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ABSTRACT

A numerical study of particle motion in a cubic lid driven cavity is presented. As a computational
tool, a boundary element based flow solver with a Lagrangian particle tracking algorithm is derived.
Flow simulations were performed using an in-house boundary element based 3D viscous flow solver.
The Lagrangian particle tracking algorithm is capable of simulation of dilute suspensions of particles
in viscous flows taking into account gravity, buoyancy, drag, pressure gradient and added mass. The
derived algorithm is used to simulate particle behaviour in a cellular flow field and in a lid driven
cavity flow. Simulations of particle movement in a cellular flow field were used to validate the
algorithm. The main goal of the paper was to numerically simulate the flow behaviour of spheres of
different densities and different diameters, as experimentally observed in work of Tsorng et al.The
study of slightly buoyant and non-buoyant particles in a lid driven cavity was aimed at discovering
cases when particles leave the primary vortex and enter into secondary vortices, a phenomenon
described in the work of Tsorng et al. A parametric study of this phenomenon was preformed.
The presented computational results show excellent agreement with experiments, confirming the
accuracy of the developed computational method.

Keywords: Dispersed two phase flow; Lagrangian particle tracking; Cellular flow; Lid driven cavity;
Boundary element method.

NOMENCLATURE

~a particle acceleration
c boundary element shape parameter
dp particle diameter
~g gravitational acceleration
~n unit normal
~r particle position
Re Reynolds number
St particle Stokes number
t time
~u fluid velocity
u? fundamental solution

~ω fluid vorticity
~v particle velocity
ρ fluid density
ρp particle density
~vs particle settling velocity
~∇ gradient operator
~ϑ source point
Ω domain
∂Ω = Γ boundary of the domain
ν fluid kinematic viscosity
τp particle relaxation time

1. INTRODUCTION

Dispersed two phase flows are commonly en-
countered in environmental flows and engineer-
ing practice, especially in process engineering.
Environmental flows commonly include disper-
sion of solid or liquid particles in atmosphere
and solid, liquid and gas particles in hydro-
sphere. In process engineering, the main attrac-

tion of implementing dispersed multiphase flow
systems is in a large contact area between the
continuous and dispersed phase, thus increasing
the effective heat and mass transport between
particles and fluid. On the other hand, dis-
persed multiphase systems arise in pneumatic
and slurry transport systems, enabling effective
transportation of granular material inside a pro-
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cess system, as well as inside chemical reac-
tors, as for example in crystallization and ex-
traction processes (Crowe 1998). In the latter
case, mixing vessel with Rushton impellers is
a frequently encountered process equipment. A
simplification of such a system is a driven cavity
flow in a cubic cavity. Existence of recirculation
areas in corners of the cavity can effect the qual-
ity of the product, as these areas posses char-
acteristics of low heat and mass transfer. It is
therefore an important question, when and how
do particles of various sizes and densities enter
these areas.

In order to accurately describe hydrodynamics
of such flows, forming the basis for descrip-
tion of heat and mass transfer between the dis-
persed and continuous phase, one has several
options, see for example van Wachem and Alm-
stedt (2003) or Mendez (2011). The options,
that are linked to CFD resolution of continu-
ous phase and are computationally affordable
for engineering community, are:

• The first relies on assumption, that the sys-
tem can be described as quasi homoge-
neous with suitably chosen material prop-
erties, e.g. average density, effective vis-
cosity, thermal conductivity and mass dif-
fusion. The resulting system of equations
is easy to solve by means of standard (sin-
gle phase) CFD tools, however, the results
are rarely very accurate. An example is
the work of Necker et al. (2002), where a
sedimentation velocity approach was cou-
pled with an additional transport equation
for dispersed phase concentration.

• The second relies on assumption, that the
dispersed phase can be modelled as a con-
tinuous phase, with some artificial phys-
ical properties (e.g. solid phase viscos-
ity). Again, the standard single phase tools
can be used, this time for each phase sep-
arately, and interaction between the phases
additionally has to be modelled. Typical
examples include Euler-Euler simulations,
see Sachdev et al. (2007). In this case,
a detailed study of particle movement is
not possible, since the particles are sim-
ulated as a continuous phase. Volume of
fluid method is also an example of Eulerian
two-phase flow simulation tool. Razmi
et al. (2009) have considered unsteady
two-phase finite volume method with vol-
ume of fluid) model to study settling tanks.

• The third option relies on simulation of
dispersed phase as a numerical tracking of

particles in the moving fluid. The compu-
tationally most affordable approach is de-
scription of a particle as a rigid sphere, that
interacts with fluid phase, and also occu-
pies the same volume as fluid. The con-
tinuous phase is computed by means of
a standard CFD approach. The so called
Lagrangian particle tracking has a supe-
rior spatial accuracy, and allows differ-
ent phenomena to be accurately modelled
and computed, e.g. heat and mass trans-
fer from the particles, accurate incorpora-
tion of drag and lift forces. Works include
the finite difference, finite element and fi-
nite volume based algorithms (Patankar
and Joseph 2001; Tamayol, Firoozabadi,
and Ahmadi 2008).

