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ABSTRACT 

In this paper, effects of non-equilibrium condensation on deviation angle and performance losses of wet 
stages of steam turbines are investigated. The AUSM-van Leer hybrid scheme is used to solve the two-phase 
turbulent transonic steam flow around a turbine rotor tip section. The dominant solver of the computational 
domain is the non-diffusive AUSM scheme (1993), while a smooth transition from AUSM in regions with 
large gradients (e.g. in and around condensation- and aerodynamic-shocks) to the diffusive scheme by van 
Leer (1979) guarantees a robust hybrid scheme throughout the domain. The steam is assumed to obey non-
equilibrium thermodynamic model, in which abrupt formation of liquid droplets produces a condensation 
shock. To validate the results, the experimental data by Bakhtar et al. (1995) has been used. It is observed that 
as a result of condensation, the aerothermodymics of the flow field changes. For example for supersonic wet 
case with back pressure Pb=30 kPa, the deviation angle and total pressure loss coefficient change by 65% and 
200%, respectively, with respect to that in dry case.  

Keywords: Condensation shock; Deviation angle; Performance loss, Steam turbine. 

NOMENCLATURE 

af speed of sound 
C chord length 
cp specific heat capacity at constant pressure  
CP pressure coefficient 
et total internal energy per unit volume 
F horizontal inviscid flux vector 
FV horizontal viscous flux vector 
G vertical inviscid flux vector 
GV vertical viscous flux vector 
h enthalpy 
H total enthalpy 
hfg latent heat of evaporation 
J Jacobianof transformation 
Jnuc nucleation rate of droplets 
k turbulent kinetic energy 
ks surface roughness 
ks

+ roughness reynolds number 
kB boltzmann constant (=1.3807×10-23 J/K) 
M Mach number 
mv mass of one molecule of water 
N total number of droplets per unit mass of 

mixture 
p pitch length 
P static pressure 
P0 total pressure 
Ps saturation pressure 
Pb back pressure 

Q conservative vector 
r average radius of droplets 
rc critical radius of droplets 
Rv vapor constant  
S source term 
t time
T temperature 
Ts saturationtemperature 
u, v velocity components 
w weighting factor 
x,y cartesian coordinates

 inflow direction 
 specific heat ratio of vapor  
  stagger angle 
 deviation angle 

t  time step  
t turbulent viscosity 
 performance loss coefficient 
 ,  curvilinear coordinates 

  mixture density 
  surface tension 
 stress tensor 
  dissipation coefficient 
  wetness fraction 

 total pressure loss coefficient; turbulent 
frequency 
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1. INTRODUCTION  

In a steam power plant, power is extracted from 
expanding steam in three stages namely high 
pressure (HP), intermediate pressure (IP) and low 
pressure (LP) turbines. During the expansion 
process in the LP turbine, the steam cools down and 
at some stages, droplet nucleation is occurred and a 
two-phase vapor-liquid mixture is appeared. Wet 
stages in the steam turbines are less efficient 
compared to those running with superheated vapor. 
The study of low-pressure turbine stages is of 
particular interest since they produce the largest 
portion of the power (across all of the stages), and 
yet are susceptible to additional losses due to the 
presence of a second liquid phase (Gerber and 
Kermani 2004). Thermodynamic irreversible losses 
generated with non-equilibrium conditions are 
significant at low-pressure stages, since the 
efficiency is reduced by approximately 1% for 
every additional percent of wetness (Baumann, 
1921). On the other hand, condensation can cause 
some permanent damages, like mechanical erosions 
on the blade surface.  

In the tip section of the last stages of the steam 
turbines, due to high velocity and excessive 
expansion rate of the flow, complicated phenomena 
could be observed. Firstly, formation of shock and 
expansion waves at the trailing edge can affect the 
behavior of the flow field. On the other hand, when 
the flow reaches to a specified supercooling degree, 
suddenly nucleates and condensation shock is 
formed in the supersonic flow. The condensation 
shock and attendance of the liquid phase can change 
the aerothermodynamics of the flow field in the 
steam turbine stages. 

Researches on the low-pressure turbine stages have 
great importance due to widespread usage of the 
steam turbines for power generation. Commence of 
wide studies in two-phase vapor-liquid flows, backs 
to the 1970s when Mcdonald (1962) presented the 
theory of homogeneous nucleation. He studied this 
phenomenon in two thermodynamic and kinetic 
aspects. 

