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ABSTRACT 

A numerical study is carried out for a free convection flow past a continuously moving semi-infinite vertical 
cylinder in the presence of porous medium. The governing boundary layer equations are converted into a non-
dimensional form and then they are solved by an efficient, accurate and unconditionally stable implicit finite 
difference scheme of Crank-Nicolson method. Stability and convergence of the finite difference scheme are 
established. The velocity, temperature and concentration profiles have been presented for various parameters 
such as Prandtl number, Schmidt number, thermal Grashof number, mass Grashof number and permeability 
of the porous medium. The local as well as average skin-friction, Nusselt number and Sherwood number are 
also shown graphically. It is observed that the increase in the permeability parameter leads to increase in 
velocity profile, local as well as average shear stress, Nusselt number and Sherwood number but leads to 
decrease in temperature and concentration profiles. The results of temperature and concentration profiles are 
compared with available result in literature and are found to be in good agreement. 
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NOMENCLATURE 

C  species concentration 
Gr thermal Grashof number 
Gc  mass Grashof number 
g  acceleration due to gravity 

i  grid point along the X-direction 
j grid point along the R-direction 

Nu  dimensionless average Nusselt number 

XNu local Nusselt number 

Pr Prandtl number 
R dimensionless radial coordinate 
r radial coordinate 

0r radius of cylinder 

Sc Schmidt number 

Sh dimensionless average Sherwood 
number 

XSh dimensionless local Sherwood number 

T temperature 
t  time 

,  U V dimensionless velocity components in 

,  X R  directions respectively 

, u v  velocity components in , x r  directions 
respectively 

X dimensionless axial co-ordinate 
x axial co-ordinate measured vertically 

upward 

 thermal diffusivity 
  volumetric coefficient of thermal 

expansion 
  volumetric coefficient of expansion 

with concentration 
 kinematic viscosity
  density 

  dimensionless average skin-friction 
X dimensionless local skin-friction 

  permeability of the porous medium 

  dimensionless permeability
t  grid size in time 

R  grid size in radial direction 
X grid size in axial direction 
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1. INTRODUCTION 

The study of transport phenomenon in porous 
media has primarily been initiated by the research 
activity in geophysical systems and chemical 
engineering industry. Therefore, the subject of the 
transport phenomena through fluid-saturated porous 
media represents an important area of rapid growth 
in the contemporary heat transfer research. The 
study of transport phenomena in porous materials 
has attracted considerable attention and has been 
motivated by a broad range of engineering 
applications which includes agricultural 
applications, environmental applications, industrial 
applications, thermal conversion and storage 
systems. Agricultural applications: e.g. 
fermentation process in food industries, freeze 
drying of food products, grain storage, soil heating 
to increase the growing season, etc. Environmental 
applications: e.g. ground water pollution, ground 
water systems, storage of radioactive waste, water 
movement in geothermal reservoirs, etc. Industrial 
applications: e.g. artificial freezing of ground as a 
structural support and as a water barrier for 
construction and mining purposes, crude oil 
production and recovery systems, porous radiant 
burners (PRBs), post-accident heat removal 
(PAHR), solidification of castings, study of heat 
transfer phenomenon of buried electrical cables and 
transformer cables, fluidized bed combustion, etc. 
Thermal conversion and storage systems: e.g. 
catalytic reactors, geothermal systems, packed beds, 
fluidized bed, heat pipes, sensible, latent and 
thermochemical energy storage systems, etc. 

Porous media can be used as an insulator (for all 
temperature ranges) and can be used as a heat 
transfer promoter for either sensible or latent heat 
transfer. This makes the porous media a kind of 
super material which promotes the idea of the super 
compact heat exchanges. Different transport models 
are available in the literature, which are used to 
model energy and momentum transport in porous 
media. 