Physically more realistic models also exist, such
as where particles do not occupy the same vol-
ume as fluid. These approaches are computa-
tionally demanding and are not considered in
the present work. Instead, in the present work,
the third option is implemented. As a starting
point, the earlier work by Ravnik et. al (2008)
was chosen, where a BEM-FEM algorithm for
a 2D flow simulation was coupled by explicit
Lagrangian particle tracking algorithm, but the
interaction between particles and the fluid was
modelled by simple sedimentation velocity ap-
proach. In order to realistically capture the par-
ticle response to fluid flow structures, full one-
way coupling was implemented in the present
work. The particles move due to the action of
gravity, buoyancy, drag, pressure gradient and
added mass forces in a 3D flow field. Since nu-
merical simulation of dilute suspensions is the
main target of this work, the coupling between
the two phases is a one-way action of fluid on
to particle. One of the main challenges in nu-
merical simulation of the described flows is also
a capability to accurately predict flows of parti-
cles with densities, that are very close to density
of the fluid phase.

Maxey (1987) studied the motion of small
spherical particles in a cellular flow field, exam-
ining the behaviour of particles having a wide
range of densities. The work of Maxey was cho-
sen to serve as a benchmark for testing the ac-
curacy of the developed particle tracking algo-
rithm. As a second example the particle move-
ment in a lid driven cavity flow is selected.
The case was experimentally studied by Tsorng
et al. (2008) and offers an excellent combina-
tion of a standard benchmark test case for fluid
flow with praxis relevant study of particle move-
ment in the flow. The practical aspects refer to
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flow in various mixing devices.

The paper is organized as follows. First, a short
description of the approximation boundary el-
ement method (BEM) for the solution of fluid
flow field is given and flow simulations are pre-
sented. This is followed by an extensive de-
scription of the Lagrangian particle simulation
method. The Lagrangian solver is validated on
the test case of particle movement in a prede-
fined cellular flow. The main part of the paper is
devoted to numerical simulations of movement
of particles of various sizes and densities in the
lid driven cavity flow. The paper concludes
with the analysis of entrainment of particles into
secondary vortices, formed in lid driven cavity
flows.

2. SIMULATION OF FLUID FLOW

Laminar viscous flow was simulated using an
in-house code based on Ravnik et al. (2008).
The code solves the velocity-vorticity formu-
lation of Navier-Stokes equations using the
boundary-domain integral method. A combi-
nation of sub-domain and single domain tech-
nique is used. Incompressible viscous New-
tonian fluid with constant material properties
is considered. In velocity-vorticity formulation
vorticity ~ω is defined as the curl of the veloc-
ity~ω =~∇×~u. Both velocity and vorticity fields
are divergence free. The viscous fluid flow is
governed by the kinematics equation

∇
2~u+~∇×~ω = 0, (1)

which links the velocity and vorticity fields
for every point in space and time. The ki-
netic aspect of fluid movement is governed by
the vorticity transport equation, written in non-
dimensional form:

∂~ω

∂t
+(~u ·~∇)~ω = (~ω ·~∇)~u+

1
Re

∇
2~ω, (2)

with the Reynolds number denoted by Re.
Equation (2) equates the advective vorticity
transport on the left hand side with the vortex
twisting and stretching term and the diffusion
term on the right hand side.

The system of equations (1) and (2) is solved
in a nonlinear loop of three steps. In the first
step, boundary vorticity values are calculated by
solving the kinematics equation by single do-
main BEM. The second step is the calculation
of domain velocity values by solving the kine-
matics equation by subdomain BEM and the
final step is the solution of vorticity transport
equation for domain vorticity values using the

boundary values from the solution of the kine-
matics equation by subdomain BEM.

The boundary condition required to obtain the
solution is the prescribed velocity on the bound-
ary. The unknown boundary conditions for the
vorticity transport equation are calculated as a
part of the algorithm using single domain BEM.

2.1 Integral Form of Governing Equations

2.11 The kinematics equation

In the subdomain BEM approach the whole do-
main Ω is divided into subdomains Ωi, where
∑Ωi = Ω. The boundary of each subdomain
is denoted by ∂Ωi. The integral form of the
kinematics equation without derivatives of the
velocity and vorticity fields takes the following
form:

c(~ϑ)~u(~ϑ)+
∫

∂Ωi

~u~∇u? ·~ndΓ =∫
∂Ωi

~u× (~n×~∇)u?dΓ+
∫

Ωi

(~ω×~∇u?)dΩ, (3)

where ~r is the location point, ~ϑ is the source
or collocation point, ~n is the unit normal to the
boundary and u? = 1/4π|~ϑ−~r| is the funda-
mental solution of the Laplace operator. c(~ϑ)
is the geometric factor defined as c(~ϑ) = α/4π,
where α is the inner angle with origin in~ϑ. So-
lution of this equation is used in the second step
of the algorithm to obtain domain velocity val-
ues.

2.12 The vorticity transport equation

The solution of the vorticity transport equation
yields the flow vorticity as a part of the solution,
which is an advantage when tracking particle in
vorticity dominated flows, as the need for nu-
merical differentiation is omitted.

The integral form of the steady vorticity trans-
port equation (2) may be written for the jth com-
ponent of the vorticity vector as:

c(~ϑ)ω j(~ϑ)+
∫

∂Ωi

ω j~∇u∗ ·~ndΓ =∫
∂Ωi

u∗q jdΓ+Re
∫

∂Ωi

~n ·
{

u∗(~vω j−~ωu j)
}

dΓ

−Re
∫

Ωi

(~uω j−~ωu j) ·~∇u∗dΩ, (4)

where ω j is the j-th component of the veloc-
ity vector and ~q is the vorticity flux vector q j =

~n ·~∇ω j. Solution of the vorticity transport equa-
tions yields domain vorticity values in the final
step of the algorithm.
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Fig. 1. Node locations in a hexahedral
element for quadratic interpolation of

function (right) and linear interpolation of
flux (left). The same locations are used for
source points, when assembling the system

of linear equations.

