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ABSTRACT 

The objective of present communication is to discuss the effect of mass convective condition on the peristaltic 
transport of viscous fluid in an asymmetric channel. Analysis has been carried out in the presence of Soret 
and Dufour effects. Comparative study of temperature and concentration fields in the presence and absence of 
convective conditions through heat and mass transfer is carefully examined. Numerical values of heat and 
mass transfer rates are computed and analyzed. 
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NOMENCLATURE 

width of the channel c speed of the peristaltic wave 

upper wall lower wall 

amplitude of the wave at  amplitude of the wave at  

wavelength of the peristaltic waves phase difference of the waves 

-component of the velocity -component of the velocity

time 
Subscripts derivative w.r.t the mentioned 

component 

density of the fluid dimensional pressure 

kinematic viscosity 
specific heat and constant 
pressure 

dimensional temperature thermal conductivity 

dimensional heat generation/absorption mass diffusivity 

thermal diffusion ratio mean fluid temperature 

concentration susceptibility dimensional concentration 
Lower case 
letters with 
overbar 
( ) 

quantities in the moving frame of 
reference ( ) 

Lower case 
letters without 
overbar 
( ) 

dimensionless quantities in the 
moving frame of reference ( ) 

Wave number dimensionless peristaltic walls 

channel width ratio amplitude ratio for upper wall 

amplitude ratio for lower wall reynolds number 

dimensionless temperature 
temperature at upper and lower 
walls respectively 

concentration at upper and lower walls dimensionless concentration 
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respectively 

 
dimensionless heat 
generation/absorption parameter  Brinkman number 

 Prandtl number Eckert number 

 Dufour number Schmidth number 

 Soret number stream function 

 
dimensional flow rate in the fixed 
frame  

dimensional flow rate in the 
moving frame 

 
dimensionless flow rate in the fixed 
frame  

dimensionless flow rate in the 
moving frame 

 time averaged mean flow rate  

wall heat transfer coefficients for 
upper and lower walls 
respectively 

 
wall mass transfer coefficients for 
upper and lower walls respectively  

heat transfer Biot numbers for the 
upper and lower walls 
respectively 

 
mass transfer Biot numbers for the 
upper and lower walls respectively 

  

 

1. INTRODUCTION 

There is growing interest of the recent 
investigators in the interaction of heat transfer 
with peristaltic motion. Such interest in fact 
stems because of relevance of such topic in 
physiology and industry. In particular the 
peristalsis through heat transfer is important in 
hemodialysis and oxygenation, cancer tumor 
treatment, tissue engineering, nuclear reactors, 
power generators and biomedical engineering. 
The simultaneous effects of heat and mass 
transfer are further important because oxygen and 
nutrients diffuse out of the blood vessels to the 
neighboring tissues. Although information on 
peristalsis with heat/mass transfer is quite 
sizeable but some recent contributions in this 
direction may be seen through the studies 
Mekheimer et al. (2008, 2010), Nadeem et al. 
(2009), Hayat et al. (2011, 2014, 2014a), Abbasi 
et al. 2014a, 2015b, Tripathi (2012) and Ali et al. 
(2010). In these preceding studies, the heat/mass 
transfer effects are not analyzed through 
convective wall conditions. Very few attempts 
have been recently made for the peristaltic flows 
with convective heat transfer conditions. The 
relevant works in this direction are by Abbasi et 
al. (2014b, 2015b, 2015c). 

The main interest here is to examine the peristaltic 
flow in an asymmetric channel with convective 
mass condition. Problem formulation is made in 
presence of Soret and Dufour effects. Long 
wavelength and low Reynolds number assumptions 
are employed. Attention is focused to the exact 
solutions of temperature and concentration fields in 
presence/absence of convective heat and mass 
transfer conditions. This paper is organized as 
follows. Section two consists of flow equations and 
boundary conditions. The solution expressions are 
presented in section three. Section four analyzes the 
impact of pertinent parameters. Main observations 
are included in section five. 

2. MATHEMATICAL ANALYSIS 

Consider the peristaltic waves traveling along the 
walls of an asymmetric channel of width 21 dd  . 