In the next years some experimental and numerical 
results related to two-phase condensing flows were 
presented. Moore et al. (1973) performed one of the 
earliest experiments related to condensation in 
nozzles. Then some experiments were performed on 
a cascade of turbine to study the phenomena 
associated with spontaneous condensation by 
Skillings (1987, 1989). He studied the effects of 
inlet superheating and outlet Mach number on the 
trailing edge shock structure.  

Bakhtar and Mahpeykar (1996) and Bakhtar et al. 
(2009) carried out some experiments to study two-
phase nucleating steam flow in a blade passage. 
Also they performed a comparative study of the 
treatment of two-dimensional nucleating flows 
using Runge-Kutta and Denton’s methods (Bakhtar 
et al. 2007). 

In 1984, Young presented a theoretical 
investigation of chocking in steady, one 

dimensional, non-equilibrium wet steam in the 
nozzles (Young, 1984). Then he presented a method 
to solve the governing equations of wet steam flow 
in two and quasi three dimensional turbine cascades 
(Young, 1992). The mixture conservation equations 
were solved in an Eulerian reference frame and 
droplet phase was computed by integrating the 
relevant equations along true streamlines in a 
Lagrangian reference frame.   

White and Young (1993) presented a time marching 
method to predict unsteady phenomena in 
condensing steam flows. In 2000, White developed 
a numerical method for the prediction of 
condensing steam flow within compressible 
boundary layers (White, 2000). Also White and 
Hounslow (2000) presented a new method for 
modeling droplet size distributions within 
condensing steam flows. Then White (2003) 
presented a comparison of modeling methods for 
polydispersed wet-steam flow.  

In 2002, Gerber used the classical theory of 
nucleation and proposed a new numerical model 
(Eulerian-Lagrangian) to solve the two-phase 
compressible flows in steam nozzles and turbine 
blades (Gerber, 2002). Then, Gerber and Kermani 
(2004) presented a pressure based Eulerian–
Eulerian multi-phase model for non-equilibrium 
condensation in transonic steam flow. In 2007, 
Gerber and Mousavi investigated the Quadrature 
Method of Moments (QMOM) in representing 
droplet size distributions present in the low-pressure 
steam turbine stages (Gerber and Mousavi 2007). 
Then Halama et al. (2010) used an in-house code 
for simulating two-phase condensing steam by 
addition of Giles's matching algorithm using Lax-
Wendroff method. 

Single- and two- fluid models for steam condensing 
flow modeling were presented by Dykas and 
Wroblewki (2011). In 2012, they presented the 
computational results of the wet steam flow through 
the Laval nozzles for low and high inlet pressures 
(Dykas and Wroblewki 2012). Also, an effective 
method of determination of water vapor properties 
was presented in the case of expansion in the nozzle 
at high pressures. Recently Hamidi and Kermani 
(2013) investigated numerical solution of a 
compressible two-phase moist-air flow with and 
without shock waves. They used the equilibrium 
thermodynamic model to study the condensation in 
a one dimensional nozzle. 

According to the literature review, it can be 
concluded that several researches have been 
performed to simulate two-phase condensing flows 
using different numerical methods. But few 
researchers have investigated effects of non-
equilibrium condensation on the behavior of the 
flow field in the wet steam turbines.  

In the past, several upwind schemes have been 
developed and successfully used for the calculation 
of many problems. Prominent representatives of 
this class of algorithms are schemes based on the 
flux vector splitting and flux difference splitting 
concepts. Classical flux vector splitting methods are 
simple and very robust upwind techniques but they 
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exaggerate diffusive effects which take place in 
shear and boundary layers. On the other hand, 
schemes based on flux difference splitting are very 
accurate for viscous calculations, but at the cost of 
increased computational expense. Moreover, they 
lack robustness for flows with strong expansions 
into regions of low pressure and low density.  

The Advection Upstream Splitting Method 
(AUSM) retains the robustness and efficiency of the 
flux vector splitting schemes but it achieves the 
high accuracy attributed to schemes based on the 
flux difference splitting concept. This method was 
suggested by Liou and Steffen (1993). 