The field functions and fluxes as well as the
products of velocity and vorticity field com-
ponents are interpolated within hexahedral el-
ements using shape functions (Figure 1).

In order to set up a system of equations the
source point is set in all function and flux nodes
of all mesh elements. Each element is treated as
an individual subdomain, thus a sparse system
of equations is obtained. Compatibility bound-
ary conditions are employed between subdo-
mains. The sparse system of equations is solved
using least squares based iterative solver (Paige
and Saunders 1982).

2.13 The kinematics equation for boundary
vorticity

In order to use the kinematics equation to obtain
boundary vorticity values, we rewrite the equa-
tion (3) into a tangential form by multiplying
the system with a normal in the source point:

c(~ϑ)~n(~ϑ)×~u(~ϑ)+~n(~ϑ)×
∫

∂Ω

~u~∇u? ·~ndΓ =

~n(~ϑ)×
∫

∂Ω

~u× (~n×~∇)u?dΓ+

~n(~ϑ)×
∫

Ω

(~ω×~∇u?)dΩ. (5)

This approach has been proposed by Škerget
and used in 2D by Škerget et al. (2003).

The source point is set in all nodes on the ex-
terior boundary of the domain. This leads to a
system of linear equations for boundary vortic-
ity values. The solution of this system is com-
puted in each iteration of the nonlinear solution
process until convergence is achieved. Since the
system matrix remains unchanged through the
whole nonlinear solution procedure, i.e. it does
not depend on the flow variables, we perform
the LU decomposition on the system matrix be-

fore the start of the nonlinear loop. Then, in
each iteration of the nonlinear loop, the stored
LU decomposition is used to obtain the bound-
ary vorticity values.

2.2 Flow in a Lid Driven Cavity

In the lid driven cavity, the moving top lid in-
duces a large primary vortex in the centre of
a cubical enclosure. The size of the vortex in-
creases with Reynolds number. Secondary vor-
tices appear in the corners of the cavity, their
position and strength changing with Reynolds
number. Figure 2 shows the boundary condi-
tions of the lid driven cavity graphically. The
Reynolds number for this case is defined with
the length of cavity’s edge L and the top wall ve-
locity u0. The particle experiments preformed
by Tsorng et al. (2008) were done at Re = 130,
Re = 470 and Re = 860, thus we simulated the
flow at these conditions.

Fig. 2. Geometry and boundary conditions
of the lid driven cavity test case. The top

wall is moving, the fluid does not slip on any
wall.

In Ravnik et al. (2009) we reported that a 333

mesh with nodes concentrated towards the cor-
ners, is sufficient for simulation of lid driven
cavity flow up to Re = 1000. Thus, we decided
to use the 333 mesh to simulate all flow fields.

To visualize the flow fields, we present isosur-
faces of the velocity field in Figure 3. As the
Reynolds number increases the size of the pri-
mary vortex in the cavity also increases. At
Re = 860 it fills up almost the entire cavity,
keeping secondary vortices in lower corners.
The absolute vorticity value plots on the iso-
surfaces of velocity show regions of high vor-
ticity values, where particles experience consid-
erable rotational influences from the fluid side,
as established in experiments of Tsorng et al.
(2008).

Additionally, Figure 4 shows velocity profiles
through the centrelines of the cavity. We ob-
serve that along with the increase of the pri-
mary vortex with Reynolds number, the veloci-
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Fig. 3. Isosurfaces of velocity |~u|= 0.14 contoured with absolute value of vorticity |~ω|. Top left
Re = 130, top right Re = 470 and bottom Re = 860. Moving lid direction is shown with an

arrow.

Fig. 4. Velocity profiles through the y = 0.5 plane in the lid driven cavity test case. Left
Re = 130, middle Re = 470 and right Re = 860.

ties, throughout the cavity are increased as well.

3. LAGRANGIAN PARTICLE TRACK-
ING

The flow simulation algorithm was coupled
with Lagrangian tracking. The equation of par-
ticle motion is given by

d2~r′

dt ′2
=~a′(~v′,~u′), (6)

where~r′ is the location of the particle and ~a′ is
its acceleration, which depends on the particle
velocity~v′ and on the fluid velocity~u′.