An incompressible viscous fluid fills the space 
inside the channel. We select coordinate system in 

such a manner that X -axis lies along the length of 

the channel and the Y -axis is taken normal to  X  -
axis. The peristaltic waves travel on the channel 

walls in the X  direction with speed c. The wall 
shapes are given as follows: 

,upper wall

   ,)(
2

cos),( 111 





  tcXadtXH



 

.lower wall 

  ,)(
2

cos),( 122 





  



tcXbdtXH
    (1) 

In above relations 1a  and 1b  are the amplitudes of 

the waves for upper and lower walls respectively, 
  is the wavelength and   is the phase difference 
of the waves. These waves are responsible for the 
disturbance in the channel. The equation of 
conservation of mass for two-dimensional 
incompressible flow is 

.0 YX VU                                                      (2) 

Here U  and V   are the longitudinal and 

transverse components of velocity. The scalar 
equations through momentum equation are 

1
Xt X Y X X Y YU UU V U P U U


           (3) 

 ,1
YYXXYYXt VVPVVVUV  


    (4) 
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where ,  ,P    and t  indicate the density, 

pressure, kinematic viscosity and time respectively. 
Subscripts denote the partial derivatives. Laws of 
energy and concentration yield  

   



 YYXXYXtp TT
K

TVTUTC  

   ,2
222

YYXX
s

T
XY

YX
CC

C

DK
VUVU 




 





 




(5)  

 
 .

YYXX
m

T

YYXXYXt

TT
T

DK

CCDCVCUC




                    (6) 

Here the second term on right side of Eq. (5) is the 
heat generation/absorption term, third term is due 
to consideration of viscous dissipation and the last 
term is due to Dufour effect. Further pC is the 

specific heat at constant pressure, T the 
temperature, K  the thermal conductivity of the 
fluid, D the mass diffusivity, TK the thermal 

diffusion ratio, sC  the concentration 

susceptibility, C  the concentration and mT  the 

fluid mean temperature. In order to transform our 
problem from the fixed frame (laboratory frame) 
to a frame of reference moving with the wave with 
speed  c  (wave frame) we use the following 
transformations: 

),,,(),( 

 ,   ,  ,  ,

tYXPyxp

VvcUuYytcXx




              (7) 

in which ,u  v and p  are the velocity components 

and pressure in wave frame ( yx, ). Considering the 

dimensionless quantities 

 
 

 
 

 
. ,

 ,, ,

 ,Pr , ,Pr ,

, , , ,Re  

, ,  , , , , 

  ,  ,  ,  ,  ,  ,

01

01

01

01

01

2

0

01

0

01

01

2
1

1

1

1

1

1

2

1

2
2

1

1
1

1

1

xy

ps

T
f

m

T

p

p

vu

TTCC

KCCD
D

D
Sc

CCT

TTDK
Sr

K

C

TTC

c
EEBr

KT

CC

CC

TT

TTtc
t

cd

c

pd
p

d

b
b

d

a
a

d

d
d

d

H
H

d

H
H

d

c

v
v

c

u
u

d

y
y

x
x




























































 

(8)  

and applying the long wavelength and low 
Reynolds number approximations we have 

,yyyxp                                                            (9) 

,0yp                                                                (10) 

    ,0Pr2   yyfyyyy DBr                 (11) 

,0
1

 yyyy Sr
Sc

                                            (12) 

where continuity equation is identically satisfied,  
  denotes the dynamic viscosity,   the stream 

function, Re  the Reynolds number, Br  the 
Brinkman number, E  the Eckret number, Pr  the 
Prandtl number,   the wave number,   

dimensionless concentration,   the dimensionless 
temperature, ,0T  0C  the temperature and 

concentration of the upper wall and  ,1T  1C  the 

temperature and concentration of the lower wall 
respectively. Equation (10) also indicates that  

).(ypp    

Taking iH  )2,1( i  as functions of X  and t , the 

dimensionless volume flow rate in laboratory frame 
is 

dYtYXUQ
H

H
),,(

1

2
                                         (13) 

and in wave frame we have 

,),(
1

2

dyyxuq
h

h                                                (14) 

in which ih  )2,1( i  are functions of x  alone. 