They used it to solve some problems (e.g. inviscid 
calculation of NACA 0012 airfoil, 2D supersonic 
flow over a circular blunt body) and compared the 
results with other methods (Roe, Van Leer). Based 
on their results, the special merits of AUSM 
compared to other upwind schemes are the low 
computational complexity and the low numerical 
diffusion.  

The application to various relevant flow problems, 
however, has shown that the AUSM method has 
several deficiencies. It locally produces pressure 
oscillations in the vicinity of shocks. Furthermore, 
the scheme has a poor damping behavior for low 
Mach numbers which leads to spurious oscillations 
in the solution and affects the ability of scheme to 
capture flows aligned with the coordinate grids. In 
order to improve the shock resolution capability and 
the damping behavior of AUSM, in particular, a 
hybrid method was introduced by Radespiel and 
Kroll (1995) which switches from AUSM to the van 
Leer scheme at shock waves. This ensures the well-
known sharp and clean shock capturing capability 
of the van Leer scheme and the high resolution of 
slip lines and contact discontinuities through 
AUSM. The hybrid method was used to solve some 
inviscid and viscous single-phase problems (e.g. 
calculation of RAE 2822 airfoil, flow over a 
compression ramp) by Radespiel and Kroll (1995). 
Paillere et al. (2003) extended the AUSM+ scheme 
to compressible two-fluid models for gas/ liquid 
flow and used it to solve some two-fluid air/water 
flow benchmark problems from nearly 
incompressible flows to fully compressible flows. 
Niu and Lin (2006) proposed a modification of 
pressure-velocity diffusion terms in AUSM to 
compute the compressible cavitated flows based on 
single and two-fluid models. In the application of 
AUSM schemes to two-phase three-dimensional 
problems, we can mention the work of De Wilde et 
al. (2001) where a two-phase system composed of 
gas and solid particles was simulated. 

In 2006, Liou extended the AUSM-family schemes 
to the low-Mach number limit and employed this 
method (AUSM+-up) to solve problems at different 
speeds (Liou, 2006). This scheme improves over 
previous versions and eradicates fails found therein. 
Halder et al. (2011) used the AUSM+ scheme to 
investigate supersonic wake of a wedge on an 
unstructured grid. The developed Euler solver with 
AUSM+ flux splitting scheme was capable enough 
to capture the oblique shock and expansion fans 

properly. 

Bagheri Esfe et al. (2015) extended the AUSM-van 
Leer hybrid scheme to solve the governing 
equations of two-phase condensing flows. The 
method of moments with the classical homogeneous 
nucleation theory was used to model the non-
equilibrium condensation phenomenon. 

Only few methods can correctly simulate two-phase 
condensing flows in a complicated geometry such 
as a turbine stage, because these flows experience 
spontaneous nucleation with sharp gradient regions. 
In the present paper, the AUSM-van Leer hybrid 
scheme is used to solvetwo-phase turbulent 
transonic steam flow around aturbine rotor tip 
section. Then, effects of condensation on different 
specifications of the flow field such as total 
pressure loss coefficient, performance loss 
coefficient and deviation angle are studied. Also 
contribution of each of the loss mechanisms such as 
aerodynamic-, thermodynamic- and viscous-losses 
from the total performance loss is determined.  

It is noted that three dimensional effects could be as 
important as wetness effects in flows over the 
blades. To quantify the influences of all of these 
components simultaneously could be a complicated 
task. To isolate the influences associated with the 
wetness, flow in a cascade is considered here. 

2. GOVERNING EQUATIONS 

Assumptions using in the present study are as 
follows: condensation is homogenous and slip 
velocity between droplets and vapor is ignored due 
to infinitesimal radius of the droplets. Droplet-
droplet and droplet-surface collisions are not taken 
into account in the model, because the volume 
occupied by the liquid phase is significantly small 
in comparison with the vapor phase. In fact droplet-
surface collision does not have an important effect 
on the results.   

Two-dimensional Eulerian-Eulerian governing 
equations for two-phase condensing flows in full 
conservative form are written as: 
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where Q is the conservative vector, F and G are 
inviscid flux vectors, S is source term and FV  and 
GV are viscous flux vectors which are written as 
follows: 
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where P, et,  and N are pressure, total energy per 
unit volume, wetness fraction and total number of 
droplets per unit mass of mixture, respectively. In 

Eq. (2), nucJ , rc and dt
dr represent nucleation rate, 

critical radius of droplets and radius growth rate, 
respectively.  denotes the mixture density and u, v 
are velocity components for both vapor and liquid. 
Also xx , xy  and yy  are stress tensor components 

and xq , yq are conductive heat transfer in the 

horizontal and vertical directions, respectively. 