The importance of the forces acting on particles
in laminar and turbulent flow, which contribute
to its acceleration, is a topic of recent discus-
sions. Armenio and Fiorotto (2001), for exam-
ple, analysed the importance of forces acting on
a particle for different particle over fluid density
ratios. We considered the equation for particle
acceleration as was given by Maxey and Riley
(1983):

d~v′

dt ′
=~g− ρ

ρp
~g+

~u′−~v′

τp
+

ρ

ρp

D~u′

Dt ′
+

ρ

2ρp

(
d~u′

dt ′
− d~v′

dt ′

)
,(7)

where d/dt ′ = ∂/∂t ′ + (~v′ · ~∇) and D/Dt ′ =
∂/∂t ′+(~u′ ·~∇). ρ is the fluid density. ρp,dp,τp
are the particle density, particle diameter and
τp = ρpd2

p/ρ18ν is the particle relaxation time,
where ν is the fluid viscosity. The terms on the
right hand side of equation (7) represent grav-
ity, buoyancy, drag, pressure gradient term and
added mass. The equation is rewritten in non-
dimensional form with u0 and L being char-
acteristic fluid velocity scale and characteris-
tic problem length scale, yielding ~u = ~u′/u0,
~v =~v′/u0, t = t ′u0/L:

~a=
d~v
dt

=
A
St
{~vs +~u−~v}+ 3

2
R

∂~u
∂t

+R{(~u+ 1
2
~v) ·~∇}~u,(8)

where the Stokes number is defined as

St =
ρpd2

pu0

ρ18νL
, (9)

the settling velocity is

~vs =
d2

p

18νu0

(
ρp

ρ
−1
)
~g (10)

parameters R and A are

R =
ρ

ρp +
1
2 ρ

, A =
ρp

ρp +
1
2 ρ

. (11)
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In the case of very light particles (ρp� ρ, bub-
ble limit) the parameters R and A tend to R→ 2,
A→ 0. In the aerosol limit (ρp� ρ), the param-
eters are R→ 0, A→ 1, rendering the pressure
gradient and added mass terms negligible. For
fluid particles (ρp = ρ), we have R = A = 2/3.

With the acceleration of the particle given in
equation (8) we may solve the particle equa-
tion of motion (6) by employing the 4th order
Runge-Kutta method (Press et al. 1997).We in-
tegrate the following six equations simultane-
ously:

dx
dt

= vx,
dvx

dt
= ax,

dy
dt

= vy,

dvy

dt
= ay

dz
dt

= vz,
dvz

dt
= az. (12)

The unknowns are the particle location x,y,z
and particle velocity vx,vy,vz. The initial par-
ticle location and velocity must be known. We
require a subroutine calculating the right hand
sides of the six equations. In order to calculate
the acceleration on the right hand side, the ve-
locity of the fluid~u at the location of the particle
is needed.

Flow simulations were performed on a mesh
consisting of hexahedral elements. The first
task to be performed in order to find the ve-
locity of the fluid at the location of the particle
is to find the mesh element in which the parti-
cle resides. This problem has been considered
by Zhou and Leschziner (1999) as well as by
Cheng et al. (1996). We used the technique
proposed by Marchioli et al. (2007). We calcu-
late outward pointing normal of each face of the
mesh element. Then, we calculate dot product
between the normal and vector connecting the
element face and the particle location; ~r ·~n. If
dot products for all element faces are negative,
then the particle is located in the element. See
Fig. 4.

To avoid searching through the whole grid, the
algorithm examines the mesh element in which
the particle was located in the previous time
step, secondly examines elements neighbouring
this element and finally loops through all ele-
ments. When using adequate time steps, loop-
ing through all elements is necessary only in
the case when particle leaves the computational
domain. The proposed method works only for
convex elements.

The next step is to interpolate the fluid veloc-
ity, which is known in the element’s nodes, to
the location of the particle. The solution of this
problem in 2D was given in Ravnik et. al (2008)

Fig. 5. A 2D representation of a hexahedral
mesh element. Element face normals~n and

particle position vector~r are shown.

and for 3D curvilinear grids by Marchioli et al.
(2007). We extended the algorithm proposed in
Ravnik et. al (2008) to three dimensions.

Consider single element in a mesh made out
of arbitrary six sided parallelepipedial elements
and its counterpart in the local coordinate sys-
tem (Fig. 6).

Fig. 6. A 3D representation of a hexahedral
mesh element and its counterpart in the

local coordinate system.

A point inside the element (x,y,z) may
be written in local coordinate sys-
tem (ξ,η,ζ) by using shape functions
Φi(ξ,η,ζ) = f (1,ξ,η,ζ,ξη,ξζ,ηζ) as

x(ξ,η,ζ) =
8

∑
i=1

Φi(ξ,η,ζ)xi, (13)

y(ξ,η,ζ) =
8

∑
i=1

Φi(ξ,η,ζ)yi, (14)

z(ξ,η,ζ) =
8

∑
i=1

Φi(ξ,η,ζ)zi. (15)

We are interested in exactly the inverse transfor-
mation; based on a known location (x,y,z) find
the coordinates (ξ,η,ζ) in the local coordinate
system. When (ξ,η,ζ) are known, we can inter-
polate any field function, which was the result
of a CFD simulation, to the location (x,y,z).
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Analytical solution for (ξ,η,ζ) given (x,y,z) for
the above system of equations can not be found.
The problem is solved numerically with the
Newton-Raphson method (Press et al. 1997).
The method uses first order Taylor expansion to
write a linear system of equations for correc-
tions of each unknown variable. Iteratively, the
initial guesses for (ξ,η,ζ) are advanced towards
the correct values. About a hundred iterations
are needed to converge the solution to accuracy
of 10−6. This part of the particle tracking algo-
rithm requires most CPU time.

The particle tracking algorithm can be summa-
rized in the following points.

• Before simulation, pre-process mesh con-
nectivity to make lists of neighbours for
each mesh element. This greatly speeds up
finding of the mesh element within which
the particle is located.

