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ABSTRACT 

The present work is proposed a numerical parametric study of heat and mass transfer in a rotating vertical 
cylinder during the solidification of a binary metallic alloy. The aim of this paper is to present an enthalpy 
formulation based on the fixed grid methodology for the numerical solution of convective-diffusion during 
the phase change in the case of the steady crucible rotation.  The extended Darcy model including the time 
derivative and Coriolis terms was applied as momentum equation. It was found that the buoyancy driven flow 
and solute distribution can be affected significantly by the rotating cylinder.  The problem is governed by the 
Navier-Stokes equations coupled with the conservation laws of energy and solute. The resulting system was 
discretized by the control volume method and solved by the SIMPLER algorithm proposed by Patankar. A 
computer code was developed and validated by comparison with previous studies. It can be observed that the 
forced convection introduced by rotation, dramatically changes the flow and solute distribution at the 
interface (liquid-mushy zone). The effect of Reynolds number on the Nusselt number, flow and solute 
distribution is presented and discussed.  

Keywords: Vertical Solidification; Finite Volume method; Numerical analysis; Heat and mass transfer; Phase 
Change; Bridgman Growth. 

NOMENCLATURE 

Ar aspect ratio  
g gravitational acceleration 
H height of enclosure 
k thermal conductivity 
L length of enclosure, m 
Nu Nusselt number  
Pr Prandtl number   
p dimensionless pressure 
Ra Rayleigh number    
r dimensionless radial coordinate 
Ste Stefan number 
t dimensionless time 
T dimensionless temperature 
ΔT temperature difference  
u dimensionless radial velocity 

v dimensionless axial velocity 
z dimensionless axial coordinate 

α thermal diffusivity 
βT coefficient of thermal expansion 
βs coefficient of solutal expansion 
υ kinematic viscosity 
ρ density 

Subscripts  

c cold wall 
H hot wall 
l liquid 
s solid 

1. INTRODUCTION

The study of fluid flow coupled with heat and mass 
transfer in rotating cylinder is of great importance 
due to many engineering applications in electrical, 
mechanical and nuclear engineering field. Several 
works containing such study were accomplished by 
many authors whose take into account various 
physical phenomena of heat flow and solute 
distribution during the phase change.  

Using external forces method to control the flow 
and solute distribution in the melt has been 
experimentally and numerically investigated 
(Brown 1989; Muller and Ostrogorsky 1994; Lukka 
2006; Stelian and Duffar 2015; Aberkane et al. 
2015). Among the studied methods for optimization 
of crystal growth, the most important are the 
magnetic fields (Lan  2006; Inatomi et al. 2000; 
Khan et al. 2013) and vibration (Lan 2000). Crystal 
growths in a centrifuge (Lan 2001; Mueller et al. 
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1992) and under reduced gravity (Chen and Zhong 
2001) have also been proposed. However, the 
implementation of these previous techniques is 
usually costly and inconvenient.  

Scheel and Schulz-Dubois (1971) first introduced 
the acceleration crucible rotation technique (ACRT) 
to enhance the melt flow in vertical Bridgman 
crystal growth. Lan et al. (2000) adopted this idea 
for the crystal growth of ZnCdTe.  They showed 
that the convection in the melt could be 
significantly suppressed by steady rotation. RoRoy 
et al. (2010) also obtained the scaling law of flow 
damping by the Coriolis force. He showed that the 
flow intensity decreased linearly with the rotation 
speed.  

In order to reduce the unsteady and asymmetric 
segregation due to an arbitrary gravity orientation 
during crystal growth, Babalola et al. (2009) and 
Zahang (2010) proposed a possible application of 
using rotation. They showed by an asymptotic 
analysis that the rotation increased only the radial 
segregation. Bellmann et al. (2011) have been 
performed axisymmetric transient simulations of the 
vertical Bridgman growth of mc-Silicon to study the 
effect of the accelerated crucible rotation technique 
(ACRT) on the melt flow and impurity segregation. 
They showed that the sinusoidal ACRT rotation 
cycle considered in their research suppressed 
mixing in the melt near the center and created a 
limited diffusion in mass transport. H. Mei et al. 
(2013) simulated six typical ACRT modes. They 
adopted the standard derivation to evaluate the 
homogeneous level of solution concentration 
suggested the optimum ACRT mode and time 
period.  M. Sekhon and S. Dost (2015) 
demonstrated by a numerical simulation that the 
potential of crucible rotation as a viable alternative 
to static magnetic field in inhibiting buoyancy 
induced flows in the Growth of SiGe. 