Eq. (1) in generalized coordinates is written using 
metrics of transformation as follows: 
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where J is the jacobian of transformation and 

yxyx  ,,, are the metrics of transformation. 

Based on the classical homogeneous nucleation 
theory, the number nucJ  of new condensed droplets 

per unit volume and per second is computed as 
(Kermani and Gerber 2003): 
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where is the specific heat ratio of vapor, hfg 
equilibrium latent heat, Rv vapor constant (=461.4 
J/kg.K), surface tension, kB Boltzmann constant 
(=1.3807×10-23 J/K), mv mass of one water 
molecule and Ps saturation pressure. 

In Eq. (2), radius growth rate is obtained by 
(Sislian, 1975): 
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Tl and TS are droplet and saturation temperatures, 
respectively and cp is specific heat capacity at 
constant pressure. For the present low pressure 
computations, the ideal gas equation of state has 
sufficient accuracy, hence: 

.)1( vvvvv TRTRP                                      (8) 

The shear stress transport (SST) model is used to 
evaluate the eddy viscosity in this paper. The 
governing equations of this model consist of two 
transport equations for turbulent kinetic energy, k, 
and turbulent frequency, , and are written as 
follows (Menter, 1994): 
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where Pk being the production of turbulence. 

Turbulent Mach number, 2/2 ckMt  , and 

pressure dilatation, 
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compressibility effects of the flow. The coefficients 
of the transport equations, k, , and are 
calculated via 
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using the following equation: 
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which  represents each of the mentioned 
coefficients and subscripts 1 and 2 correspond to k-
 and k-turbulence models, respectively. The 
eddy viscosity, t , is evaluated using the following 

equation (Menter, 1994): 
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At outlet boundary, turbulent kinetic energy k and 
turbulent frequency  are extrapolated from the 
interior domain, whereas at inlet boundary specified 
free stream values of these variables are used. At 
walls the turbulent kinetic energy is set to zero, 
while turbulent frequency is computed using the 
relation proposed by Wilcox (2006), which includes 
the surface roughness: 
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where * is the friction velocity,  /*
ss kk   is 

the roughness Reynolds number, ks is the roughness 

height and  sR k/100 . For the smooth walls

5
sk . 

3. NUMERICAL DISCRETIZATION 

3.1.   Temporal Discretization  

Using a forward Euler scheme for the time 
derivative, Eq. (3) is written in a semi-discrete form 
as: 
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The value ofQn+1 is obtained from Eq. (14), then all 
the primitive variables ),,,,,( Nevu t  at the new 

time step will be determined. Since this equation is 
explicit in time, stability of the solution is governed 
by the CFL condition (Anderson, 1995). 

3.2.   Spatial Discretization 

Extrapolation of the primitive variables such as 
pressure, velocity and temperature from the cell 
centers to the cell faces is performed by the 
MUSCL strategy (Van Leer 1979). In this part, the 
AUSM-van Leer hybrid scheme is used to calculate 
the inviscid flux vectors. The underlying idea of the 
approach is based on the observation that the 
inviscid flux vectors (Eq. (2)) consist of two 
physically distinct parts, namely the convective and 
the pressure parts. The horizontal inviscid flux at 
the east face of the control volume is defined as 
(Bagheri Esfe et al. 2015) 
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The first term on the right-hand side of the above 
equation represents a Mach number-weighted 
average of the left and right states. The second term 
has a dissipative character. It is scaled by the scalar 
value

ji ,
2
1

 which is termed as dissipation 

coefficient. 

The advection Mach number
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from the relation 
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where the split Mach numbers are defined by Eqs. 
(17) and (18), 
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The Mach numbers ܯ௅ and ܯோare evaluated using 
the left and right states, respectively, i.e. 
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Where af is speed of sound and evaluated from the 
following equation (Traupel, 1971): 
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The pressure at the east face of the control volume 
is obtained from the splitting: 
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with the split pressures given by 
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The dissipation coefficient in Eq. (15) is defined as 
sum of the dissipation terms using the van Leer and 
AUSM schemes: 
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where w is the weighting factor and VL
ji ,

2
1

 is 

defined as 

.