Bottemanne (1972) gave experimental results of 
pure and simultaneous heat and mass transfer by 
free convection about a vertical cylinder for

0.71,  0.63Pr Sc  . The author showed that the 
results are in close agreement with the classical free 
convection boundary layer theory for a vertical flat 
plate. The diameter of the cylinder was chosen as 
sufficiently large so that only a small correction was 
needed to compare their experimental results with 
the theoretical solution for a flat plate. Kuiken 
(1974) solved the free convection boundary-layer 
flow along a semi-infinite isothermal vertical 
cylinder considering the case that the boundary 
layer is thick in comparison with the radius of the 
cylinder.  

Minkowycz and Cheng (1976) analyzed free 
convective flow about a vertical cylinder embedded 
in a saturated porous medium, where surface 
temperature of the cylinder varies as a power 
function of distance from the leading edge. They 
found that the local similarity solutions are 

sufficiently accurate for all the practical purposes 
compared to local non-similarity models. Merkin 
(1977) considered the free convection boundary 
layer from a vertical cylinder embedded in a 
saturated porous medium. The author showed that 
numerical solution of the governing equations failed 
to predict the flow at large distances along the 
cylinder and a simple approximate method can 
better represent the whole flow region than the full 
numerical solution. 

An analytical study is performed by Chen and Yuh 
(1980) to examine the combined heat and mass 
characteristics of natural convection along a vertical 
cylinder. The authors analyzed that for 
heating/diffusing conditions, the local wall shear 
stress, the local Nusselt number, and the local 
Sherwood number increase with the increase in the 
curvature of the cylinder. Raptis et al. (1981) 
considered a steady two-dimensional free 
convection and mass transfer flow of an 
incompressible viscous fluid through a porous 
medium bounded by a vertical infinite limiting 
surface with constant temperature and 
concentration. They observed that the velocity 
increases when the permeability of the porous 
medium increases and the porosity of the medium 
helps in reducing the rate of heat transfer.  

A numerical solution for a free convective flow past 
a vertical semi-infinite flat plate embedded in a 
saturated porous medium with constant 
permeability subject to a prescribed non-uniform 
wall temperature or to a prescribed non-uniform 
wall heat flux was solved by Na and Pop (1983). 
Bejan and Khair (1985) studied the heat and mass 
transfer by natural convection near a vertical 
surface embedded in a fluid-saturated porous 
medium. The report contained both scale analysis 
and similarity formulation. They determined the 
scale analysis of heat and mass transfer rates for 
each regime.  

The unsteady free convective flow through a porous 
medium when the temperature of the plate is 
oscillating with time about a constant nonzero mean 
was studied by Singh et al. (1986). They provided 
the solution for both small and large frequency 
parameters by developing two asymptotic 
expansion methods. They observed that the velocity 
increases significantly with the increase in the value 
of permeability of the porous medium.  

Development of two-dimensional boundary layer 
with an applied magnetic field due to an impulsive 
motion was studied by Kumari and Nath (1999). 
The parabolic partial differential equations 
governing the unsteady flow have been solved 
numerically using an implicit finite difference 
scheme. Analytical solutions have also been 
obtained for some particular cases. Ganesan and 
Rani (2000) studied the natural convection on a 
vertical cylinder under the combined effects of heat 
and mass transfer along with the chemically 
reactive species. They studied both the generative 
and destructive reactions.  

Unsteady three-dimensional MHD-boundary-layer 
flow due to the impulsive motion of a stretching 
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surface was studied by Takhar et al. (2001). The 
partial differential equations governing the unsteady 
laminar boundary-layer flow were solved 
numerically using an implicit finite difference 
scheme. For some particular cases, analytical 
solutions were obtained, and for large values of the 
independent variable asymptotic solutions were 
found. Ganesan and Loganathan (2001) considered 
the transient natural convection boundary layer flow 
of an incompressible viscous fluid past an 
impulsively started moving semi-infinite vertical 
cylinder. They observed that the skin friction values 
are negative at small values of Schmidt number and 
they are positive for larger values of Schmidt 
number showing that separation of flow may not 
occur at the cylinder. 