In this paper we present for the first time a complete 
parametric numerical study of a solidification 
coupled with ACRT. The numerical model based on 
the Boussinesq approximation is presented.  The 
influence of rotation on the flow, isotherms and 
solute distribution is analyzed via dimensionless 
parameters.  

2. MATHEMATICAL MODEL 

Consider the natural convection motion coupled 
with the phase change inside the cylindrical 
container with the top and bottom walls held at hot 
and cold temperatures respectively and mounted in 
a rotating system similar to that shown in Fig. 1. 
The melt is assumed incompressible and Newtonian 
while the flow is laminar. During phase change, 
three zones appear: liquid, mushy and solid zones. 
The mushy zone is treated as a porous medium. 

Based on the Boussinesq approximation, the 
transport process in the melt during solidification 
can be described by the conservation laws for the 
heat and mass transfer coupled with the equations 
governing the momentum in the case where the 
angular speed Ω is constant. The governing 

equations are given in dimensionless form. We 
distinguish:  

2.1 The continuity Equation 

 ru1 v
0

r r z

 
 

 
                                                 (1) 

 

 
Fig. 1. Schematic of vertical Bridgman Growth. 

 

where r and z are the respective coordinate axes in 
the radial and axial directions,  u (respectively v) 
denotes  the radial (respectively axial) velocity. 

2.2  The Naviers – Stokes Equations 

The first component u satisfy 

2

2

1 1

Re

Re

u u u w p u
u v r

t r z r r r r r

u u A
u

z z r

                    
       

 

(2)  

here w is the azimutal velocity and p is the pressure 
The characteristic rotational Reynolds number is the 
ratio between inertia and viscous forces: 

2Re R /                                                          (3) 

where  is a characteristic rotation rate of melt. 

 

The term A / Re  describes the flow in the mushy 
zone.  In the phase change problems, the mushy 
zone is assimilated to a porous medium of a porosity 
denoted by A (Voller and Prakash (1987)). 

According to Darcy's law, A is derived from the 
Carman-koseny (1937) equation as:  

   2 3
l lA 1 f / f q                                 (4)  

with   

l sf 1 f                                                            (5) 

where fs  is the solid fraction, defined  by:   
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(6) 

where TLiquidus is the liquidus temperature at which 
solid formation starts and TSolidus  is the solidus 
temperature. 

Remark:  

In metallurgical solidification of binary alloy, the 
function fs (T) will depend on the nature of the 
solute distribution and the associated phase change 
equilibrium diagram.  In the present work, we have 
chosen a simple linear form for the local solid 
fraction fs (T)  given in the Eq. (6). 

The constant   depends on the mushy zone 
morphology. According to Voller and Prakash 1987,  
  equals 1.6×103. The constant q is introduced to 
avoid division by zero and is equal to 0.001. 

The second component of the velocity v satisfies the 
following equation:

 

    2

v v v p 1 1 v v
u v r

t r z z Re r r r z z

A Ra
v T 1 N C 1

Re Pr Re

                                    

      

(7)  

The Rayleigh number Ra   and buoyancy ratio N  
in the source terms of the momentum equation are 
defined as:  

   3
TRa g TR /                                           (8) 

 C TN C/ T                                                       (9) 

where g is the gravitational acceleration. ∆T is the 
difference between the hot and cold temperature. ΒT 
and ΒC are the thermal and solutal expansion 
coefficients respectively. Pr is the Prandtl number 
defined by pPr C /    . 