01)1.(
2

1

10)1.(
2

1

1

,
2

1
2

,
2

1

,
2

1
2

,
2

1

,
2

1
,

2

1

,
2

1


































ji

L

ji

ji

R

ji

jiji

VL

ji

MforMM

MforMM

MforM



(25) 

When the advection Mach number )(
,

2
1 ji

M
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tends to 

zero, the dissipation term in Eq. (15) will approach 
zero, too. Thus, there will be some disturbances 
which cannot be damped by the scheme. In order to 
solve this problem, it is proposed that the scaling of 
the dissipation term of the AUSM method be 
modified as follows 
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where  is a small value )50(   . Hence there 
will always be a sufficient amount of numerical 
dissipation. The weighting factor in Eq. (24)is 
defined as 
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Thus according to Eqs. (24), (27), it can be seen 
that the hybrid method switches to the van Leer 
scheme at shocks and high gradient regions. 

3.3.   Solution Algorithm 

The sequence of operations to solve two-phase 
Eulerian-Eulerian flow fields are listed here: 

1. Initialize the problem with specified values for 
the primitive variables (P, T, u, v, , N),  

2. Determine the conservative vector (Q) from Eq. 
(2),  

3. Calculate the inviscid flux vectors for the vapor 
and liquid phases using Eqs. (15)-(27), 

4. Calculate the viscous flux vectors using Eqs. (2) 
and (4), 

5. Obtain the updated value of the conservative 

vector 1nQ  from Eq. (14), 
6. Determine the new values of the primitive 

variables, 
7. Implement the boundary conditions, 
8. Obtain the value of residual and check for 

convergence, 
9. If the solution is converged go to the next step, 

otherwise go to step 2, 
10. Plot the required contours and diagrams, 
11. Stop. 

4. RESULTS 

The geometry under study is a rotor tip section of a 
steam turbine, taken from Bakhtar et al. 1995. Fig. 
1 shows this geometry and computational domain 
between blades. The blade section has a large 
stagger angle )( equal to 63.27˚. The chord length 
of the blade section (p) is 42.6 mm. Also, the inlet 
flow angle () is 38˚. Moreover, inflow stagnation 
pressure and temperature are set to 99 kPa and 382 
K, respectively. As shown in Fig. 2, size of the grid 
is specified as 498×65 after grid-independency test. 
This grid is used for numerical simulation and 
illustrated in Fig. 3with the close-up near the 
leading and trailing edges.  
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Fig. 1. Geometry of rotor-tip section and 
computational domain (Bakhtar et al. 

1995); where p is pitch length, C is 
chord lengthis flow angle at 
entrance,  is stagger angle 

and is deviation angle. 

 

 
Fig. 2. Grid independency test; distribution of 
pressure coefficient (CP) on the blade surface. 

 

Fig. 3. Grid used for numerical simulation 
(498×65) with the close-up near the leading and 

trailing edges. 

4.1.   Validation 

To validate the present in-house code, the numerical 
results of the cascade flow are compared with the 
experimental data of Bakhtar et al. (1995). The 
boundary conditions for the current numerical 
simulation have been chosen identical to those in 
the experimental test such as, the inflow direction is 
-38˚ with respect to horizontal axis, the inflow 
stagnation pressure and temperature are set to 99.9 
kPa and 360.8 K, respectively. At the inlet section, 
the wetness fraction =0 and at the outlet section, 
the back pressure Pb=42.7 kPa. Comparison of the 
pressure ratio on the suction and pressure surfaces 
between numerical and experimental results is 
shown in Fig. 4. As observed in this figure, a good 
agreement between the results is obtained and the 
condensation shock on the suction surface is 
captured well.  

 
Fig. 4. Validation; comparison between 

numerical and experimental results  
(Bakhtar et al. 1995); Distribution of 
pressure ratio on the pressure and 
suction surfaces for the conditions  

(P0)in=99.9 kPa, (T0)in=360.8 K, 
Pb=42.7 kPa. The present 
computation is performed 

with grid size 498×65. 
 