Postelnicu (2004) numerically studied the heat and 
mass transfer characteristics of natural convection 
about a vertical surface embedded in a saturated 
porous medium subjected to a magnetic field taking 
into account Dufour and Soret effects. It was found 
that the increase in magnetic field parameter also 
increases the thickness of the hydrodynamic, 
thermal and concentration boundary layers. 
Akyildiz et al. (2006) considered diffusion of 
chemically reactive species of a non-Newtonian 
fluid immersed in a porous medium over a 
stretching sheet. They found that the thickness of 
the concentration boundary layer decreases with the 
reaction rate parameter. Patil and Kulkarni (2008) 
studied the effects of chemical reaction and internal 
heat generation on the free convective flow with 
heat and mass transfer of a polar fluid through 
porous medium in the presence of couple stresses. 
Cheng (2010) analysed the soret and dufour effects 
on the boundary layer flow due to free convection 
heat and mass transfer over a vertical cylinder in a 
porous medium saturated with Newtonian fluids 
with constant wall temperature and concentration. 

The problem of unsteady MHD mixed convection 
heat and mass transfer near the stagnation point of a 
three dimensional porous body in the presence of 
heat generation/absorption and chemical reaction 
effects was studied by Chamkha and Ahmed 
(2011). They found that the increase in the value of 
magnetic field parameter, increases the skin-friction 
coefficients, temperature and solute concentration 
in the fluid but decreases the velocity components, 
Nusselt number and Sherwood number. Chamkha et 
al. (2011) analyzed the natural convection past a 
sphere embedded in a non-Darcy porous medium 
saturated by a nanofluid. The results indicated that 
as Buoyancy ratio and Thermophoresis parameter 
increase, the friction factor increases, whereas there 
is a decrease in heat transfer rate and mass transfer 
rate. 

An analysis has been made to study the steady axi-
symmetric flow of an incompressible viscous fluid 
along a vertical stretching cylinder in porous 
medium by Mukhopadhyay (2012). The results 
pertaining to the study indicated that due to 
increasing values of permeability parameter, 
velocity decreases and the temperature increases. 
Also the rate of transport has been considerably 
reduced with increasing values of curvature 

parameter. The heat and mass transfer analysis for 
boundary layer stagnation-point flow over a 
stretching sheet in a porous medium saturated by a 
nanofluid with internal heat generation/absorption 
and suction/blowing has been investigated by 
Hamad and Ferdows (2012). Using group-
theoretical methods, they obtained the similarity 
solutions through Lie group analysis.  

Mukhopadhyay and Ishak (2012) considered the 
steady axisymmetric mixed convection flow of an 
incompressible viscous fluid along a stretching 
cylinder embedded in a thermally stratified fluid-
saturated medium of variable ambient temperature. 
Similarity transformation is employed to convert 
the governing partial differential equations into 
highly nonlinear ordinary differential equations. 
The analysis of their results obtained showed that 
the flow field was influenced appreciably by the 
mixed convection parameter and the thermal 
stratification parameter. Numerical solutions to the 
unsteady convective boundary layerflow of a 
viscous fluid at a vertical stretching surface with 
variable transport properties and thermal radiation 
are given by Vajravelu et al. (2013). It was found 
that the momentum and thermal boundary layer 
thickness decrease with an increase in the unsteady 
parameter.  

Ashorynejad et al. (2013) investigated the heat 
transfer of a nanofluid over a stretching cylinder in 
the presence of magnetic field. It was found that the 
effect of transverse magnetic field suppresses the 
velocity field, which in turn causes the 
enhancement of the temperature field. Rohni et al. 
(2013) considered a steady, axisymmetric 
boundary-layer flow along a vertical cylinder 
embedded in a porous medium filled with a 
nanofluid. The effects of variable viscosity and 
thermal conductivity on the natural convection heat 
transfer over a vertical plate embedded in a porous 
medium saturated by a nanofluid are investigated 
by Noghrehabadi et al. (2014). It was concluded 
that the concentration gradient of nanoparticles due 
to thermophoresis and Brownian motion forces 
affects the local viscosity and thermal conductivity 
of nanofluids and consequently affects the heat 
transfer of nanofluids. 