The azimutal velocity satisfies: 
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(10)  

2.3   The energy Equation 

s
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(11)  

The Stefan number Ste= (CP∆T)/ ∆H scales the heat 
fusion ∆H released during the solidification to the 
sensible heat in the melt. 

2.4   The Dopant Equation  

The liquid concentration Cl satisfies to the 
following equation: 

 

   

l l l
s

sl l
p l

C C C
1 f u v

t r z
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ReSc r r r z z t
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(12)  

where the Schmidt number SC  is given by Sc = υ/D 
and kp  is a real number denoting the partition 
coefficient of the solute between the solid and liquid 
regions. 

Equations (1)-(12) summarize the final form of the 
governing equations that characterize the flow, heat 
and mass transfer during phase change process. 
These equations have to be solved in a 
computational domain which is enclosed by solid 
boundaries.  

2.5   Associated Boundary Conditions 

For the problem of thermosolutal convection in a 
vertical cylindrical cavity, no slip velocities are 
assumed on all the boundary walls. Thus, the 
Dirichlet boundary conditions for velocity on all the 
walls can be imposed as: 

u = v = 0                                                               (13) 

The energy equation is solved by assuming Dirichlet 
temperature boundary condition on the top and 
bottom walls of the cavity. The lateral surface of the 
cylinder is assumed to be adiabatic for heat and 
mass transport. These conditions can be summarized 
as follows: 

At the top  0 r 1, z H / R  : 

c
w r / R , T 1, 0.

r


  


                (14) 

At the lateral surface   r 1, 0 z H / R    

T c
w 1, 0.

z z

 
  

 
                  (15) 

At the bottom  0 r 1, z 0   

c
w r / R, T 0, 0.

r


  


                    (16) 

3. NUMERICAL METHOD AND 
VALIDATION 

The whole convection-diffusion Eqs. (1) - (16) were 
spatially discretized by the finite volume method. 
The semi-implicit time marching scheme is  
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                                    (a) 

     

                                       (b) 

 

t = 3 min 

    
 

 

t = 10 min 

     
 

 

t = 19 min 

Fig. 2. Comparison of experimental and numerical data : a) Our  results    b) Gau and 
Viskanta (1986).   

 

used for the temporal part. The coefficients of the 
discretized equations were expressed based on the 
power – law scheme which is not particularly 
expensive to compute and provides an extremely 
good representation of the exponential behavior. 

 The procedure used for the calculation of the flow 
field is the classical SIMPLER method. This 
procedure is well described in Patankar (1980). A 
line-by-line technique is applied to solve the 
resulting system of algebraic equations. 

 In the present work, an irregular exponential 
distribution of nodes in the radial direction in 
conjunction with a uniform distribution of nodes in 
z direction was used. The domain is meshed by 
90 30 cells.  

 The convergence criterion was set at a maximum 
relative error for all dependent variables 

 u, v, T,C  to be less than 410  and corresponds to 

the satisfaction of the following inequality:  

n 1 n
4

n
Max 10


 




         (17) 

The developed code solves the unsteady state 
equations by introducing a non-zero time derivative 
(dummy time variable).  

Before conducting such numerical investigations, 
the physical model was first used for validation 
compared with experimental data obtained by Gau 
and Viskanta (1986). Their experiment simulated is 
the melting of a Gallium slab heated from one side. 

 Initially the Gallium sample has a rectangular 
shape and is confined in a rigid cavity whose 
horizontal walls are adiabatic (dimensions of the 
layer, 8.89cm×6.35cm). The initial temperature 
equals to Tp=28 0C below the melting temperature 
that is Tm=29.78 0C.   

Suddenly the left vertical wall is preheated at a 
temperature TH = 380C while the vertical wall at the 
right side is kept at Ts = Tp in order to induce the 
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melting process in unidirectional way. Their paper 
reports on the role of natural convection on solid-
liquid interface motion and heat transfer during 
melting of a pure metal (gallium) on a vertical wall.  