• Use the element face normal times parti-
cle location dot product to find the mesh
element within which the particle is lo-
cated. Remember the particle’s element of
the previous time step. Check it and its
neighbours first.

• Use the Newton-Raphson method to deter-
mine the velocity of the fluid at the location
of the particle.

• Use the fourth order Runge-Kutta method
to advance the particle location and veloc-
ity through time.

The derived algorithm has been used by Ravnik
and Hriberšek (2013) and Ravnik et al. (2014)
to simulate particle behaviour under the influ-
ence of magnetic forces.

4. CODE VALIDATION

4.1 Particle Tracking

Maxey (1987) studied the motion of small
spherical particles in a cellular flow field. The
study revealed the possibility that the parti-
cles remain suspended indefinitely in the flow
field, a phenomenon which was observed while
studying plankton movement. The problem was
revisited recently by Marchioli et al. (2007),
who provided additional results. Thus, particle
movement patterns for the whole range of den-
sity ratios and Stokes numbers are available.

In order to validate our code, we repeated the
experiment. The domain is given by Ω =

[0,1]× [0,1] and the flow field is

~u =

 sin2πxcos2πz
0

cos2πxsin2πz

 ,

~ω =

 0
4πsin2πxsin2πz

0

 , (16)

while gravity acts in negative z direction; ~g =
(0,0,−9.81m/s). The flow field is shown in
Figure 7. Since our code is 3D, we made the
mesh only 1 element deep. The flow field is pe-
riodic, thus particles exiting the domain on one
side are put back into the domain on the op-
posite side. In order to properly test the code,
we used the analytical equation (16) to calcu-
late velocities in nodes of a uniform 25×1×25
element mesh. The total number of nodes was
7803. The fluid velocity at the location of the
particle was, during tracking, interpolated using
the technique described in section 3. and was
not calculated analytically using equation (16).

For a vapour bubble, Maxey (1987) introduced
two more nondimensional parameters: the rise
velocity Q = −vz

s/(1/R− 3/2) and the inertia
parameter B = 2 A

St /R.

Fig. 7. Cellular flow field. Velocity vectors
and vorticity contours are shown. Red
colour indicates anticlockwise rotating

vortices, blue colour indicates clockwise
rotating vortices.

First we consider the bubble limit, i.e. parti-
cle density is much less than the fluid density
ρp � ρ f . The following parameters were cho-
sen for simulation: A/St = 10, R = 2, vz

s = 0.8,
Q = 0.8, B = 10. A thousand particles were
inserted into the flow field at random locations
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and were given the velocity equal to the veloc-
ity of the fluid at that location. We let the sim-
ulation run and discovered, that all of the par-
ticles are trapped and converge to equilibrium
locations in the flow field. Particle collisions
were not considered, thus all particles end up at
the same locations after a long time. Figure 8
shows the flow field with particles at the start of
the simulation and at two later times.

If we increase the settling velocity to vz
s = 1.25

and keep all other parameters the same, we ob-
serve (Figure 9) that the particles are now able
to escape the vortices and move upwards on
trajectories only partially affected by the flow
field.

Next, we increased the particle density to one
half of the fluid density. When studying particle
movement in the transition range between the
bubble limit and the aerosol limit (0.4 < R <
2), it is appropriate to assign a fixed value to Q
and B while R is varied. Thus in order to keep
B and Q fixed, the parameters are: ρp = 1

2 ρ f ,
A/St = 5, R = 1, vz

s = 0.625, B = 10, Q = 1.25.
The results in Figure 10 show that in this case,
some particles are captured within the vortices,
while others manage to circumvent the vortices.

Increasing the particles density even further, we
simulated particles with density ρp = 0.928ρ f .
The results in Figure 11 show that most of the
particles are captured near to the centre of the
vortices and only some are able to circumvent
the vortices.

Next, we set the particle density to be a little
larger than the fluid density (ρp = 1.1666ρ f ).
The settling velocity changes sign, the particles
move downwards. This slight change of density
causes the particles to be thrown out of vortices
instead of being captured by vortices as in the
ρp = 0.928ρ f case. Flow field and particle lo-
cations are shown in Figure 12. The transition
occurs when parameter R becomes smaller than
R < 2/3.

The behaviour of particles and the conclusions
of our analysis are equivalent to the findings of
Maxey (1987) and Marchioli et al. (2007), thus
validating our particle tracking algorithm.

5. PARTICLE TRACKING IN A LID
DRIVEN CAVITY

Study of behaviour of particles in lid driven cav-
ity flows a topic of recent research. Kosinski
et al. Kosinski et al. (2009) numerically stud-
ied behaviour of dust clouds taking into account
particle-particle interactions and two-way cou-
pling. Tsorng et al. (2008) studied behaviour

of macroscopic rigid particles suspended in a
fully three-dimensional lid driven cavity flow
field. They used 2D PIV experimental tech-
nique to examine the particle motion. Our aim
was to repeat and extend these experiments us-
ing the developed numerical technique. Tsorng
et al. (2008) reported most of their findings at
Re = 470 and some at Re = 130 and Re = 860.
We chose the same Reynolds numbers for our
numerical experiments. We used micro par-
ticles to visualize the flow fields. Motion of
slightly buoyant and non-buoyant macro parti-
cles was investigated next. The particle diame-
ter was varied in order to investigate, if the par-
ticles are able to enter into secondary vortices.