Numerical solution of MHD fluid flow and heat 
transfer characteristics of a viscous incompressible 
fluid along a continuously stretching horizontal 
cylinder embedded in a porous medium in the 
presence of internal heat generation or absorption 
was carried out by Yadav and Sharma (2014). Fluid 
temperature increases due to increase in 
permeability parameter, magnetic parameter, heat 
generation parameter or curvature parameter with 
the decrease in fluid velocity. A numerical 
investigation of two-dimensional steady laminar 
free convection flow with heat and mass transfer 
past a moving vertical plate in a porous medium 
subjected to a transverse magnetic field has been 
carried out by Javaherdeh et al. (2015). They found 
that the higher value of the porosity parameter leads 
to the reduction in velocity which is accompanied 
by a reduction in both Nusselt and Sherwood 
number.  
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An analytical study has been performed on the 
MHD flow and thermal transport characteristics of 
nanofluid flow past a vertical porous plate with a 
radiation effect in a rotating system by Narayana et 
al. (2015). The authors found that the velocity 
profile decreases with an increase in nanoparticle 
volume fraction, while the opposite is true in the 
case of temperature profiles. Also it was found that 
the radiation has a greater influence on both the 
thermal boundary layer thickness and the 
nanoparticle volume fraction profiles.  

The objective of present investigation is to study the 
natural convective flow of an incompressible 
viscous fluid over moving semi-infinite vertical 
cylinder with heat and mass transfer in the presence 
of porous medium. In this analysis, the cylinder is 
moving in the vertical direction against 
gravitational force with a uniform velocity 0u . The 

governing boundary layer equations along with the 
initial and boundary conditions are transformed into 
a dimensionless form and the resulting equations 
are solved by a semi-implicit finite difference 
scheme of the Crank – Nicolson type. 

2. MATHEMATICAL ANALYSIS 

Consider the free convection flow of a viscous 
incompressible, laminar flow over an impulsively 
moving semi infinite vertical cylinder of radius 0r . 

Initially both cylinder and the fluid are stationary at 
the same temperature T  and also at the same 

concentration level C . At a time 0t  , the 

cylinder starts moving in the vertical direction with 
uniform velocity 0u . The temperature and the 

concentration on the surface of the cylinder are also 
raised to wT  and wC  . The effect of viscous 

dissipation is assumed to be negligible. The axial 
and radial co-ordinates are taken to be x  and r , 
with x -axis measured vertically upward along the 
axis of the cylinder and r -axis measured normal to 
axis of cylinder. Under these assumptions, the 
governing boundary layer equations of continuity, 
momentum, energy and species concentration with 
Boussisnesq’s approximation are as follows 
(Velusamy and Garg 1992): 

    0ru rv
x r

 
 

 
                                            (1) 

 

   

u u u
u v g T T

t x r
u

g C C r u
r r r



 





 

       
  

         

               (2) 

T T T T
u v r

t x r r r r

                 
                     (3) 

C C C D C
u v r
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                                      
(4) 

The initial and boundary conditions are 

0 0
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                                                                              (5) 

Introducing the following non-dimensional 
quantities 
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(6)  

Equations (1) – (4) are reduced to the following non 
dimensional form: 

   
0

RU RV

X R

 
 

 
                                               (7)
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(8) 

1
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T T T T
U V R

t X R R R R
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1C C C C
U V R

t X R ScR R R
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                     (10) 

The corresponding initial and boundary conditions 
in non-dimensional quantities are given by 
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           0,  0,  0 as 
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(11)  