4.2. Effects of Outlet Pressure Variations on the 
Flow Field 

Fig. 5 presents Mach number and wetness fraction 
contours in the passage for different outlet 
pressures. The outflow regime is supersonic for 
Pb=30, 45 kPa and subsonic for Pb=60 kPa. As 
shown in Fig. 5 (a), an oblique shock is formed at 
the trailing edge of the blade to match the outlet 
pressure in supersonic outflow cases. It is observed 
in Fig. 5 (b) that the wetness fraction increases with 
the outlet pressure reduction. For example, the 
outlet wetness fraction increases by 223% when the 
outlet pressure decreases from 60 kPa to 30 kPa. 
Also the wetness fraction decreases across the 
oblique shock due to increase in vapor temperature. 
Sequences of condensation and evaporation 
phenomena over the suction side of the blade in wet 
cases are shown in Fig. 5 (b). 
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(a) 
 

 
(b) 
Fig. 5. Comparison of contours in the passage for 

different outlet pressures, (a) Mach number 
contours, (b) Wetness fraction contours; 

 (P0)i=99 kPa, (T0)i=382 K. 
 

Fig. 6 presents distribution of wetness fraction over 
the suction side of the blade for two different back-
pressures. As observed in this figure for Pb=60 kPa, 
the value of wetness fraction on the suction side is 
almost equal to zero. Because there is lower 
expansion rate in comparison to the other case 
(Pb=30 kPa). Also wetness fraction decreases across 
the oblique shock near the trailing edge for Pb=30 
kPa. There is no droplet formation on the pressure 
side as observed in Fig. 5 (b).  

4.3. Effects of Condensation on Different 
Specifications of the Flow Field 

In this part, effects of condensation on different 
specifications of the flow field (total pressure loss 
coefficient , performance loss coefficient  and 
deviation angle ) are studied for smooth blades. 
Also contribution of each portion of loss 
mechanisms (aerodynamic, viscous and 
thermodynamic) from the total performance loss is 
specified.  and  are computed using the following 
equations: 
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where subscripts “i”, “e” and “is” indicate to inlet 
section, exit section and isentropic state, 
respectively.  

Also deviation angle shows the difference between 
flow angle and angle of camber line in the trailing 
edge, as depicted in Fig. 1. It is caused by the 
difference in the stagnation pressure between the 
suction and pressure surfaces around the trailing 
edge. 

 
 

 
Fig. 6. Distribution of wetness fraction over 

the suction side of the blade (curve cd) for back-
pressures 30 and 60 kPa. 

 
For better understanding of the deviation angle, we 
consider two separate streamlines near the blade 
surface (Fig. 7).  
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Fig. 7. Schematic representation of the 

streamlines near the blade surface. 
 
As shown in this figure, the streamlines a-b and c-d 
pass near the suction and pressure surfaces, 
respectively. They have the same value of 
stagnation pressure at inlet boundary, namely 

inP )( 0 , but their stagnation pressure value differs at 

the trailing edge. Flow direction at the trailing edge 
of the blade depends on the values of seP ,0 )(  and 

peP ,0 )(  (stagnation pressure at the trailing edge 

near the suction and pressure surfaces). 

As shown in Fig. 8 (a), flow passes tangent to the 
camber line at the trailing edge when 

pese PP ,0,0 )()(  . 

In the steam turbines, flow over the suction side 
experiences further stagnation pressure losses with 
respect to that of the pressure side, as it passes a 
sequence of condensation- and aerodynamic-shocks 
over the suction side, thus pese PP ,0,0 )()(  . In this 

conditions the stream line at the trailing edge turns 
toward the suction surface. As depicted in Fig. 8 
(b), turning of streamline at the trailing edge of the 
blade is called deviation angle. 

Fig. 9illustrates the stream lines close to the trailing 
edge of blades for both dry and wet cases and two 
different outlet pressures. As observed in this 
figure, the value of deviation angle  for supersonic 
outflow case (Pb=30 kPa) is more than subsonic one 
(Pb=60 kPa). Also wet cases have larger value of  
in comparison to dry cases. 