From Eqs. (8) (13) and (14) we can write 

).()( 21 xchxchqQ                                        (15) 

The time averaged flow over a period fT  is given 

by 

,
1

0
Qdt

T
Q

fT

f
                                                    (16) 

which implies that 

.21 cdcdqQ                                                  (17) 

Defining   and F as the dimensionless mean flows 
in laboratory and wave frames by 

,   
11 cd

q
F

cd

Q
                                                 (18) 

and using Eqs. (16) and (18) one has 

,1 dF                                                        (19) 

where 

.
1

2

dy
y

F
h

h 


                                                      (20) 

The convective boundary condition for the 
temperature is defined as follows: 

),( wTTl
Y

T
K 



  
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Fig. 1 (a)

� for Pr � 0.1, 0.2, 0.3, 0.4

� for Pr � 0.1, 0.2, 0.3, 0.4
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Fig. 1. Effects of fD  and Pr  on the temperature profile   and   when ,6.1  5.0a  , ,4.0b  

,5.0  ,2.1d  5.0Sc , 5.0Sr , 21 Bi  and .12 Bi  

 
in which K  is the thermal conductivity, l  is the 
wall heat transfer coefficient and wT  is the 

temperature of the wall. This condition includes in 
form of heat transfer coefficient l  the material 
properties of the wall into the problem of heat 
transfer. The asymmetry of channel demands to 
choose different heat transfer coefficients for the 
upper and lower walls, i.e. 1l  for the upper and 2l  

for the lower wall. We can also check the behavior 
of temperature when 21 ll  . Analogues to the heat 

transfer at the boundary we use the condition for the 
mass transfer 

).( wm CCk
Y

C
D 



  

Here mk  is the mass transfer coefficient. Such 

coefficient is used to describe the ratio between 
actual mass flux of a species into or out of the 
flowing fluid and the driving force that causes such 

flux and wC  the concentration at the wall. 

The dimensionless boundary conditions can be 
expressed as follows: 

,  

  ,0)1(  ,0)1(  ,1  ,
2

,   ,0  ,0  ,1  ,
2

2

22

111

hyat

MiBi
F

hyatMiBi
F

yyy

yyy


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





 
(21)  

where 

. and  , 

, )2cos()(  ,)2cos(1)(

12
2

11
1

12
2

11
1

21

D

dk
Mi

D

dk
Mi

K

dl
Bi

K

dl
Bi

xbdxhxaxh

mm 

 

(22)  

In above equations 1l  , 2,l  1,mk  and 2mk  are the 

dimensionless transfer coefficients, 2,1Bi   are heat 

transfer Biot-numbers and 2,1Mi  are the mass 

transfer Biot-numbers. 

3. SOLUTION EXPRESSIONS 

Now we consider the following two cases. 

Case I: With convective condition at the 
boundary 

The obtained closed form solutions for the 
temperature and concentration are given by 

     
    ,12

12

1

6
4

5
3

5
2

4321
2
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22112121
6

21

AyAyAyAyAAAhhFBr

hBiBihBiBiBiBihhA







 

     
 ,

12

1

18
7
11615131210

212121
6

21

AhAAAAA

MiMihhMiMihhA












 

Case II: Without convective condition at the 
boundary 

In this case the physical quantities are denoted by 
asterisk. The resulting problems here are 

,0
yyyy                                                           (23) 

    ,0Pr
2

   yyfyyyy DBr                   (24) 

,0
1

 
yyyy Sr

Sc
                                             (25) 

.       ,1  ,1   ,1     ,
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2

2

1

hyat
F

hyat
F

y

y
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






     (26) 

The solutions can be presented into the following 
forms: 

   
    
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Fig. 2. Effects of Sc  and Sr  on the temperature profile   and   when ,6.1  5.0a , 4.0b , 

,5.0  2.1d  ,  5.0Pr   , 5.0fD , 21 Bi  and 12 Bi  . 
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Fig. 3 (a)
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Fig. 3. Effect of   on the temperature profile   and   when ,6.1  5.0a , 4.0b , ,5.0Sc  

2.1d , ,5.0Pr   5.0fD  , 21 Bi  and .12 Bi  

 

Bi = 1.6

Bi = 1.2

Bi = 0.8

Bi = 0.4

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

3

4

5

6

7

y

�

 

Fig. 4. Effect of Bi  on the temperature profile   
when ,6.1  5.0a , 4.0b , ,5.0Sc  2.1d , 

,5.0Pr   ,5.0Sr  ,5.0  and 5.0fD  . 
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The values of sAi  and sBi  appearing in the 

solution expressions can be obtained by the usual 
computations. 