3. NUMERICALTECHNIQUE 

In order to solve the unsteady, non-linear coupled 
Eqs.(7) – (10) under the condition (11), an implicit 
finite difference scheme of Crank-Nicolson type 
described by Ganesan and Loganathan (2001) is 
employed. The region of integration is considered 

as a rectangle with sides  maxX 1.0  and 

 max
R 15.0  where maxR  corresponds to R   

which lies very well outside the momentum, 
thermal and concentration boundary layers. The 
finite difference equations corresponding to Eqs. (7) 
to (10) are:  
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Here i -designates X -direction i X , j -

designates R -direction  1 1j R    and the 

superscript m  designates a value of time m t . 
During any one-time step, the coefficients ,

m
i jU  and 

,
m

i jV  appearing in Eqs. (12) – (15) are treated as 

constants. The value of U, V, T and C are known at 
time 0t   from the initial conditions. The values of 
C, T, V and U at the next time step t t   are 
calculated as follows:  

Equation (15) at every internal nodal point on a 
particular i-level constitutes a tri-diagonal system of 
equations which is solved by Thomas algorithm, 
described by Carnahan et al. (1969). Thus, the 
values of C are known at every nodal point on a 
particular i-level at t t  . Similarly, the values of 
T are calculated from Eq. (14). Using the values of 
C and T in Eq. (13), the values of U are calculated. 
Then the values of V are calculated explicitly by 
using Eq. (12) at every nodal point on a particular i-
level. After computing the values corresponding to 
each i at a time level, the values of the next time are 

determined similarly.  

After experimenting with few sets of mesh sizes, 
the mesh sizes have been fixed at the level 

X 0.02, R 0.2     with time step 0.01t  . In 
this case, spatial mesh sizes are reduced by 50% in 
one direction, and later in both directions, and 
results are compared. It is observed that, when the 
mesh size is reduced by 50% in the R-direction, the 
results differ in the fifth place after the decimal 
point while the mesh sizes are reduced by 50% in 
X-direction or in both directions the results are 
correct to five decimal places. Hence, the above 
mesh sizes have been considered as appropriate for 
calculation. 

This iterative procedure is repeated for many time 
steps until the steady-state solution is reached. The 
steady-state solution is assumed to have been 
reached, when the absolute difference between the 
values of velocity U, temperature T as well as 
concentration Cat two consecutive time steps are 
less than 510 at all grid points. 

4. STABILITY AND 

CONVERGENCE OF THE 

FINITE DIFFERENCE SCHEME 

The criterion of the finite difference scheme for 
constant mesh size is examined using Von-
Neumann technique as follows: 

The general term of the Fourier expansion for 
,  T  and U C  at a time arbitrarily called 0t   are 

assumed to be i X i Re e  . At a later time t  these 
terms will become 

 
 
 

i X i R

i X i R

i X i R

U F t e e

T G t e e

C H t e e

 

 

 







                                               (16) 

Substituting (16) in (13)–(15) under the 
assumptions that the coefficients U, T and Care 
constants over any one time step and denoting the 
values after one time by ,  G  and HF   . After 
simplification, we get 

      

        
 

   
  

2

1 sin

2 2

cos 1

2 2

sin

2 1 1 2

i XU F F e V F F i RF F

t X R

F F RGr G G Gc H H

R

F F i R F F

j R R

 






       
 

  
     

  


    
 

   

(17) 

      

    
 

   
  2

1 sin

2 2

cos 1 sin

2Pr 1 1Pr

i XU G G e V G G i RG G

t X R

G G R G G i R

j R RR

 

 

       
 

  
      

 
   

(18) 
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  

        
 

   
  

2

1

2

cos 1sin

2

sin

2 1 1

i XU H H eH H

t X

H H RV H H i R

R Sc R

H H i R

Sc j R R







    


 
     

 
 

  


   

(19) 

Let us consider 

   

  
 

 
  2

1 sin

2 2

cos 1 sin
  

2 1 1 2

i XU e t Vi R t
A

X R

R t i R t t

j R RR

 

 


    
 

 
     

  
   

 

   

  
 

