient temperatures re-
spectively, Tw is wall temperature, C is concen-
tration of fluid, Cw is species concentration at
the surface, C∞ is free stream concentration of
the species, u,v are velocity components in x-
and y- directions and b is stretching parameter.
Introducing the following similarity transforma-
tions

u(x,y) =
u(x,y)√

bυ
, v(x,y) =

v(x,y)√
bυ

, (8)

θ(x,y) =
T (x,y)−T∞

(Tw−T∞)
,x =

√
b
ν

x,

φ(x,y) =
C(x,y)−C∞

(Cw−C∞)
,y =

√
b
ν

y. (9)

Using the transformations (8− 9) in Eqs. (2−
7), we have

∂u
∂x

+
∂v
∂y

= 0, (10)
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u
∂u
∂x

+ v
∂u
∂y

= (1+
1
β
)

∂2u
∂y2 −

1
K

u−Mu, (11)

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

(1+
4

3Nr
)

∂2θ

∂y2 , (12)

u
∂φ

∂x
+ v

∂φ

∂y
=

1
Sc

∂2φ

∂y2 . (13)

au(x,y) = x, v(x,y) = 0 at y = 0,

u(x,y) = 0, at y→ ∞. (14)

θ(x,y) = 1, φ(x,y) = 1 at y = 0

θ(x,y) = 0, φ(x,y) = 0 at y→ ∞. (15)

where K = k′b
ν

is permeability parameter, M =
σB2

0
ρb is magnetic field parameter, Pr = µcp

κ
is

Prandtl number, Nr = κκ1
4σ1T 3

∞

is radiation param-
eter and Sc = υ

b is Schmidt number. Now by
introducing stream function

u =
∂ψ

∂y
, and v =−∂ψ

∂x
. (16)

Eq.(10) will become identically zero and the
system (11-15) takes the form

ψyψxy−ψxψyy+Mψy+
1
K

ψy−(1+
1
β
)ψyyy = 0,(17)

ψyθx−ψxθy−
1
Pr

(1+
4

3Nr
)θyy = 0, (18)

ψyφx−ψxφy−
1
Sc

φyy = 0. (19)

∂ψ(x,0)
∂y

= x,
∂ψ(x,0)

∂x
= 0,

∂ψ(x,∞)

∂y
= 0 (20)

θ(x,y) = 1, φ(x,y) = 1 at y = 0 (21)

θ(x,y) = 0, φ(x,y) = 0 at y→ ∞ (22)

3. LIE GROUP ANALYSIS

A symmetry of a differential equation is an in-
evitable transformation of the dependent and in-
dependent variables that maps the equation to it-
self. Amongst symmetries of differential equa-
tions, those depending continuously on a small
parameter and forming a local one-parameter

group of transformation can be calculated al-
gorithmically through a procedure due to So-
phus Lie (1875). One of the most useful and
striking properties of symmetries is that they
map solutions to solutions. For partial differ-
entials, symmetries allow the reduction of the
number of independent variables. Consider the
one-parameter Lie group of infinitesimal trans-
formations in (x,y,ψ,θ,φ) given by

x∗ = x+ εξ(x,y,ψ,θ,φ)+O(ε2),

y∗ = y+ ετ(x,y,ψ,θ,φ)+O(ε2),

ψ
∗ = ψ+ εΓ(x,y,ψ,θ,φ)+O(ε2),

θ
∗ = θ+ εΩ(x,y,ψ,θ,φ)+O(ε2),

φ
∗ = φ+ εΦ(x,y,ψ,θ,φ)+O(ε2), (23)

where ε is the Lie group parameter. Equations
(17−19) are nonlinear partial differential equa-
tion with three dependent variables (ψ,θ,φ)
and two independent variables (x,y). Lie group
analysis is required so that Eqs. (17 − 19)
remain invariants under these transformations
which yields an over-determined, linear system
of equations for infinitesimals ξ, τ, Γ, Ω, Φ. The
symmetry group infinitesimal generator is de-
fined by

−→
V = ξ(x,y,ψ,θ,φ)

∂

∂x
+ τ(x,y,ψ,θ,φ)

∂

∂y

+Γ(x,y,ψ,θ,φ)
∂

∂Ψ
+Ω(x,y,ψ,θ,φ)

∂

∂θ

+Φ(x,y,ψ,θ,φ)
∂

∂φ
, (24)

After following the procedure defined in (Olver
1989) to calculate the infinitesimals we have

ξ = c1 + c2x, τ = f1(x),

Γ = c3 + c2ψ,Ω = c4 + c5θ,

Φ = c6 + c7φ. (25)

where ci(i = 1,2, ...,7), are arbitrary constants
and f1(x) is arbitrary function of x. After fixing
the constants as c1 = c3 = c4 = c5 = c6 = c7 =
f1(x) = 0, c2 = 1 we get

dx
x

=
dy
0

=
dψ

ψ
=

dθ

0
=

dφ

0
, (26)

y = η, ψ = x f (η), θ = θ(η), φ = φ(η). (27)