Fig. 10 shows variation of deviation angle  for 
various outlet pressures and different flow 
conditions of inviscid, viscous, wet and dry cases. 
As observed in this figure, fluid viscosity has 
almost no effect on deviation angle, as inviscid and 
viscous curves coincide on each other, and the 
dominant parameter in deviation angle is flow 
wetness or dryness. As shown in Fig. 10,  for the 
wet flow is more than that in dry flow, and 
decreases with back pressure Pb in both wet and dry 
cases. Quantitatively, for Pb=30 kPa, the value of 
deviation angle for wet case is 65% more than that 
in dry case. This is due to the sequences of loss 

mechanisms over the suction side of blade such as 
condensation and evaporation phenomena in wet 
cases, as depicted in Fig. 5 (b). This causes 
excessive stagnation pressure difference between 
the suction and pressure surfaces that in turn 
increases the deviation angle in wet cases. 

 

 
(a) 
 

 
(b) 

Fig. 8. Different conditions for the flow direction 
at the trailing edge of the blade; (a) flow passes 
tangent to the camber line at the trailing edge 

when pese PP ,0,0 )()(  , (b) flow deviates at 

the trailing edge toward the suction side 
when pese PP ,0,0 )()(  . 

 
Considering the wet cases in Fig. 10, when the 
outlet pressure decreases from 60 kPa (subsonic 
outflow case) to 30 kPa (supersonic outflow 
condition) the deviation angle increases by 379%. 
This is due to increase of the wetness fraction and 
formation of oblique shock in the supersonic case 
(Pb=30 kPa). Thus supersonic outflow cases (in 
both wet and dry conditions) produce much larger 
deviation angle in comparison to subsonic ones. It 
is worthwhile to emphasize from practical point of 
view that condensation changes the deviation angle 
severely, hence, additional profile losses are 
expected in downstream of wet stages. For 
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example, as shown in Fig. 10, 66.7 for the wet 
case andPb=30 kPa.  

 

 
(a) 
 

 
(b) 

Fig. 9.Representation of the stream lines at the 
trailing edge of blades for dry and wet cases;  

(a) Pb=60 kPa, (b) Pb=30 kPa. 
 

 
Fig. 10. Deviation angle vs. outlet pressure for 

different flow conditions. 

Figs. 11 (a) and (b) show, respectively, values of  
and for various outlet pressures and different flow 
conditions. As observed in these figures, values of 
 and  for wet cases are much larger than those in 
dry flow cases. This is due to thermodynamic losses 
in the case of wet flows and spontaneous formation 
of condensation shocks in the case of supersonic 
outflows. For example, in viscous supersonic 
outflow case (Pb = 30 kPa), the values of  and  
for the wet flow are, respectively, 204% and 100% 
larger than those in dry case. Also the values of 
losses  and  for the supersonic outflow cases are 
more than those in subsonic ones. This is due to the 
formation of aerodynamic- and condensation-
shocks in supersonic outflow cases.  

The prevailing feature in a non-equilibrium flow is 
that the temperature of the phases differs. This 
difference in temperature is the source of 
irreversible heat transfer between phases. 
Subsequently, the entropy generation rate 
throughout the flow field becomes relatively 
substantial and is usually referred to as 
thermodynamic losses. This source of loss solely 
exists in two-phase flow cases. Two other sources 
of losses (that exist in both dry and wet cases) are 
the aerodynamic and viscous losses. 

To determine the contribution of each of the loss 
mechanisms from the total performance loss at a 
specific back pressure, we calculate the value of 
for different flow conditions. The losses in the 
inviscid- dry flow are due to the aerodynamic losses 
of shock waves. This is shown by line segment a-b 
in Fig. 11 (b) for supersonic outflow regime. In 
subsonic flow regime the same loss is shown by 
line segment a′-b′. The aerodynamic loss in 
subsonic outflow case is due to the supersonic 
pocket as shown in Fig. 5 (a). 

The difference in between wet and dry flows 
(line segment b-d in Fig. 11(b)) corresponds to the 
thermodynamic losses in the case of supersonic 
outflow. Similar loss in the case of subsonic 
outflow is shown by line segment b′-d′ in Fig. 11 
(b). The last piece of the loss is due to viscous 
losses in wet cases, shown by line segment d-e (for 
supersonic outflow case) and d′-e′ (for subsonic 
outflow case) in Fig. 11 (b). 