 
  2

1 sin

2 2

cos 1 sin
  

2Pr 1 1Pr

i XU e t Vi R t
B

X R

R t i R t

j R RR

 

 

    
 

 
    

 
   

 

   

  
 

 
  2

1 sin

2 2

cos 1 sin
   

2 1 1

i XU e t Vi R t
C

X R

R t i R t

Sc j R RSc R

 

 

    
 

 
    

 
   

 

(20)  

Substituting A, B and C  in Eqs. (17) – (19), we get 

     

 

1 1
2

                                
2

Gr G G t
A F A F

Gc H H t

  
   

  


              (21) 

   1 1B G B G                                             (22) 

   1 1C H C H                                           (23) 

Equations (21) – (23) can be written in the matrix 
form as follows: 

1 2

1

1
1

0 0   
1

1
0 0

1

A
D D

AF F
B

G G
B

H H
C

C

 
     

                  
  

                (24) 

where 
     1 2

  
,

1 1 1 1

t Gr t Gc
D D

A B A C

 
 

   
. 

For stability of the finite difference scheme, the 
modulus of each eigen value of an amplification 
matrix must not exceed unity. The Eigen values of 
the amplification matrix are given by (1–A)/(1+A), 
(1–B)/(1+B) and(1–C)/(1+C). Considering U  
everywhere positive and V  everywhere negative 
and let 

   

     

    

2 2

2

2 sin 2 2 sin 2

                sin sin
2

where ,   ,   
2 2

          ,   
2 1 1

A a X d R

t
ia X i b c R

U t V t
a b

X R
t t

c d
j R R R

 

 


   


     

 
 

 
 

 
    

 

   
     

    

2 2

2

2 sin 2 2 sin 2

                      sin sin

where ,   ,   
2 2

          ,   
2Pr 1 1 Pr

B a X d R

ia X i b c R

U t V t
a b

X R
t t

c d
j R R R

 

 

   

    

 
 

 
 

 
    

 

 

   
     

    

2 2

2

2 sin 2 2 sin 2

                        sin sin

where ,   ,
2 2

          ,   
2 1 1

C a X d R

ia X i b c R

U t V t
a b

X R
t t

c d
Sc j R R Sc R

 

 

   

    

 
 

 
 

 
    

 

Since the real part of A  is greater than or equal to 

zero,    1 1 1A A    always. Similarly

   1 1 1B B    and    1 1 1C C   .  

Therefore the scheme is unconditionally stable. The 

local truncation error is  2 2O t R X      and it 

tends to zero as ,   and t R X    tend to zero. 
Hence the scheme is compatible. The stability and 
compatibility ensures the convergence of the finite 
difference scheme. 

5. RESULTS AND DISCUSSION 

The problem of free convective flow past a 
continuously moving semi-infinite vertical cylinder 
is considered in the presence of a porous medium. 
The equations are solved numerically by employing 
a finite difference scheme and the results are 
presented graphically.  

In order to assess the accuracy of our method, the 
finite difference solution of temperature and 
concentration profiles for the stationary cylinder 

0.7,  0.6Pr Sc  , Gr = Gc = 2.0, λ = 0 

(corresponding to 0  ) are compared with the 

results of Chen and Yuh (1980). Figure 1 shows 
that there is an excellent match between the two 
solutions. 

Figures 2 to 6 depicts the transient velocity, 
temperature and concentration profiles for different 
values of physical parameters such as Sc = 0.16, 0.6 
and 2, Pr = 0.71 (air) and Pr = 7.0 (water), Gr and 
Gc. The profiles presented are those at X 1.0 . 
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Fig. 1. Comparison of temperature and 
concentration profile. 

 

 
Fig. 2. Transient velocity profiles at X = 1.0 for 

different values of Sc, Gr, Gc and λ (* - temporal 
maximum). 