Particle boundary condition on the walls of the
cavity was implemented as an elastic collision.
A particle which is, after a time step, found out-
side of the problem domain, is mirrored back
inside into the domain. Its velocity is also mir-
rored across a plane tangential to the wall.

5.1 Micro Particles

If one considers particles with very small di-
ameter having density equal to the density of
the fluid, the resulting Stokes number is very
low. Particles respond to the changes of the
flow field very quickly and manage to follow the
fluid streamlines very closely.

Micro particles were simulated in a L = 10cm
square cavity, which was filled with fluid with
density ρ = 1500kg/m3 and viscosity ν =
37.2mm2/s. Particle diameter was dp = 10µm
and its density was equal to the fluid density;
ρp = ρ = 1500kg/m3. The chosen fluid to par-
ticle density ratio gives, according to equation
(11), the following values for parameters A =
R = 2/3 as well as renders the settling velocity
zero; vs = 0. The lid driving velocity u0 was
chosen in such manner that the flow Reynolds
number values Re = Lu0/ν reached the values
of 130, 470, and 860. Table 1 lists the lid ve-
locities and Stokes numbers for the three cases

Table 1 Parameters used for Lagrangian
particle tracking in lid driven cavity - case of

micro particles. Fluid properties:
ρ = 1500kg/m3, ν = 37.2mm2/s; particle
data: dp = 10µm, ρp = 1500kg/m3; cavity

size L = 10cm; equation of motion (??)
parameters: A = R = 2/3, vs = 0

case Re u0[mm/s] St
g) 130 48.36 0.7 ·10−7

h) 470 174.84 2.6 ·10−7

i) 860 319.92 4.8 ·10−7
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Fig. 8. Simulation of bubbles in a cellular flow field; ρp� ρ f , A/St = 10, R = 2, vz
s = 0.8,

Q = 0.8, B = 10. Particle positions are shown at the beginning of the simulation (left) and at
two later times.

Fig. 9. Simulation of bubbles in a cellular flow field; ρp� ρ f , A/St = 10, R = 2, vz
s = 1.25,

B = 10, Q = 1.25.

Fig. 10. Simulation of light particles in a cellular flow field; ρp =
1
2 ρ f , A/St = 5, R = 1,

vz
s = 0.625, B = 10, Q = 1.25.
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Fig. 11. Simulation of light particles in a cellular flow field; ρp = 0.928ρ f , A/St = 3.5, R = 0.7,
vz

s = 0.0892, B = 10, Q = 1.25.

Fig. 12. Simulation of slightly heavy particles in a cellular flow field; ρp = 1.1666ρ f , A/St = 3,
R = 0.6, vz

s =−0.20833, B = 10, Q = 1.25.

considered.

The results show that, as expected, the mi-
cro particles indeed follow the flow streamlines
closely. Since the flow field is resolved in terms
of velocity and vorticity fields, the streamlines
field has to be computed as a post processing
task. Flow streamlines were calculated by inte-
grating the velocity flow field using the Tecplot
visualisation software. Comparison of micro
particle paths and flow streamlines presented in
Figure 13 reveals particles movement along the
streamline, starting in the primary vortex and
heading into the secondary vortex in the lower
part of the cavity. The particle was released into
the flow at (0.5,0.5,0.45) having the velocity of
the fluid at that location.

5.2 Macro Particles

We consider macroscopic particles with diam-
eter dp = 3mm in a L = 10cm lid driven cavity.
The particles density was ρp = 1210kg/m3. The
particles were inserted into two fluids. The den-
sity of the first fluid was ρ = 1210.605kg/m3

making the particles slightly buoyant. The den-
sity of the second fluid was ρ = 1209.153kg/m3

making the particles non-buoyant with a small
settling velocity. Flow Reynolds numbers Re =

130, Re = 470 and Re = 860 were considered.
Lists of Stokes numbers and lid driving veloc-
ities are given in Tables 2and 3.The simulation
parameters were chosen such that the particle
Stokes numbers are equal for both - buoyant and
non-buoyant cases.

The comparison of macro particle paths and
flow streamlines shows for both buoyant and
non-buoyant case that for a certain time the par-
ticle follows flow streamline. After that, due to
the reasonably large Stokes number, the parti-
cle path deviates from the streamline, which af-
ter a long time results in a particle trajectory,
which has no correlation with the flow stream-
line. Figure 13 confirms this findings by com-
paring flow streamline and a trajectory of a sin-
gle particle, which was released into the flow
at (0.5,0.5,0.45). Initially the particle velocity
was set to be equal to the flow velocity.

Examination of the flow field shows, that they
are symmetrical across the y = 0.5 plane for the
Reynolds numbers considered in this paper. In
order to examine how the macro particles be-
have in the vortical structure of the flow field,
we inserted a single particle at (0.5,0.4,0.45).
Figure 14 shows the trajectory for the non-
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Fig. 13. Comparison of particle paths and flow streamlines in a lid driven cavity. The
particles were released into the flow at (0.5,0.5,0.45) having the velocity of the fluid at that

location. Results in the top row Re = 470 and in the bottom row Re = 860. From left to right:
micro particles, buoyant macro particles and non-buoyant macro particles.

buoyant case and Figure 15 shows trajectories
for the buoyant case. We notice, common to all
Reynolds number considered, that the particle
trajectory remains in the large central primary
vortex and does not reach secondary vortices in
the corners of the cavity. The primary vortex
is small in the case of Re = 130, thus accord-
ingly, the particle remains mostly in the central
upper half of the cavity. As the primary vortex
grows in size when the Reynolds number is in-
creased, the particle is able to penetrate all parts
of the cavity except the secondary vortices in
the lower corners. Symmetry of the flow field is
confirmed by the fact that none of the particles
is able to cross the plane at y = 0.5 and remains
on one side of the cavity at all times.