Here f , θ and φ are the functions of η. After
using above transformations the system (17−
22) becomes
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(1+
1
β
) f ′′′(η)+ f (η) f ′′(η)− f ′(η)2

−(M+
1
K
) f ′(η) = 0, (28)

(1+
4

3Nr
)θ′′(η)+Pr f (η)θ′(η) = 0, (29)

φ
′′(η)+Sc f (η)φ′(η) = 0. (30)

f (0) = 0, f ′(0) = 1, f ′(∞) = 0, (31)

θ(0) = 1,θ(∞) = 0,φ(0) = 1,φ(∞) = 0. (32)

The skin friction coefficient, the local Nusselt
number and the local Sherwood number are de-
fined as:

C f =

(
µB +

py√
2πc

)
ρ(bx)2

(
∂ū
∂ȳ

)
y=0

,

Nux =
x̄

(Tw−T∞)

(
∂T
∂ȳ

)
y=0

,

Shx =
x̄

(Cw−C∞)

(
∂C
∂ȳ

)
y=0

. (33)

Using (8−9) and (33), the dimensionless form
of skin friction, local Nusselt number and local
Sherwood number become

Re1/2
x C f = −(1+ 1

β
) f ′′(0),

Re−1/2
x Nux = −θ

′(0),

Re−1/2
x Shx = −φ

′(0). (34)

4. SOLUTION OF THE PROBLEM

In order to solve the non-linear Eqs. (28− 30)
with boundary conditions (31− 32), an ana-
lytical technique known as Homotopy Analy-
sis Method (HAM) is used. According to the
nature of the problem, following set of initial
guesses and auxiliary linear operators for f (η),
θ(η) and φ(η) are used:

f0(η) = 1− exp(−η), θ0(η) = exp(−η),

φ0(η) = exp(−η), (35)

L f =
d3 f
dη3 −

d f
dη

, Lθ =
d2θ

dη2 +
dθ

dη
,

Lφ =
d2φ

dη2 +
dφ

dη
, (36)

The zero-order deformation equations and
boundary conditions are:

(1− p)L f [ f̂ (η; p)− f0(η)] = ph̄ f N f
[

f̂ (η; p)
]
,

(1− p)Lθ[θ̂(η; p)−θ0(η)] = ph̄θNθ

[
f̂ (η; p), θ̂(η; p)

]
,

(1− p)Lφ[φ̂(η; p)−φ0(η)] = ph̄φNφ

[
f̂ (η; p), φ̂(η; p)

]
.

f̂ (0; p) = 0, f̂ ′(0; p) = 1,
f̂ ′(∞; p) = 0,
θ̂(0; p) = 1, θ̂(∞; p) = 0,
φ̂(0; p) = 1, φ̂(∞; p) = 0. (37)

whereh̄ f ,h̄θ andh̄φ indicates the non-zero auxil-
iary parameters and p ∈ [0,1] is the embedding
parameter. The non-linear operators are

N f
[

f̂ (η; p)
]
= (1+

1
β
)

∂3 f̂ (η; p)
∂η3

+ f̂ (η; p)
∂2 f̂ (η; p)

∂η2 − (
∂ f̂ (η; p)

∂η
)2

−(M+
1
K
)

∂ f̂ (η; p)
∂η

,

Nθ

[
θ̂(η; p), f̂ (η; p)

]
= (1+

4
3Nr

)
∂2θ̂(η; p)

∂η2

+Pr f̂ (η; p)
∂θ̂(η; p)

∂η
,

Nφ

[
φ̂(η; p), f̂ (η; p)

]
=

∂2φ̂(η; p)
∂η2

+Sc f̂ (η; p)
∂φ̂(η; p)

∂η
.

The mth-order deformation equations are given
as

L f [ fm (η)−χm fm−1 (η)] = h̄ f R f
m (η) , (37)

Lθ [θm (η)−χmθm−1 (η)] = h̄θR θ
m (η) , (38)

Lφ [φm (η)−χmφm−1 (η)] = h̄φR φ
m (η) , (39)

where

R f
m (η) =

∂3 fm−1

∂η3 − (M+
1
K
)

∂ fm−1

∂η
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+
m−1

∑
k=0

(
fm−1−k

∂2 fk

∂η2 −
∂ fm−1−k

∂η

∂ fk

∂η

)
,

R θ
m (η) = (1+

4
3Nr

)
∂2θm−1

∂η2 +Pr
m−1

∑
k=0

fm−1−k
∂θk

∂η
,

R φ
m (η) =

∂2φm−1

∂η2 +Sc
m−1

∑
k=0

fm−1−k
∂φk

∂η
.

