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ABSTRACT 

In this article, we have studied the combined effects of Newtonian and Joule heating in two-dimensional flow 
of Williamson fluid over the stretching surface. Mathematical analysis is presented in the presence of viscous 
dissipation. The governing partial differential equations are reduced into the ordinary differential equations by 
appropriate transformations. Both series and numerical solutions are constructed. Graphical results for the 
velocity and temperature fields are displayed and discussed for various sundry parameters. Numerical values 
of local skin friction coefficient and the local Nusselt number are tabulated and analyzed. 
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NOMENCLATURE 

1A first Rivlin Erickson tensor

0B uniform magnetic field

c dimensional constant

fxC local skin friction coefficient 

pc specific heat

 , 1 5iC i    constants

Ec Eckert number

sh heat transfer coefficient

I identity tensor
k thermal conductivity

1 2,L L  Linear operators 

M  the Hartman number 

xNu local Nusselt number

p pressure

Pr Prandtl number
q embedded parameter

wq surface heat flux

Rex local Reynolds number 

 ,f
m m

R R  mth order nonlinear operators 

T temperature
T  ambient fluid temperature  

wU stretching surface velocity

 ,u v  velocity components 

We Weissenberg number

 ,x y  spatial co-ordinates 

 kinematics viscosity
f dimensionless stream function

 0 0,f  initial approximations of velocity and 

temperature 

( , )m mf   particular solutions of velocity and 

temperature fields 
 dynamic viscosity

0 shear rate viscosity 

 specific heat
 time rate constant

ij


components of shear stress 

 conjugate parameter

 dimensionless temperature
  second invariant strain tensor 
 transformed coordinate
 shear stress

xy wall shear stress

 ,f    non-zero auxiliary parameters 

 electrical conductivity
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1. INTRODUCTION 

Boundary layer flows over a stretching surface have 
great importance in industrial and engineering 
processes. Such types of flows occur in glass fiber 
and paper production, extrusion processes, 
electronic chips, crystal growing etc. (Makinde 
(2011), Hayat et al. (2012) and Turkyilmazoglu and 
Pop (2013)). On the other hand many researchers 
are involved to investigate the boundary layer flows 
of non-Newtonian fluids. This is due to the fact that 
the rate of heat transfer in non-Newtonian fluid is 
quite different from those of a Newtonian fluid. 
Thus several studies dealing with the flow and heat 
transfer in non-Newtonian fluids exist (Hayat et al. 
(2012), Baoku et al. (2013), Rashidi et al. (2012), 
Hayat et al 2012), Shateyi et al. (2010), 
Bhattacharyya et al. (2011) and Mukhopadhyay 
(2013)). It is known that the non-Newtonian fluids 
in view of their diverse characteristics are already 
described by many constitutive equations. 
Williamson fluid is one of the subclasses of non-
Newtonian fluids which has not been given due 
attention. The Cauchy stress tensor in such fluid is 

    1
0 11 ,p A 

 
      

I                (1) 

where p  is the pressure, 0  is the zero shear rate 

viscosity,   is the infinite shear rate viscosity,   

is the time constant and   is defined as  

1
.

2 2ij ji
i j

   
                                       (2) 

where   is the second invariant strain tensor. We 
consider the constitutive equation (1) for the case 
when 0   and 1  . The component of extra 

stress tensor therefore becomes 

 0 11 .A                                                       (3) 

where the first Rivlin -Erickson tensor is 

   1 grad gradA V V    

in which    denotes the matrix transpose. Quite 

recently, Dapra and Scarpi (2007) analyzed the 
perturbation solution for pulsatile flow of a non-
Newtonian Williamson fluid in a rock fracture. 
Noreen et al. (2012) investigated the peristaltic flow 
of a Williamson fluid in an inclined asymmetric 
channel. Interaction of heat transfer in peristaltic 
pumping of Williamson fluid in a channel has been 
studied by Vasudev et al. (2010). Nadeem and 
Akram (2010) have discussed peristaltic flow of 
Williamson model in an asymmetric channel. 
Nadeem and Akber (2012) studied the effects of 
mixed convection heat and mass transfer on 
peristaltic flow of Williamson fluid in a vertical 
annulus. 