 

The transient velocity profiles for different values 
of Pr, Gr, Gc, Sc and λ against the radial coordinate 
R are shown in Fig. 2. Permeability is the capacity 
of a porous material to allow fluids to pass through 
it depending on the number, geometry and size of 
interconnected pores. It can be seen that increase in 
λ leads to increase in the velocity profiles. It is 
observed that the time required to reach the steady 
state is less compared to higher value of λ. But the 
steady-state velocity decreases for increasing values 
of Pr. Increase in Gr and Gc reduces the time to 
reach the steady-state. The velocity profile 
increases for increasing values of Gr and Gc. The 
momentum boundary layer thickness increases with 
increasing values of Grand Gc. Schmidt number 
physically relates the relative thickness of the 
hydrodynamic layer and mass-transfer boundary 
layer and thus the momentum boundary layer 
thickness increases for decreasing values of Sc. 

From Fig. 3, it is clear that increase in λ leads to 
decrease in temperature profile. The thermal 
boundary layer thickness increases with decreasing 
values of  λ. A temporal maximum is also observed. 
It can be seen that the temporal maximum is 
reached at an early stage for decreasing value of λ. 
The temperature profile increases for decreasing 

values of Pr. This is due to the fact that Prandtl 
number controls the relative thickness of the 
momentum and thermal boundary layers and when 
Pr is small, the heat diffuses quickly compared to 
the velocity boundary layer. This means the 
thickness of the thermal boundary layer is much 
bigger than the velocity boundary layer. 

From Fig. 4, it is observed that temperature 
increases with decreasing values of Gr and Gc. The 
transient temperature profile increases steadily, 
reaches temporal maximum and after certain lapse 
of time attains the steady-state. Lower temperature 
profiles are observed for higher Pr or lower values 
of Sc. This is due to the fact that fluids with larger 
Pr give rise to less heat transfer. But the thermal 
boundary layer thickness increases with increasing 
Sc. The time taken to reach the steady-state is 
higher for higher values of Pr. 
 

 
Fig. 3. Transient temperature profiles at X = 1.0 

for different values of λ. 

 

 
Fig. 4. Transient temperature profiles at X = 1.0 

for different values of Sc, Gr and Gc. 

 
From Fig. 5, it is clear that when the permeability λ 
increases, the concentration profile decreases. The 
concentration profile increases for increasing value 
of Pr. From Fig. 6, it is observed that concentration 
increases for decreasing values of Gr, Gc and Sc. 
The time taken to reach the steady-state is higher 
for higher value of Pr. 

Knowing the velocity, temperature and 
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concentration profiles, it is interesting to study the 
local and average skin-friction, the rate of heat 
transfer and mass transfer both in the transient and 
steady-state. 
 

 
Fig. 5. Transient concentration profiles at X=1.0 

for different values of λ. 

 
The local as well as average skin-friction, Nusselt 
number and Sherwood number in terms of 
dimensionless quantities are given by  
 

 
Fig. 6. Transient concentration profiles at X=1.0 

for different values of λ. 
 

 R 1X U R


                                                 (25) 

 
1

1
0

dX
R

U R


                                            (26) 

 R 1

1
X

R

X T R
Nu

T




 
                                        (27) 

 1
R 1

10

dX
R

T R
Nu

T




 
 

                                     
(28) 

 R 1XSh X C R


                                             (29) 

 
1

R 1
0

 dXSh C R X


   
                                    

(30) 

The derivatives involved in Eqs. (25)–(30) are 
evaluated using five-point approximation formula 
and integrals are evaluated using Newton-Cotes 

formula. 

Local skin-friction X  profiles are plotted in Fig. 7 

against the axial coordinate X. The local shear stress 

X  increases with increasing values of Sc and 

decreasing values of Gr and Gc. The shear stress 
increases as Pr increases. It is observed that the skin 
friction values are negative at small values of Sc 
indicating that separation of flow may occur at the 
cylinder and they are positive for larger values of Sc 
showing that separation of flow may not occur at 
the cylinder. 