Figs. 12 (a) and (b) show contribution of each of the 
loss mechanisms in supersonic (Pb = 30 kPa) and 
subsonic (Pb= 60 kPa) cases for the smooth blade.  
In both cases the minimum and maximum portions 
of the losses are due to viscous and thermodynamic 
losses, respectively. For smooth blades contribution 
of viscous losses is low in comparison to other 
source of losses (Moshizi et al. 2014).Also as 
observed in Fig. 12, portion of the viscous losses in 
subsonic outflow case (Pb = 60 kPa) is more than 
that in the supersonic outflow (Pb = 30 kPa). The 
reason is explained using Fig. 13.  

Fig. 13presents ratio of the eddy viscosity to the 
molecular viscosity )/( lt  .As shown in this 

figure, the main turbulent flow occurs in the wake 
region downstream of the blade. Also the value of 
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eddy viscosity ratio )/( lt   in subsonic case is 

larger than that in supersonic outflow condition. It 
is also evident that the territory of turbulent region 
in subsonic case is bigger. As a result, larger 
viscous dissipation mechanisms exist in subsonic 
outflow condition that produce excessive losses in 
this case. 
 

(a) Total pressure loss coefficient () 

 
 
(b) Performance loss coefficient() 

 

Fig. 11. Comparison of losses for wet and dry 
cases at different back pressures:  (a) Total 
pressure loss coefficient  (b) Performance 

loss coefficient  

5. CONCLUSIONS 

In this paper, the AUSM-van Leer hybrid scheme 
has been used to solve the transonic condensing 
two-phase flow around a turbine rotor tip section. 
The dominant solver for almost the whole domain is 
the non-diffusive scheme of AUSM (Liou and 
Steffen 1993). In regions with large gradients, e.g. 
in and around condensation- and aerodynamic-
shocks, a smooth transition from non-diffusive 
AUSM scheme to the diffusive van Leer scheme 
guarantees a robust hybrid scheme throughout the 
computational domain. The eddy viscosity was 
determined using the SST model. According to the 

results obtained in this study, it is observed that: 

(a)Supersonic outflow ࢈ࡼ = ૜૙ ࢙࢏,ࢋࡹ) ࢇࡼ࢑ = ૚. ૝૞) 

 
 (b) Subsonic outflow ࢈ࡼ = ૟૙ ࢙࢏,ࢋࡹ) ࢇࡼ࢑ = ૙. ૢ૙) 

 
Fig. 12. Contribution of each of the loss 
mechanisms from ; Viscous wet flow 
passing around the smooth blade with 

the conditions (P0)i=99 kPa, (T0)i=382 K 
and (a) Pb=30 kPa, (b) Pb=60 kPa. 

 

 

Fig. 13. Distribution of the eddy viscosity ratio 

)/( lt  for wet case and two different back 

pressures. 
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-  Suction surface has more expansion rate in 
comparison to pressure surface. Thus, condensation 
rate and wetness fraction near the suction side are 
more than those in pressure side. 

-  For wet cases, the values of ,  and are more 
than those in dry cases. This is due to condensation 
and released latent heat in wet cases. For example, 
in viscous supersonic outflow case (Pb = 30 kPa), 
the values of ,  and  for the wet flow are, 
respectively, 204%, 100% and 65% larger than 
those in dry case. 

-  The values of ,  and for supersonic outflow 
cases are more than those in subsonic ones. This is 
due to higher value of condensation rate and 
formation of oblique shock in the supersonic 
outflow cases. For example, for Pb=30 kPa 
(supersonic outlet) the values of ,  and are, 
respectively, 126%, 29% and 379% larger than 
those in Pb=60 kPa (subsonic outlet). 

-  Fluid viscosity has negligible effect on deviation 
angle in both subsonic and supersonic outflow 
cases. 

- For smooth blades, either in subsonic or 
supersonic, and wet or dry cases, contribution of 
viscous losses is low in comparison to other 
source of losses. Hence, utilization of inviscid 
solvers has enough accuracy to simulate the 
transonic two-phase condensing flows.  

-  Non-equilibrium condensation has two important 
effects on the behavior of the flow field:  

It changes the outflow direction from its on-design 
condition. Thus flow entering to the next blade 
deviates from its on-design condition and, hence, 
produces additional losses. This matter should be 
considered in the design process of the blades 
located after the nucleation region in the steam 
turbines.  

Also, the non-equilibrium condensation increases 
the stagnation pressure loss and total entropy 
generation and decreases the turbine efficiency. 
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