Newtonian heating is the heat transfer rate for 
which a finite heat capacity is proportional to the 
local surface temperature from the bounding 

surface. It is usually known as the conjugate 
convective flow. Salleh et al. (2010) considered the 
steady mixed convection boundary layer flow about 
a solid surface generated by Newtonian heating in 
which the heat transfer from the surface is 
proportional to the local surface temperature. They 
solved the problem numerically by using an implicit 
finite difference scheme known as the Keller-box 
method. Hayat et al. (2012) studied the boundary 
layer flow and heat transfer in a second grade fluid 
over a stretching sheet in the presence of Newtonian 
heating. They noted that temperature profiles and 
heat transfer rate significantly increase by 
increasing the conjugate parameter for Newtonian 
heating. Magnetohydrodynamic three-dimensional 
flow of couple stress fluid in the presence of 
Newtonian heating was addressed by Ramzan et al. 
(2013). Niu et al. (2010) analyzed the stability of 
thermal convection of an Oldroyd-B fluid in a 
porous medium with Newtonian heating. 

It is found that the Newtonian heating effects in 
two-dimensional flow of Williamson fluid over a 
stretching surface are not reported yet in the 
literature. Therefore the object of present 
communication is to study this problem. The series 
solutions of velocity and temperature are developed 
by homotopy analysis method HAM (Liao (2012), 
Hayat et al. (2012), Farooq et al. (2014), Hayat et 
al. (2014), Rashidi et al. (2013), Abbasbandy et al. 

(2013), Turkyilmazoglu (2012), Shafiq et al. 

(2013), Rashidi et al. (2014), Motsa et al. (2012), 
Ellahi et al. (2012), Hayat et al. (2014), Hayat et al. 
(2015), Sheikholeslami et al. (2014) and Hayat et 
al. (2015)). The numerical solutions are obtained by 
MATLAB. The effects of various parameters on the 
velocity and temperature profiles are discussed 
through graphs. The skin friction coefficient and 
local Nusselt number are computed and examined. 

2. MATHEMATICAL 
FORMULATION 

We consider the two-dimensional boundary layer 
flow of an incompressible Williamson fluid. The 
flow is induced due to the stretching sheet with 
linear velocity. Constant magnetic field is applied 
perpendicular to the plane of stretching surface i-e 
along y   axis. There is no external electric field 
and thus polarization effects are neglected. Induced 
magnetic field is ignored subject to the assumption 
of small magnetic Reynolds number. Heat transfer 
analysis is carried out in the presence of Newtonian 
heating. The viscous dissipation and Joule heating 
effects are present. The governing two-dimensional 
boundary layer flow equations for the flow under 
consideration are 

0,
u v

x y

 
 

 
                                                        (4) 

22 2
0

2 2
2 ,

Bu u u u u
u v u

x y yy y


 


    

    
   

      (5) 
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u
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
 




    
        

  
   

               (6) 

with the boundary conditions 

  ( ,0)
,0 ( ) ,  ( ,0) 0,  ,

0,          when   ,

s
T x

u x U x cx v x h T
y

u T T y


    


  

  (7)                     

 

where u  and v  are the velocity components along 
the x   and y   directions respectively,   the 
fluid density,   the electrical conductivity of the 
fluid,   the kinematic viscosity, c  the stretching 
rate, K  the thermal conductivity, T  the 
temperature of the fluid, pc  the specific heat, sh  

the heat transfer parameter and T  the ambient 

temperature. 

Using 

       , ,  , 2 ,

 ,  ,

u x y cxf v x y c f

T T c
y

T

  

 






  


 

             (8)       

the incompressibility condition is automatically 
satisfied while the other equations and boundary 
conditions give 

 2 22 2 0,f f ff Wef f M f           

     0 1,  0 0,  0,f f f                                 (9) 

2 3

2 2

2Pr  Pr Pr

Pr 0,

f Ecf W e Ecf

M Ecf

      

 
 

  (0) 1 0 ,  ( ) 0,                                  (10) 

where prime denotes differentiation with respect to  
,  Pr  the Prandtl number, We  the local 

Weissenberg number, M  is the Hartman number,  
Ec   is the Eckert number and   is the conjugate 

parameter for Newtonian heating. These quantities 
are defined as 

 

2
2 0 0

2
0

,  ,  ,

Pr ,  ,  .p
s

p

B c
M We U

c

c cx
Ec h

K c T a

 


  

 


   

  

               (11) 

The skin friction coefficient fxC  and the local 

Nusselt number xNu  are given by the following 

expressions 

   2
,    ,xy w

f x
xq

C Nu
K T Tcx



 
 


               (12) 

in which the wall skin friction xy  and the wall 

heat flux wq  are 

2

0 0

0

0

,

 .

xy

y

w
y

u u

y y

T
q K

y

  




            

 
    

                      (13) 

Equations (12) and (13) through dimensionless 
variables yield 

     

   

1/2

1/2

Re {1  0 } 0 ,

1
Re 1 ,

0

x f

x x

C We f f

Nu 




  

 
   

 

                 (14) 

where  
21/2Re cx

x   is the local Reynolds number. 