The measurements of the position of the phase-
change boundary as well as of temperature 
distribution were used as a qualitative indication of 
the natural convection flow. Numerical 
investigations were conducted using 2080 cells and 
a dimensionless time step equal to 10-4; this last 
value of the time step was sufficient to give 
accurate results. Fig. 2 shows the shape and 
location of the solid–liquid interface at several 
times during the melting process. Thus our 
numerical results give a good agreement compared 
to those of Gau and Viskanta (1986). 

4. RESULTS AND DISCUSSION 

The properties of the binary alloy Pb 18% Sn were 
obtained from Nouri et al. (2013). The table 1 below 
shows the constants and variables required for the 
calculations. The liquid metal, characterized by a 
Prandtl number equal to 0.01, is placed in a 
cylindrical enclosure of aspect ration (H/R=3) 
heated at the top wall.  
 

Table 1 Thermo physical properties used in 
calculations 

Quantity Symbol Value 

Density (kg/m3) ρ 7.16 ×103 

Dynamic  viscosity ( Ns/m-2) µ 1.39×10-3 

Thermal conductivity 

(W/0C m) 
λ 32.90 

Specific heat (J/ °C.Kg) cp 253.60 

Thermal expansion coefficient 
of (C-1) 

βT -8.75×10-5 

Solutal expansion coefficient βc
 5.25×10-3 

Solute diffusivity(m2/s) D 4.50×10-9 

Partition coefficient kp 4.20 

Latent heat (J/kg) H  59.150×103 

 

Due to the symmetry of the geometry, boundary 
conditions and solution only half of the field was 
considered. At the initial time, the alloy is assumed 
to be at rest (u=v=w=0) and its temperature equal to 
the liquid temperature (T=1).  

The dimensionless concentration equals 1 at time 
t=0. The crystal’s rotation speed is represented by 
the Reynolds number 1 ≤ Re ≤ 10.  A sequence of 
simulations was performed to demonstrate the 
combined effect of the natural convection, 
segregation and forced convection which created by 
the melt’s rotation.   

Calculations in unsteady state were performed with 
varying the forced convection level by changing the 
Reynolds number and keeping the Rayleigh number 
and Buoyancy force ratio constant. The thermally-
driven flows, represented by the stream function ψ 

values, temperature field, solute distribution, 
pressure and angular velocity have been computed. 
Results are presented in dimensionless form of 
streamlines, isotherms, iso-concentration and iso-
pressure at different Reynolds number. 

Axi-symmetric simulations are performed in this 
paragraph in order to study the influence of the 
rotation on the morphological stability of the 
growth. The fig.3 shows that the azimutal velocity 
field w, temperature profile T, pressure P, flow 
patterns, solute distribution and the solidification 
fraction development fs are affected by the 
generated rotation.  

The case of no rotation (w = 0), the obtained results 
illustrate clearly that the natural convection created 
by the top and bottom wall temperatures has a 
strong effect on the flow patterns, heat transfer and 
on the solute distribution at the liquid-mushy zone 
interface. In this case, a bi-cellular flow patterns is 
observed and the solute is not yet completely 
diffused in the mushy zone. When the rotation is 
considered and the Reynolds number increases, the 
negative flow occupies more space inside the 
cavity. Such reserved effect indicates that the forced 
convection created by the rotation becomes more 
effective. 

When Re=1, the flow generated by the mixed 
convection is very low in the melt.  This fact results 
an equality of the negative and positive flow which 
corresponds to an equilibirium situation. It should 
be noted that the flow generated by the rotation was 
sufficient to reverse the flow generated by the 
buoyancy forces. In this case of low rotation rate, 
the fig.3a-b shows a perfect parallelism of the 
isotherms and isobars. These results demonstrate 
that the convection created by the rotation stratifies 
the heat transfer and pressure field. Under these 
conditions, the solute distribution is extented until 
the mushy zone and the mass transfer mode 
becomes diffusive. 

The applied rotation induces two opposite flow cells 
when Re=5, as shown in fig.3-c. The negative flow 
created by rotation,  influences on the thermal field, 
solute distribution and on the solid fraction 
development. In this case, the cooling of the melt is 
prolonged and the concentration liquid is slowly 
transported  by diffusion from the dissolution 
interface to the mushy zone. 