5.3 Particles in Secondary Corners

Tsorng et al. (2008) examined the reasons for
the fact that the macro (dp = 3mm) particles re-
main entrained in the primary vortex and do not
enter the secondary corner vortices. They ar-
gued that the particle size (i.e. diameter) is the
crucial factor for this behaviour considering the
chosen particle and fluid densities. By examin-
ing the flow field, they observed that only a nar-
row streamline corridor close to the top (z = 1)
and right walls (x = 1) lead to the secondary
vortices. They concluded that the 3mm parti-

cles were too large to enter this corridor and
thus do not enter the secondary corner vortices.
Their findings are verified by careful experi-
mental work, whereas they only used a CFD ap-
proach for simulation of micro (fluid) particles
paths, which were identical to fluid streamlines.

In order to complete the comparison, we exam-
ined the remaining situations using previously
described and verified numerical algorithm for
flow simulation and particles tracking. We in-
serted 1000 particles into flow fields. Initially,
particles were randomly distributed within a
cube in the centre of the cavity (0.3 < x,y,z <
0.7). Particle diameter was varied between
0.3mm and 2mm, since we have already con-
firmed in previous section, that 3mm particles
do not enter the secondary vortices.

We considered two secondary vortices. The
right secondary vortex is considered to be in
the bottom right region of the cavity, i.e. where
x≈ 1 and z≈ 0, while the left secondary vortex
is in the bottom left part of the cavity, i.e. where
x≈ 0 and z≈ 0. Locations of secondary vortices
are schematically shown in Figure 2. Results of
entrainment of particles into secondary vortices
are shown in Table 4 and described below.

At Re = 130 we observed that regardless of the
diameter size, none of the buoyant particles en-
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Fig. 14. Trajectory of a non-buoyant macro particle released into the flow at (0.5,0.4,0.45)
for Re = 130 (top), Re = 470 (middle) and Re = 860 (bottom). Table 5.3 provides all

parameters of the simulation

Table 2 Parameters used for Lagrangian
particle tracking in lid driven cavity - case of

non-buoyant macro particles. Fluid
properties: ρ = 1209.153kg/m3,

ν = 17.3mm2/s; particle data: dp = 3mm,
ρp = 1210kg/m3; cavity size L = 10cm;

equation of motion (8) parameters:
A = 0.666822259, R = 0.666355483,

vs =−0.19mm/s
case Re u0[mm/s] St
d) 130 22.49 6.50 ·10−3

e) 470 81.31 23.51 ·10−3

f) 860 148.78 43.03 ·10−3

Table 3 Parameters used for Lagrangian
particle tracking in lid driven cavity - case of

slightly buoyant macro particles. Fluid
properties: ρ = 1210.6053kg/m3,

ν = 37.2mm2/s; particle data: dp = 3mm,
ρp = 1210kg/m3; cavity size L = 10cm;

equation of motion (8) parameters:
A = 0.666555519, R = 0.666888963,

vs = 0.0659mm/s
case Re u0[mm/s] St
a) 130 48.36 6.49 ·10−3

b) 470 174.84 23.49 ·10−3

c) 860 319.92 42.97 ·10−3
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Fig. 15. Trajectory of a buoyant macro particle released into the flow at (0.5,0.4,0.45) for
Re = 130 (top), Re = 470 (middle) and Re = 860 (bottom). Table 5.3 provides all parameters of

the simulation.

ter the secondary vortices. Particles with a small
diameter can be found throughout the primary
vortex. Particles with a larger diameter move
closer to the vortex core, but none actually enter
the core (Figure 16).

Non-buoyant particles at Re = 130 with diam-
eters less than dp ≤ 0.5mm do not enter the sec-
ondary vortices. Most of the particles remain
entrapped in the primary vortex, while some set-
tle on the ground of the cavity. Particles with
larger diameters enter the left secondary vortex,
but they are not entrapped within. The larger
the particle diameter, the more particles settle
on the ground. None of the particles are able to
enter the right secondary vortex.

Buoyant particles at Re = 470 with small di-
ameter dp ≤ 0.75mm enter the secondary vor-
tices. Most of them enter the right vortex around
the central plane. An interesting phenomenon

occurs with dp = 1mm particles. Although they
do not enter the core of the right secondary vor-
tex around the central y = 0.5 plane, they are
sucked into the right corners of the cavity. Cav-
ity with particle positions demonstrating this ef-
fect is shown in Figure 17. Particles with diam-
eters dp = 1.25mm and dp = 1.5mm enter only
the left vortex, while dp = 2mm particles do not
enter any of the secondary vortices.