3. METHODS OF SOLUTION 

3.1   Homotopy Analytic Solution 

The velocity and temperature for homotopy 
solutions can be expressed in the set of base 
functions 

  exp 0, 0 ,k n k n                                 (15) 

with 

   ,
0 0

exp ,k k
m m n

n k

f a n  
 

 
                    (16) 

 ,
0 0

( ) exp ,k k
m m n

n k

b n   
 

 
                       (17) 

where  ,
k
m na   and  ,

k
m nb   are the constants. We 

have chosen the following initial guess   0f    and  

 0    and the auxiliary linear operators  1L   and  

2L   from the rule of solution expression and the 

boundary conditions 

       
0 0

exp
1 exp ,  ,

1
f

 
   




   


         (18) 

   
3 2

1 23 2
,  .

d f df d
L f L

dd d

   
 

            (19) 

The operators have the following properties 

   1 1 2 3exp exp 0,L C C C                      (20) 

   2 4 5exp exp 0.L C C                            (21) 

where  1 5iC i    are the constants. 

3.2  Numerical Solution 

Numerical solution is accomplished with MATLAB 
built-in-function bvp4c. bvp4c is constructed to 
solve a boundary value problems (BVPs). The 
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MATLAB built-in-function bvp4c is a higher order 
finite difference method which implements 3-stage 
Lobatto IIIa formula. The results obtained with 
bvp4c are highly accurate. The only challenging 
part while using bvp4c is to suggest a suitable initial 
guess for the ODEs. 

4. CONVERGENCE ANALYSIS 

The convergence of series solutions and the 
approximation rate depend upon auxiliary 
parameters f  and  . The appropriate values of 

auxiliary parameters f  and   are useful to 

adjust and control the convergence of the obtained 
solutions. Therefore Fig. 1 includes the   curves 
for velocity and temperature fields at 14th order of 
approximation. It is noticed that the suitable ranges 
of  f and  are 1.7 0.5f      and 

1.6 0.3    . 

 

 
Fig. 1. Flow sketch. 

 
Table 1 Convergence of homotopy solutions 
when 0.2,We  0.2,M  0.2,  Pr 1, and 

0.7Ec  . 

Order of approximation  0f   (0)  

1 1.1830 0.28635 
5 1.4149 0.35999 
15 1.4784 0.37516 
20 1.4829 0.37550 
29 1.4853 0.37559 
30 1.4854 0.37559 
50 1.4854 0.37559 

 

5. RESULTS AND DISCUSSION 

The aim of this section is to examine the effects of 
Weissenberg number We , Hartman number M , 
Prandtl number Pr , Eckert number Ec  and 
conjugate parameter of Newtonian heating   on 

the velocity and temperature fields. Figs. 2-8 
analyze the variations of such parameters. The 

variation of skin friction coefficient 1/2Rex fxC  and 

the local Nusselt number 1/2Rex xNu  for different 

parameters are also computed in the Tables 2 and 3. 
Fig. 2 illustrates the influence of Weissenberg 

number We  on the velocity f  . Clearly f   and the 
associated momentum boundary layer thickness 
decrease when We  increases. The influence of M  
on the velocity profile f   is observed from Fig. 3. 
It has been noticed that the magnetic field retards 
the flow. 

 
Table 2 Numerical values of skin friction 

coefficients 1/2Rex fxC  for different values of 

physical parameters. 

M  
We  

1/2Rex xC  

 HAM Numerical 
0.1 0.2 1.044 1.044 
0.2  1.052 1.052 
0.3  1.067 1.068 
0.4  1.088 1.088 
0.1 0.0 1.178 1.178 

 0.1 1.119 1.119 
 0.2 1.043 1.043 
 0.3 1.001 1.004 

 
Table 3 Numerical values of Nusselt number  

1/2Rex xNu  for different values of physical 

parameters. 