Here

χm =

{
0, m≤ 1,
1, m > 1. (40)

The series solutions obtained by HAM for Eqs.
(28−30) subject to boundary conditions (31−
32) can be written as:

f (η) =
∞

∑
m=0

fm(η), θ(η) =
∞

∑
m=0

θm(η), (41)

φ(η) =
∞

∑
m=0

φm(η). (42)

4.1 Convergence of the solutions

It is observed that the series solutions (41−42)
contains the auxiliary parameters h̄ f , h̄θ and h̄φ

with the help of which the convergence region
and rate of approximation of series solutions
can be controlled and adjusted. To get an idea of
the admissible ranges of h̄ f , h̄θ and h̄φ in which
the series solution converge, the so-called h̄-
curves are plotted at the 20th order of approx-
imation. The range for the admissible values
of h̄ f , h̄θ and h̄φ are −0.5 < h̄ f < −0.1, −0.5 <
h̄θ < −0.2 and −0.5 < h̄φ < −0.1 as shown in
figure 1. To accelerate the convergence of the
series solutions (51), the homotopy-Pade ap-
proximation is utilized, and the tabulated re-
sults for f ′′(0), θ′(0) and φ′(0) at h̄ f = −0.35,
h̄θ =−0.35h̄φ =−0.45 are presented in table 1.
It is quite evident that the value of f ′′(0) con-
verge up to 6 decimal places after 6th order of
approximation and the values of θ′(0) and φ′(0)
are convergent after 8th order of approximation.

5. RESULTS AND DISCUSSIONS

In this section, the effects of various parame-
ters on velocity, temperature, and concentration
fields are presented through graphs and tables.
Figures 1− 3 depicts the effects of various pa-
rameters on velocity profile. In figure 2, the
effects of Casson fluid parameter β on velocity

Fig. 1. The h̄-curves of at 20th-order of
approximations.

Table 1 Convergence table for the [m/m]
homotopy Pade approximation of f ′′(0),

θ′(0) and φ(0) when β = 1.0, M = 1.0,
K = 0.5, Pr = 1.0,Nr = 1.0 and Sc = 1.0 are

kept fixed

Pade′ Approx. − f ′′(0) −θ′(0) −φ′(0)
[2,2] 1.413790 0.252893 0.493297
[4,4] 1.414210 0.25365 0.501131
[6,6] 1.414210 0.253648 0.501254
[8,8] 1.414210 0.253648 0.501250
[10,10] 1.414210 0.253648 0.501250

profile are illustrated. It is quite clear that a de-
crease in velocity occurs with increase in Cas-
son fluid parameter. Figure 3 shows the influ-
ence of magnetic field parameter M on velocity
profile f ′(η). It is observed that with an increase
in the value of M, the velocity decreases. This
is due to the reason that the application of mag-
netic field to an electrically conducting fluid
gives rise to resistive force known as Lorentz
force which causes the fluid to decelerate. Fig-
ure 4 depicts that velocity increases on increas-
ing K because as the permeability parameter in-
creases, a decrease in the resistance of porous
medium is observed which speeds up the flow.

Fig. 2. Effects of β on f ′(η).

The effects of various physical parameters on
temperature profile θ(η) are presented in fig-
ures 5− 8. Figure 5 illustrates that the ther-
mal boundary layer thickness increases with in-
crease in Casson fluid parameter β.The effects
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Fig. 3. Effects of M on f ′(η).

Fig. 4. Effects of K on f ′(η).

Fig. 5. Effects of β on θ(η).

Fig. 6. Effects of M on θ(η).

of magnetic field parameter M on temperature
profile are increasing as shown in figure 6. The
influence of permeability parameter K on θ(η)
is depicted in figure 7. A decrease in temper-
ature profile is noticed with increase in perme-
ability parameter. Figure 8 illustrates that ther-
mal boundary layer thickness decreases with in-
crease in Prandtl number Pr. On the other hand,
figure 9 demonstrates that thermal radiation pa-

Fig. 7. Effects of K on θ(η).

Fig. 8. Effects of Pr on θ(η).

Fig. 9. Effects of Nr on θ(η).

Fig. 10. Effects of β on φ(η).

rameter Nr enhances fluid temperature.

In figure 10, the influence of Casson fluid pa-
rameter β on concentration profile φ(η) are
shown. An increase in concentration profile is
observed with increase in β. The concentration
boundary layer increases with magnetic field
parameter M and decreases with permeability
parameter K and Schmidt number Sc as shown
in figures 11, 12 and 13 respectively.
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Fig. 11. Effects of M on φ(η).

Fig. 12. Effects of Sc on φ(η).

Fig. 13. Effects of K on φ(η).