Non-buoyant particles at Re = 470 with small
diameter dp ≤ 0.75mm enter the secondary vor-
tices after first making a few revolutions in the
main vortex. At dp = 0.75mm some particles
settle on the ground of the cavity. At dp = 1mm
the particles do not enter the right secondary
vortex in the centre of the cavity, but do reach
the corners of the cavity. However, since they
are non-buoyant, they settle on the bottom of the
cavity. Cavity with particle positions demon-
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Table 4 Entrance of particles in secondary vortices in the bottom right and left part of the
cavity. Particles do not enter the secondary vortices (-), particles enter both secondary

vortices (+), (l) particles enter the left secondary vortex only
Re = 130 Re = 470 Re = 860

dp[mm] buoy. non-buoy. buoy. non-buoy. buoy. non-buoy.
0.3 - - + + + +
0.5 - - + + + +

0.75 - l + + + +
1.0 - l l l + +

1.25 - l l l l l
1.5 - l l l l l
2.0 - l - l - -
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Z

Y X
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Y X

Z

Y X

Z

Y X

Z

Fig. 16. Buoyant particles with dp = 0.3mm (left), dp = 1mm (middle) and dp = 2mm (right) at
Re = 130 after a long time shown on the x− z plane. None of the particles enter the secondary
vortices. Smaller particles find their way into the whole primary vortex, while larger are kept

in a torus shape by the flow. Contours of ux flow velocity component are shown in a slice at
y = 0.94.

Fig. 17. Buoyant (left) and non-buoyant (right) dp = 1mm particle positions after a long time
in a cavity at Re = 470. None of the particles enter the right secondary vortex at x = 1, y = 0.5,

while they are entrained into both x = 1 corners. Particle colour refers to its y coordinate.
Contours of ux flow velocity component are shown in a slice at y = 0.94.
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Fig. 18. Buoyant particles with dp = 1mm (left), dp = 1.5mm (middle) and dp = 2mm (right) at
Re = 860 after a long time shown on the x− z plane. While the small particles enter both

secondary vortices, the middle size particles enter only the left secondary vortex and the large
particles do not enter any. Contours of ux flow velocity component are shown in a slice at

y = 0.94.

strating this effect is shown in Figure 17. Parti-
cles with diameter dp ≥ 1.25mm enter only the
left secondary vortex. Some of the particles,
which enter the left secondary vortex, settle to
the ground. As the particle diameter increases
the number of particles entering the left vor-
tex and the number of particles settling to the
ground diminishes.

Buoyant particles at Re = 860 with diameters
dp ≤ 1mm enter the secondary vortices and can
be, after a long time, found in the whole cavity.
For dp = 1.25mm and dp = 1.5mm particles can
be found only in the left secondary vortex, while
none enter the right vortex. At dp = 2mm all
particles remain in the primary vortex (Figure
18).

Small non-buoyant particles at Re= 860 enter
both secondary vortices when their diameter is
less than dp ≤ 1mm. There is no settling of par-
ticles with dp = 0.3mm. With increasing diame-
ter more and more particles settle on the ground.
At dp = 1.25mm and dp = 1.5mm the particles
are able to reach only the left secondary vor-
tex. Most of the particles, which enter the sec-
ondary vortex, settle to the ground. However at
dp = 2mm no settling occurs at all. All of the
particles are kept in the primary vortex, none
enter the secondary vortices and none settle to
the ground.

In summary, we discovered that only particles
with diameters below a certain limit are able to
enter in both secondary vortices. This limit de-
pends on the Reynolds number. Particles with
diameters above this limit are able to enter into
the left secondary vortex only. As the particle
diameter is increased even further, all particles
remain in the primary vortex. The difference
between buoyant and non-buoyant particles is

expressed above all in the fact that the non-
buoyant particles tend to settle to the ground.
Since the secondary vortices are located at the
bottom of the cavity, the non-buoyant particles
are able to enter the secondary vortices with
higher diameters than the buoyant particles.

6. CONCLUSIONS

A Lagrangian particle tracking algorithm was
presented for simulation of dilute suspensions
of particles in viscous flow. The physical model
includes gravity, buoyancy, drag, pressure gra-
dient and added mass effects. The particle equa-
tion of motion was solved and advanced through
time by the Runge-Kutta method. Interpolation
of fluid velocity to the location of the particle
in the computational mesh was done by solv-
ing a non-linear system of equations using the
Newton-Raphson method. Boundary element
method based numerical algorithm for the solu-
tion of velocity-vorticity form of Navier-Stokes
equations was used to simulate viscous flow.

The particle tracking code was validated by re-
visiting a problem of particle movement in a
cellular flow field. Very good agreement be-
tween present results and previously published
results of other authors was observed.

The developed algorithm was used to study the
behaviour of macroscopic slightly buoyant and
slightly non-buoyant particles in a lid driven
cavity. The flow in a lid driven cavity is fully
three-dimensional and features a primary vor-
tex in the main part of the cavity as well as
secondary vortices in the corners of the cavity.
We investigated the particle movement and dis-
covered, that particles above a certain size, can
not enter secondary vortices. The size limit in-
creases with Reynolds number value. For the
selected diameter data range, in case of Re =
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470 the limit is dp = 0.75mm, and in case of
Re = 860 the limit is dp = 1.0mm, both lim-
its valid for the case of entering both secondary
vortices. The physical reason for such be-
haviour was found to be the flow structure. Only
small streamline paths lead to the secondary
vortices, which can not be entered by larger par-
ticles. Thus the larger particles remain trapped
in the primary vortex, while smaller particles
are able to enter into the secondary vortices in
the corners of the cavity.
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