   At higher speed of rotation (Re ≥ 10), the positive 
flow develops  in the middle of the negative one 
and the flow patterns becomes multicellular. This 
phenomena destabilizes more quikly the solute 
distribution at the interface. In this case The 
azimutal velocity profil  is affected. 

The analysis of the rotation effect on the rate of heat 
transfer has been done via the average Nusselt 

numbers topNu and bottomNu  computed 

respectively at the top and bottom of the cavity in 
cylindrical coordinates:  

 top
z H/R

T
Nu rdr

z 




                        (18) 
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(a)                       (b)                             (c)                           (d)                              (e)                          (f) 
Without rotation (w = 0) 

      
 

Re 1  

      
Re 5  

      

Re 10  

    
 

 

Fig. 3. Effect of Reynolds number on; a) Angular Velocity, b) Temperature Profile, c) Pressure Profile, d) 
Streamlines, e) Solidification Fraction. 

 
 

 bottom
z 0

T
Nu rdr

z 




                           (19) 

In fig. 4 for Re=10, the heat transfer at the top of the 
cavity is more important than one at the bottom. In 
order to analyze better the effect of the Reynolds 

number on the Nusselt number, our analysis is 
focused at the top of the cavity. 

Fig. 5 shows the effect of the forced convection 
created by the rotation on the average Nusselt 

number  topNu during the phase change.  Note that 
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for heigher  values of Reynolds number, the heat 
transfer is very important and done in a short time.  
Therefore when the forced convection becomes 
important, the phase change becomes faster; such 
situation is not recommended in the crystal growth.  
This fact influences the flow patterns and solute 
distribution in the  mushy zone. 
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Fig. 4. Rate of heat transfer  at the top and 
bottom of the cavity represented by the Nusselt 

number for Re = 1. 
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Fig. 5. Effect of the rotation on the average 

Nusselt number calculated at the top of cavity. 

 
It is observed from the fig.6 that the local Nusselt 
number at high steady rotation rate is more 
important than Nusselt number calculated at low 
steady rotation rate. This result confirms what was 
found above. 
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Fig. 6. Effect of the rotation on the local Nusselt 
number calculated at the top of cavity. 

 

The radial segregations have been calculated by the 
following relationship: 

 max min avC C C / C                                          (20)
 

where maxC , minC  and  avC  are, respectively, the 

maximum, minimum and radially average 
interfacial concentration.  
 
Fig. 7 illustrates that the oscillations increases 
vigorously with increasing of rotation speed. This 
means that the rotations of the crucible provoke 
oscillatory solute distribution and are extremely 
disturbing for the concentration field in the melt. 
When the crystal rotation rate is increased, a regular 
periodic oscillating solute distribution with smaller 
amplitude of radial segregation is observed, as in 
fig. 4c. In the case where no rotation is considered, 
the oscillations are time-dependent and irregular 
(fig. 4a). Those results are similar to the results 
found by Abbasoglu (2012).  
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Fig. 7. Effect of Reynolds number on radial 
segregation.  
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5. CONCLUSION  

The role of steady rotation on convection and solute 
distribution during solidification of binary alloys 
was investigated via a numerical parametric study 
using a mathematical model based on enthalpy 
method.  The effect of various rotation rates on 
macrosegregation was studied when the Reynolds 
number is changed. It was bringed out that the 
application of crucible rotation does not improve 
the solute mixing in the melt at high rotation rates.  
During the crystal growth, the natural convection  
generated by the temperature gradient influences on 
the solute diffusion quality at the interface (melt-
mushy zone) and creates chemical segregations in 
the solid.  

The crucible rotation at low Reynolds number 
Re 10 generates a forced flow in the opposite 

direction of the thermal one. Therefore, the 
convection  in the melt decreases and solute 
distribution becomes diffusive in the mushy zone. 
In this case, the rate of heat transfer intensity is low 
and the solute is moved by diffusion at the solid 
region. Furthermore, the use of ampoule rotation 
should be helpful in reducing asymmetric heat flow 
and solute distribution due to imperfect growth 
conditions. 
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