The local Nusselt number XNu  for different values 

of Gr, Gc, Sc and λ are shown in Fig. 8. Local 
Nusselt number XNu  increases with decreasing 

values of Sc and increasing values of Gr and Gc.  

The local Sherwood number XSh  increases with 

increasing values of Gr and Gc and the trend is just 
opposite with respect to Sc which is seen in Fig. 9. 
Increasing values of λ leads to increase in local 
shear stress, local heat transfer rate and local mass 
transfer rate. For larger values of Pr, there is an 
increase in local skin friction and local Nusselt 
number but the trend is just opposite in local 
Sherwood number.  
 

 
Fig. 7. Local skin friction. 

 

 
Fig. 8. Local Nusselt number. 

 
The effects of Gr, Gc, Sc and λ on the average 

values of skin-friction  , Nusselt number Nu  and 



P. Loganathan and B. Eswari / JAFM, Vol. 9, No. 4, pp. 1591-1601, 2016.  
  

1599 

Sherwood number Sh  are shown in Figs. 10– 12 
respectively as a function of time for different 
values of physical parameters. 

Figure 10 shows that rate of shear stress increases 
with increasing values of Sc and decreasing values 
of Gr and Gc. It is observed that average skin-
friction increases with t and after certain lapse of 
time they are steady throughout the transient period. 
The rate of shear stress increases with increasing 
value of λ. 
 

 
Fig. 9. Local Sherwood number. 

 

The trend is opposite in average Nusselt number 

Nu  with respect to Sc, Gr and Gc. From Fig. 11, it 
is seen that in the initial time steps, the rate of heat 
transfer is same for constant Gr and Gc. This 
reveals that initially heat transfer is due to 
conduction only. The average Nusselt number 
increases for increasing value of λ. usually a larger 
Nusselt number corresponds to more active 
convection. The rate of heat transfer increases for 
higher values of Pr.  
 

 
Fig. 10. Average skin friction. 

 
In Fig. 12, the average Sherwood number is 
constant initially for fixed values of Sc. This reveals 
that there is only mass diffusion in the initial time 
level. It is observed that Sherwood number 
increases with t and after certain lapse of time they 
are steady throughout the transient period. Larger 
values of Sc give rise to higher values of Sherwood 
numbers. The rate of mass transfer increases with 

increasing Gr, Gc and Sc. 
 

 
Fig. 11. Average Nusselt number. 

 

 
Fig. 12. Average Sherwood number. 

6. CONCLUSIONS 

A Numerical analysis is performed to study the free 
convective flow on a continuously moving semi-
infinite vertical cylinder in the presence of porous 
medium. The dimensionless governing equations 
are solved by finite difference scheme of Crank-
Nicolson type. The fluids considered are both air 
and water. The effect of Prandtl number, thermal 
Grashof number, modified Grashof number, 
Schmidt number and permeability of the porous 
medium are studied. Conclusions of the study are as 
follows: 

1. As the permeability parameter λ increases, the 
transient velocity profile increases whereas the 
temperature and the concentration profiles 
decreases. 

2. The velocity profile increases for increasing 
values of Gr, Gc and decreasing values of Sc. 

3. Temperature increases with decreasing values of 
Gr, Gc, Pr and increasing values of Sc. 

4. Concentration increases for decreasing value of 
Gr, Gc and Sc. 

5. The time required to reach the steady-state 
temperature and concentration is higher for larger 
values of Pr. 
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6. The local as well average shear stress increases 
with increasing value of Sc and decreasing values 
of Gr, Gc. The trend is opposite in local and 
average heat transfer rate. 

7. The local as well as average mass transfer rate 
increases with increasing values of Sc and Gr and 
Gc. 

8. The local as well as average skin friction, Nusselt 
number and Sherwood number increases for 
increasing value of permeability parameter λ. It is 
observed that the skin friction values are negative 
at small values Sc indicating that separation of 
flow may occur at the cylinder.  

9. The rate of heat transfer increases for higher 
values of Pr. 
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