M  
We  Pr  Ec  

1/2Rex xNu  

 HAM Numerical 
0.0 0.2 1 0.7 0.4296 0.4295 
0.1    0.4279 0.4279 
0.2    0.4228 0.4229 
0.3    0.4149 0.4150 
0.1 0.0 1 0.7 0.4298 0.4298 

 0.1   0.4292 0.4293 
 0.2   0.4279 0.4279 
 0.3   0.4242 0.4242 

0.1 0.2 1.0 0.7 0.4279 0.4279 
  1.1  0.4354 0.4354 
  1.2  0.4406 0.4405 
  1.3  0.4454 0.4453 

0.1 0.2 1 0.5 0.4779 0.4780 
   0.6 0.4505 0.4506 
   0.7 0.4279 0.4279 
   0.8 0.4090 0.4091 

 
 

 
Fig. 2.  curves for the functions f and θ at 14th-

order of approximation. 
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Fig. 3. The influence of We on f′. 

 

 
Fig. 4. Influence of M on f′. 

 
Figs. 4-8 show the effects of M ,We , Pr , Ec and   
on the dimensionless temperature    . The 

influence of M  on the temperature is observed in 
Fig. 4. The temperature and thermal boundary layer 
thickness are increasing function of M . Lorentz 
force is a resistive force which opposes the fluid 
motion. As a result heat is produced and thus the 
thermal boundary layer thickness increases. 
Magnetic field can control the flow and heat 
transfer characteristics. Fig. 5 clearly indicates that 
an increase in the Weissenberg number We  leads to 
a decrease in the temperature profile and thermal 
boundary layer thickness. Fig. 6 portrays the effects 
of Pr  on     versus  . It is observed that when 

we increase the value of Prandtl number Pr  the 
dimensionless temperature     increases and its 

related boundary layer thickness is reduced. 
Physically the Prandtl number is the ratio of 
momentum to thermal diffusivity. Larger values of 
Pr  has higher momentum diffusivity while smaller 
thermal diffusivity. This higher momentum 
diffusivity and smaller thermal diffusivity 
corresponds to thinning of thermal boundary layer 
thickness. Figs. 7 and 8 describe the effects of Ec  
and   on     respectively. Both Ec  and   

increase the temperature profile    . The 

Newtonian heating parameter   depends on the 

heat transfer coefficient sh . Increasing in   leads 

to an increase in sh  that corresponds to the higher 

temperature. The numerical values of skin friction 

coefficient 1/2Rex fxC  and the local Nusselt number  

1/2Rex xNu   for different values of M ,  We , Pr  

and  Ec   are computed in the Tables 2 and 3. From 
Table 2 it is clearly seen that the numerical and 
analytical solutions are in a very good agreement. 
The magnitude of skin friction coefficient increases 
for larger values of  M   whereas it decreases for  
We  . Table 3 shows that the local Nusselt number 
increases for larger values of  Pr   while it has 
opposite behavior for  M  ,  We   and  Ec  . It is 
also clear from this table that both numerical and 
analytical solutions are in a very good agreement. 

 

 
Fig. 5. Influence of M on θ. 

 

 
Fig. 6. Influence of We on θ. 

 

 
Fig. 7. Influence of Pr on θ. 

 

6. FINAL REMARKS 

This attempt examined the influence of Newtonian 
heating in flow of Williamson fluid over a 
stretching surface with viscous dissipation and 
Joule heating. The analytic and numerical solutions 
have been computed by HAM and the built in 
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solver bvp4c of the software MATLAB 
respectively. The key points of present study are 
listed below. 

 Table 1 ensures that the convergence of the 
functions f  and     are obtained at only 24 
th order of approximation. 

 Behaviors of We  and M  on the velocity and 
boundary layer thickness are similar. 

 Influence of Pr  is to decrease the temperature 
field ( )   while temperature increases for 

higher values of Eckert number Ec  . 

 Skin friction coefficient increases for larger 
values of M   

 Behaviors of M  and We  on the temperature  
( )    are opposite. 

 Analytical results are in an excellent agreement 
with the numerical solutions for all values of the 
physical parameters. 

 

 
Fig. 8. Influence of Ec on θ. 

 

 
Fig. 8. Influence of γ on θ. 
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