4. RESULTS AND DISCUSSION 

Our interest in this section is to analyze the 
behavior of influential parameters. Plots are 

presented and analyzed for ,  ,    and 
  . A 

comparative study in presence and absence of 
convective condition is made. Also the impact of 
Biot-numbers is examined. Two tables are given for 
the numerical values of transfer rates at the upper 
wall. 

Fig. 1 (a & b) are plotted for the variations of D f  

and Pr on   . It is found that temperature is large 

when compared to   Consideration  of  
convective boundary  condition  (for fixed values of  
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Fig. 5. Effect of fD  and Pr  on the concentration profile   and   when ,6.1  5.0a , ,4.0b  

,5.0  ,2.1d  ,5.0Sc  5.0Sr , 11 Mi  and .22 Mi  
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Fig. 6. Effect of Sr on the concentration profile   and   when ,6.1  5.0a  , ,4.0b  ,5.0  

,2.1d  ,5.0Sc  ,5.0Pr   11 Mi  and .22 Mi  
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Fig. 7. Effect of Mi  on the concentration profile 

  when ,6.1  5.0a , ,4.0b  ,5.0  

,2.1d  5.0Sc  and 5.0Sr  . 
 

1Bi   and  2Bi   ) does not affect the behavior of any 

parameter on the temperature. However the 
temperature increases in the Figs. 1-3. It is found 

that the temperature increases by increasing D ,f   

Pr, Sr, Sc and .  Fig. 4 showed that the 
temperature profile is decreasing function of heat 
transfer Biot number. 

Figs. 5-7 are plotted to analyze the behavior of 
concentration profile for different parameters. The 

dimensionless concentration profile is found to 

decrease with an increase in D ,f   Pr and Sr. Such 

decrease is large for the case of Sr when compared 

with D f  and Pr. The concentration field in 

presence of convective mass condition has been 
noted less than in its absence. 

Numerical values for the heat transfer rate at the 
upper wall are given in Table 1. It is found that heat 
transfer rate at the upper wall is increased with an 
increase in Dufour, Prandtl and Soret numbers. 
Values of     are relatively higher than the values 

of )(    at the boundary. It means that the transfer 
rate is higher when one takes into account the 
convective heat transfer at the boundary. Further, 
the heat transfer rate is an increasing function of 
heat transfer Biot number. 

Table 2 has been prepared for the concentration 
transfer rate at the upper wall. Such rate increases 

through an increase in D ,f   Pr and Sr. For Dufour 

number the value of   is greater than that of  

)(   , but when Pr and Sr are increased the value 

of   decreases by a small amount. It is also 
noticed that increasing the value of mass transfer 
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Biot-number decreases the transfer rate at the 
boundary. 

 
Table 1 Effects of various parameters on heat 

transfer rate at the upper wall 






 

16561.3

94905.2

76344.2

60257.2

75755.8

39025.6

36114.4

60257.2

16561.3

94905.2

76344.2

60257.2

)()(

55032.244

53621.233

51163.222

45817.2115.0

36818.30.2

12676.35.1

91983.20.1

74048.25.05.0

60235.90.2

96317.65.1

70102.40.1

74048.25.05.0

36818.30.2

12676.35.1

91983.20.1

74048.20.10.25.05.05.0

)(Pr 1121 hhBiBiSrDf 

 

 
Table 2 Effects of various parameters on mass 

transfer rate at the upper wall 






 

46472.2

59852.1

856059.0

212593.0

75134.1

15951.1

652234.0

212593.0

353351.0

299213.0

252809.0

212593.0

)()(

264842.044

27896.033

303532.022

356998.0115.0

12807.20.2

39979.15.1

775551.00.1

234542.05.05.0

52828.10.2

03069.15.1

60418.00.1

234542.05.05.0

352888.00.2

30737.05.1

268355.00.1

234542.0315.05.05.0

)(Pr 1121 hhMiMiSrDf 

 

 

5. CONCLUSIONS 

The peristaltic flow with convective conditions of 
heat and mass transfer is addressed. The main 
results can be summarized as follows: 

 There is enhancement of temperature in 
presence of convective heat transfer condition. 

 Effect of convective mass condition is to 
decrease a concentration field. 

 Heat transfer rate at the boundary is higher in 
presence of convective condition. 

 Heat transfer rate at the boundary increases 
with an increase in the heat transfer Biot 
number  Bi  . 

 The mass transfer rate at the boundary 
decreases by increasing  .Mi   
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