In order to validate our findings, we have tab-
ulated a comparison of values of − f ′′(0) with
those reported earlier [18] presented in Table 2 .
By keeping β = ∞ and K = ∞, we have found
that the values obtained in this study are in
good agreement with those reported earlier [18].

Table 2 A comparison of − f ′′(0) obtained by
the analytical method with the Cortell

studies [18] when we fixed K = ∞ & β = ∞

M
− f ′′(0)
Present

− f ′′(0)
[18]

0.0 1.00000 1.00000
0.2 1.09549 1.09545
0.5 1.22476 1.22475
1.0 1.41421 1.41421
1.2 1.48324 1.48324
1.5 1.58114 1.58114
2.0 1.732051 1.73205

Table 3 Effects of various parameters on
−(1+ 1

β
) f ′′(0) when h f = 0.35

β M K −(1+ 1
β
) f ′′(0)

0.5 1.0 0.5 3.46410
1.0 2.82843
1.5 2.58199
2.0 2.44949
0.5 0.5 0.5 3.24037

1.0 3.46410
1.5 3.67423
2.0 3.87298

0.5 1.0 0.5 3.46410
1.0 3.00000
1.5 2.82843
2.0 2.73861

Table 4 Effects of various parameters on
−θ′(0) when h f = 0.35,hθ = 0.45

β M K Pr Nr −θ′(0)
0.5 1.0 0.5 0.71 1.0 0.218459
1.0 0.188432
1.5 0.175448
2.0 0.168150
0.5 0.5 0.5 0.71 1.0 0.228523

1.0 0.218459
1.5 0.209624
2.0 0.201784

0.5 1.0 0.5 0.71 1.0 0.218459
1.0 0.240133
1.5 0.248948
2.0 0.253742

0.5 1.0 0.5 0.71 1.0 0.218459
1.0 0.289864
2.0 0.492932
3.0 0.655593

0.5 1.0 0.5 0.71 0.5 0.288460
1.0 0.218459
1.5 0.176120
2.0 0.147643

Table 3 presents the values of −(1 + 1
β
) f ′′(0)

for various values of Casson fluid parameter β,
Magnetic field parameter M and permeability
parameter K. The skin friction coefficient de-
creases with β and K and increases with M.
Table 4 shows that the local Nusselt number
−θ′(0) increases with permeability parameter
K and Prandtl number Pr and decreases with
Casson fluid parameter β, magnetic field param-
eter M and radiation parameter Nr. In Table
5 demonstrates the effects of pertinent param-
eters on local Sherwood number. It is seen that
−φ′(0) augments with permeability parameter
and Schmidt number Sc and decreases with Cas-

1521



M. Nazim Tufail et al. / JAFM, Vol. 9, No. 3, pp. 1515-1524, 2016.

Table 5 Effects of various parameters on −
φ′(0) when h f = 0.35,hφ = 0.45

β M K Sc −φ′(0)
0.5 1.0 0.5 0.71 0.429091
1.0 0.384405
1.5 0.363575
2.0 0.351450
0.5 0.5 0.5 0.71 0.443042

1.0 0.429092
1.5 0.416431
2.0 0.404862

0.5 0.5 0.5 0.71 0.429092
1.0 0.458545
1.5 0.469915
2.0 0.475961

0.5 0.5 0.5 0.71 0.429092
1.0 0.550535
2.0 0.877907
3.0 1.13143

son fluid parameter β, magnetic field parameter
M.

6. CONCLUSIONS

The boundary layer flow of a magnetohydrody-
namic, Casson fluid in a porous medium over a
stretching surface is studied. The symmetries
of the partial differential equations are found
and translational symmetries are used to reduce
the equations to non-linear ordinary differential
equations. Homotopy Analysis method is used
to solve the equations. Following observations
are found from the study:

• A decrease in momentum boundary layer
thickness is observed with increase in Casson
fluid parameter β and magnetic field parameter
M.

• An increase in fluid velocity is noticed with
increase in permeability parameter K.

• The thermal boundary layer thickness in-
creases with Casson fluid parameter β, magnetic
field parameter M and radiation parameter Nr.

• A decreasing effect is noticed on temperature
is noticed with increase in permeability param-
eter K and Prandtl number Pr.

• The concentration increases with Casson fluid
parameter β and magnetic field parameter M
and decreases with permeability parameter K
and Schmidt number Sc.

• Skin friction increases with magnetic field pa-
rameter M and decreases with Casson fluid pa-
rameter β and permeability parameter K.

• The permeability parameter K and Prandtl
number Pr has increasing effects on local Nus-
selt number and it decreases with Casson fluid
parameter β, magnetic field parameter M and
radiation parameter Nr.

• Local Sherwood number increase with M and
Sc and decrease with β and M.
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